From: Philipp Wagner Date: Mon, 30 Jul 2012 00:18:27 +0000 (+0200) Subject: facerec_demo.py: Reworked demo to remove all matplotlib dependencies. X-Git-Tag: accepted/2.0/20130307.220821~364^2~293 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=4a7e29b3f43a8b9b8987032fe476ddcaac122853;p=profile%2Fivi%2Fopencv.git facerec_demo.py: Reworked demo to remove all matplotlib dependencies. --- diff --git a/samples/python2/facerec_demo.py b/samples/python2/facerec_demo.py index 1220acf..9fc2258 100644 --- a/samples/python2/facerec_demo.py +++ b/samples/python2/facerec_demo.py @@ -34,15 +34,8 @@ import os import sys - -import PIL.Image as Image - -import numpy as np - -import matplotlib.pyplot as plt -import matplotlib.cm as cm - import cv2 +import numpy as np def normalize(X, low, high, dtype=None): """Normalizes a given array in X to a value between low and high.""" @@ -58,6 +51,7 @@ def normalize(X, low, high, dtype=None): return np.asarray(X) return np.asarray(X, dtype=dtype) + def read_images(path, sz=None): """Reads the images in a given folder, resizes images on the fly if size is given. @@ -78,11 +72,10 @@ def read_images(path, sz=None): subject_path = os.path.join(dirname, subdirname) for filename in os.listdir(subject_path): try: - im = Image.open(os.path.join(subject_path, filename)) - im = im.convert("L") + im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE) # resize to given size (if given) if (sz is not None): - im = im.resize(sz, Image.ANTIALIAS) + im = cv2.resize(im, sz) X.append(np.asarray(im, dtype=np.uint8)) y.append(c) except IOError, (errno, strerror): @@ -92,49 +85,21 @@ def read_images(path, sz=None): raise c = c+1 return [X,y] - -def create_font(fontname='Tahoma', fontsize=10): - """Creates a font for the subplot.""" - return { 'fontname': fontname, 'fontsize':fontsize } - -def subplot(title, images, rows, cols, sptitle="subplot", sptitles=[], colormap=cm.gray, ticks_visible=True, filename=None): - """This will ease creating a subplot with matplotlib a lot for us.""" - fig = plt.figure() - # main title - fig.text(.5, .95, title, horizontalalignment='center') - for i in xrange(len(images)): - ax0 = fig.add_subplot(rows,cols,(i+1)) - plt.setp(ax0.get_xticklabels(), visible=False) - plt.setp(ax0.get_yticklabels(), visible=False) - if len(sptitles) == len(images): - plt.title("%s #%s" % (sptitle, str(sptitles[i])), create_font('Tahoma',10)) - else: - plt.title("%s #%d" % (sptitle, (i+1)), create_font('Tahoma',10)) - plt.imshow(np.asarray(images[i]), cmap=colormap) - if filename is None: - plt.show() - else: - fig.savefig(filename) - -def imsave(image, title="", filename=None): - """Saves or shows (if no filename is given) an image.""" - fig = plt.figure() - plt.imshow(np.asarray(image)) - plt.title(title, create_font('Tahoma',10)) - if filename is None: - plt.show() - else: - fig.savefig(filename) - + if __name__ == "__main__": + # This is where we write the images, if an output_dir is given + # in command line: + out_dir = None # You'll need at least a path to your image data, please see # the tutorial coming with this source code on how to prepare # your image data: - if len(sys.argv) != 2: - print "USAGE: facerec_demo.py " + if len(sys.argv) < 2: + print "USAGE: facerec_demo.py []" sys.exit() # Now read in the image data. This must be a valid path! [X,y] = read_images(sys.argv[1]) + if len(sys.argv) == 3: + out_dir = sys.argv[2] # Create the Eigenfaces model. We are going to use the default # parameters for this simple example, please read the documentation # for thresholding: @@ -166,17 +131,26 @@ if __name__ == "__main__": # Now let's get some data: mean = model.getMat("mean") eigenvectors = model.getMat("eigenvectors") + cv2.imwrite("test.png", X[0]) # We'll save the mean, by first normalizing it: mean_norm = normalize(mean, 0, 255) mean_resized = mean_norm.reshape(X[0].shape) - imsave(mean_resized, "Mean Face", "mean.png") + if out_dir is None: + cv2.imshow("mean", np.asarray(mean_resized, dtype=np.uint8)) + else: + cv2.imwrite("%s/mean.png" % (out_dir), np.asarray(mean_resized, dtype=np.uint8)) # Turn the first (at most) 16 eigenvectors into grayscale # images. You could also use cv::normalize here, but sticking # to NumPy is much easier for now. # Note: eigenvectors are stored by column: - SubplotData = [] for i in xrange(min(len(X), 16)): eigenvector_i = eigenvectors[:,i].reshape(X[0].shape) - SubplotData.append(normalize(eigenvector_i, 0, 255)) - # Plot them and store the plot to "python_eigenfaces.png" - subplot(title="Eigenfaces AT&T Facedatabase", images=SubplotData, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="eigenfaces.png") + eigenvector_i_norm = normalize(eigenvector_i, 0, 255) + # Show or save the images: + if out_dir is None: + cv2.imshow("%s/eigenvector_%d" % (out_dir,i), np.asarray(eigenvector_i_norm, dtype=np.uint8)) + else: + cv2.imwrite("%s/eigenvector_%d.png" % (out_dir,i), np.asarray(eigenvector_i_norm, dtype=np.uint8)) + # Show the images: + if out_dir is None: + cv2.waitKey(0)