From: Emanuele Giuseppe Esposito Date: Tue, 16 Mar 2021 17:08:14 +0000 (+0100) Subject: doc/virt/kvm: move KVM_CAP_PPC_MULTITCE in section 8 X-Git-Tag: v5.15~1218^2~85 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=24e7475f931ad7090c1e63dbaf12f338aeb81eac;p=platform%2Fkernel%2Flinux-starfive.git doc/virt/kvm: move KVM_CAP_PPC_MULTITCE in section 8 KVM_CAP_PPC_MULTITCE is a capability, not an ioctl. Therefore move it from section 4.97 to the new 8.31 (other capabilities). To fill the gap, move KVM_X86_SET_MSR_FILTER (was 4.126) to 4.97, and shifted Xen-related ioctl (were 4.127 - 4.130) by one place (4.126 - 4.129). Also fixed minor typo in KVM_GET_MSR_INDEX_LIST ioctl description (section 4.3). Signed-off-by: Emanuele Giuseppe Esposito Message-Id: <20210316170814.64286-1-eesposit@redhat.com> Signed-off-by: Paolo Bonzini --- diff --git a/Documentation/virt/kvm/api.rst b/Documentation/virt/kvm/api.rst index 9778b24..1b94cce 100644 --- a/Documentation/virt/kvm/api.rst +++ b/Documentation/virt/kvm/api.rst @@ -204,7 +204,7 @@ Errors: ====== ============================================================ EFAULT the msr index list cannot be read from or written to - E2BIG the msr index list is to be to fit in the array specified by + E2BIG the msr index list is too big to fit in the array specified by the user. ====== ============================================================ @@ -3692,31 +3692,105 @@ which is the maximum number of possibly pending cpu-local interrupts. Queues an SMI on the thread's vcpu. -4.97 KVM_CAP_PPC_MULTITCE -------------------------- +4.97 KVM_X86_SET_MSR_FILTER +---------------------------- -:Capability: KVM_CAP_PPC_MULTITCE -:Architectures: ppc -:Type: vm +:Capability: KVM_X86_SET_MSR_FILTER +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_msr_filter +:Returns: 0 on success, < 0 on error -This capability means the kernel is capable of handling hypercalls -H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user -space. This significantly accelerates DMA operations for PPC KVM guests. -User space should expect that its handlers for these hypercalls -are not going to be called if user space previously registered LIOBN -in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). +:: -In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, -user space might have to advertise it for the guest. For example, -IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is -present in the "ibm,hypertas-functions" device-tree property. + struct kvm_msr_filter_range { + #define KVM_MSR_FILTER_READ (1 << 0) + #define KVM_MSR_FILTER_WRITE (1 << 1) + __u32 flags; + __u32 nmsrs; /* number of msrs in bitmap */ + __u32 base; /* MSR index the bitmap starts at */ + __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ + }; -The hypercalls mentioned above may or may not be processed successfully -in the kernel based fast path. If they can not be handled by the kernel, -they will get passed on to user space. So user space still has to have -an implementation for these despite the in kernel acceleration. + #define KVM_MSR_FILTER_MAX_RANGES 16 + struct kvm_msr_filter { + #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) + #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) + __u32 flags; + struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; + }; -This capability is always enabled. +flags values for ``struct kvm_msr_filter_range``: + +``KVM_MSR_FILTER_READ`` + + Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap + indicates that a read should immediately fail, while a 1 indicates that + a read for a particular MSR should be handled regardless of the default + filter action. + +``KVM_MSR_FILTER_WRITE`` + + Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap + indicates that a write should immediately fail, while a 1 indicates that + a write for a particular MSR should be handled regardless of the default + filter action. + +``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` + + Filter both read and write accesses to MSRs using the given bitmap. A 0 + in the bitmap indicates that both reads and writes should immediately fail, + while a 1 indicates that reads and writes for a particular MSR are not + filtered by this range. + +flags values for ``struct kvm_msr_filter``: + +``KVM_MSR_FILTER_DEFAULT_ALLOW`` + + If no filter range matches an MSR index that is getting accessed, KVM will + fall back to allowing access to the MSR. + +``KVM_MSR_FILTER_DEFAULT_DENY`` + + If no filter range matches an MSR index that is getting accessed, KVM will + fall back to rejecting access to the MSR. In this mode, all MSRs that should + be processed by KVM need to explicitly be marked as allowed in the bitmaps. + +This ioctl allows user space to define up to 16 bitmaps of MSR ranges to +specify whether a certain MSR access should be explicitly filtered for or not. + +If this ioctl has never been invoked, MSR accesses are not guarded and the +default KVM in-kernel emulation behavior is fully preserved. + +Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR +filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes +an error. + +As soon as the filtering is in place, every MSR access is processed through +the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); +x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, +and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base +register. + +If a bit is within one of the defined ranges, read and write accesses are +guarded by the bitmap's value for the MSR index if the kind of access +is included in the ``struct kvm_msr_filter_range`` flags. If no range +cover this particular access, the behavior is determined by the flags +field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` +and ``KVM_MSR_FILTER_DEFAULT_DENY``. + +Each bitmap range specifies a range of MSRs to potentially allow access on. +The range goes from MSR index [base .. base+nmsrs]. The flags field +indicates whether reads, writes or both reads and writes are filtered +by setting a 1 bit in the bitmap for the corresponding MSR index. + +If an MSR access is not permitted through the filtering, it generates a +#GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that +allows user space to deflect and potentially handle various MSR accesses +into user space. + +If a vCPU is in running state while this ioctl is invoked, the vCPU may +experience inconsistent filtering behavior on MSR accesses. 4.98 KVM_CREATE_SPAPR_TCE_64 ---------------------------- @@ -4712,107 +4786,7 @@ KVM_PV_VM_VERIFY Verify the integrity of the unpacked image. Only if this succeeds, KVM is allowed to start protected VCPUs. -4.126 KVM_X86_SET_MSR_FILTER ----------------------------- - -:Capability: KVM_X86_SET_MSR_FILTER -:Architectures: x86 -:Type: vm ioctl -:Parameters: struct kvm_msr_filter -:Returns: 0 on success, < 0 on error - -:: - - struct kvm_msr_filter_range { - #define KVM_MSR_FILTER_READ (1 << 0) - #define KVM_MSR_FILTER_WRITE (1 << 1) - __u32 flags; - __u32 nmsrs; /* number of msrs in bitmap */ - __u32 base; /* MSR index the bitmap starts at */ - __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ - }; - - #define KVM_MSR_FILTER_MAX_RANGES 16 - struct kvm_msr_filter { - #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) - #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) - __u32 flags; - struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; - }; - -flags values for ``struct kvm_msr_filter_range``: - -``KVM_MSR_FILTER_READ`` - - Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap - indicates that a read should immediately fail, while a 1 indicates that - a read for a particular MSR should be handled regardless of the default - filter action. - -``KVM_MSR_FILTER_WRITE`` - - Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap - indicates that a write should immediately fail, while a 1 indicates that - a write for a particular MSR should be handled regardless of the default - filter action. - -``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` - - Filter both read and write accesses to MSRs using the given bitmap. A 0 - in the bitmap indicates that both reads and writes should immediately fail, - while a 1 indicates that reads and writes for a particular MSR are not - filtered by this range. - -flags values for ``struct kvm_msr_filter``: - -``KVM_MSR_FILTER_DEFAULT_ALLOW`` - - If no filter range matches an MSR index that is getting accessed, KVM will - fall back to allowing access to the MSR. - -``KVM_MSR_FILTER_DEFAULT_DENY`` - - If no filter range matches an MSR index that is getting accessed, KVM will - fall back to rejecting access to the MSR. In this mode, all MSRs that should - be processed by KVM need to explicitly be marked as allowed in the bitmaps. - -This ioctl allows user space to define up to 16 bitmaps of MSR ranges to -specify whether a certain MSR access should be explicitly filtered for or not. - -If this ioctl has never been invoked, MSR accesses are not guarded and the -default KVM in-kernel emulation behavior is fully preserved. - -Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR -filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes -an error. - -As soon as the filtering is in place, every MSR access is processed through -the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); -x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, -and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base -register. - -If a bit is within one of the defined ranges, read and write accesses are -guarded by the bitmap's value for the MSR index if the kind of access -is included in the ``struct kvm_msr_filter_range`` flags. If no range -cover this particular access, the behavior is determined by the flags -field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` -and ``KVM_MSR_FILTER_DEFAULT_DENY``. - -Each bitmap range specifies a range of MSRs to potentially allow access on. -The range goes from MSR index [base .. base+nmsrs]. The flags field -indicates whether reads, writes or both reads and writes are filtered -by setting a 1 bit in the bitmap for the corresponding MSR index. - -If an MSR access is not permitted through the filtering, it generates a -#GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that -allows user space to deflect and potentially handle various MSR accesses -into user space. - -If a vCPU is in running state while this ioctl is invoked, the vCPU may -experience inconsistent filtering behavior on MSR accesses. - -4.127 KVM_XEN_HVM_SET_ATTR +4.126 KVM_XEN_HVM_SET_ATTR -------------------------- :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO @@ -4855,7 +4829,7 @@ KVM_XEN_ATTR_TYPE_SHARED_INFO KVM_XEN_ATTR_TYPE_UPCALL_VECTOR Sets the exception vector used to deliver Xen event channel upcalls. -4.128 KVM_XEN_HVM_GET_ATTR +4.127 KVM_XEN_HVM_GET_ATTR -------------------------- :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO @@ -4867,7 +4841,7 @@ KVM_XEN_ATTR_TYPE_UPCALL_VECTOR Allows Xen VM attributes to be read. For the structure and types, see KVM_XEN_HVM_SET_ATTR above. -4.129 KVM_XEN_VCPU_SET_ATTR +4.128 KVM_XEN_VCPU_SET_ATTR --------------------------- :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO @@ -4929,7 +4903,7 @@ KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST or RUNSTATE_offline) to set the current accounted state as of the adjusted state_entry_time. -4.130 KVM_XEN_VCPU_GET_ATTR +4.129 KVM_XEN_VCPU_GET_ATTR --------------------------- :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO @@ -6727,3 +6701,29 @@ vcpu_info is set. The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicates that the runstate-related features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR/_CURRENT/_DATA/_ADJUST are supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR ioctls. + +8.31 KVM_CAP_PPC_MULTITCE +------------------------- + +:Capability: KVM_CAP_PPC_MULTITCE +:Architectures: ppc +:Type: vm + +This capability means the kernel is capable of handling hypercalls +H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user +space. This significantly accelerates DMA operations for PPC KVM guests. +User space should expect that its handlers for these hypercalls +are not going to be called if user space previously registered LIOBN +in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). + +In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, +user space might have to advertise it for the guest. For example, +IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is +present in the "ibm,hypertas-functions" device-tree property. + +The hypercalls mentioned above may or may not be processed successfully +in the kernel based fast path. If they can not be handled by the kernel, +they will get passed on to user space. So user space still has to have +an implementation for these despite the in kernel acceleration. + +This capability is always enabled. \ No newline at end of file