From: Sven Verdoolaege Date: Fri, 2 Jan 2009 21:32:21 +0000 (+0100) Subject: add isl_mat_parameter_compression X-Git-Tag: isl-0.01~313 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=246abfb0f42edc80a2e61827a939c699b8e24e54;p=platform%2Fupstream%2Fisl.git add isl_mat_parameter_compression --- diff --git a/isl_equalities.c b/isl_equalities.c index c8489a0..1f0c698 100644 --- a/isl_equalities.c +++ b/isl_equalities.c @@ -3,6 +3,220 @@ #include "isl_map_private.h" #include "isl_equalities.h" +/* Given a set of modulo constraints + * + * c + A y = 0 mod d + * + * this function computes a particular solution y_0 + * + * The input is given as a matrix B = [ c A ] and a vector d. + * + * The output is matrix containing the solution y_0 or + * a zero-column matrix if the constraints admit no integer solution. + * + * The given set of constrains is equivalent to + * + * c + A y = -D x + * + * with D = diag d and x a fresh set of variables. + * Reducing both c and A modulo d does not change the + * value of y in the solution and may lead to smaller coefficients. + * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M. + * Then + * [ x ] + * M [ y ] = - c + * and so + * [ x ] + * [ H 0 ] U^{-1} [ y ] = - c + * Let + * [ A ] [ x ] + * [ B ] = U^{-1} [ y ] + * then + * H A + 0 B = -c + * + * so B may be chosen arbitrarily, e.g., B = 0, and then + * + * [ x ] = [ -c ] + * U^{-1} [ y ] = [ 0 ] + * or + * [ x ] [ -c ] + * [ y ] = U [ 0 ] + * specifically, + * + * y = U_{2,1} (-c) + * + * If any of the coordinates of this y are non-integer + * then the constraints admit no integer solution and + * a zero-column matrix is returned. + */ +static struct isl_mat *particular_solution(struct isl_ctx *ctx, + struct isl_mat *B, struct isl_vec *d) +{ + int i, j; + struct isl_mat *M = NULL; + struct isl_mat *C = NULL; + struct isl_mat *U = NULL; + struct isl_mat *H = NULL; + struct isl_mat *cst = NULL; + struct isl_mat *T = NULL; + + M = isl_mat_alloc(ctx, B->n_row, B->n_row + B->n_col - 1); + C = isl_mat_alloc(ctx, 1 + B->n_row, 1); + if (!M || !C) + goto error; + isl_int_set_si(C->row[0][0], 1); + for (i = 0; i < B->n_row; ++i) { + isl_seq_clr(M->row[i], B->n_row); + isl_int_set(M->row[i][i], d->block.data[i]); + isl_int_neg(C->row[1 + i][0], B->row[i][0]); + isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]); + for (j = 0; j < B->n_col - 1; ++j) + isl_int_fdiv_r(M->row[i][B->n_row + j], + B->row[i][1 + j], M->row[i][i]); + } + M = isl_mat_left_hermite(ctx, M, 0, &U, NULL); + if (!M || !U) + goto error; + H = isl_mat_sub_alloc(ctx, M->row, 0, B->n_row, 0, B->n_row); + H = isl_mat_lin_to_aff(ctx, H); + C = isl_mat_inverse_product(ctx, H, C); + if (!C) + goto error; + for (i = 0; i < B->n_row; ++i) { + if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0])) + break; + isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]); + } + if (i < B->n_row) + cst = isl_mat_alloc(ctx, B->n_row, 0); + else + cst = isl_mat_sub_alloc(ctx, C->row, 1, B->n_row, 0, 1); + T = isl_mat_sub_alloc(ctx, U->row, B->n_row, B->n_col - 1, 0, B->n_row); + cst = isl_mat_product(ctx, T, cst); + isl_mat_free(ctx, M); + isl_mat_free(ctx, C); + isl_mat_free(ctx, U); + return cst; +error: + isl_mat_free(ctx, M); + isl_mat_free(ctx, C); + isl_mat_free(ctx, U); + return NULL; +} + +/* Given a set of modulo constraints + * + * c + A y = 0 mod d + * + * this function returns an affine transformation T, + * + * y = T y' + * + * that bijectively maps the integer vectors y' to integer + * vectors y that satisfy the modulo constraints. + * + * The implementation closely follows the description in Section 2.5.3 + * of B. Meister, "Stating and Manipulating Periodicity in the Polytope + * Model. Applications to Program Analysis and Optimization". + * + * The input is given as a matrix B = [ c A ] and a vector d. + * Each element of the vector d corresponds to a row in B. + * The output is a lower triangular matrix. + * If no integer vector y satisfies the given constraints then + * a matrix with zero columns is returned. + * + * We first compute a particular solution y_0 to the given set of + * modulo constraints in particular_solution. If no such solution + * exists, then we return a zero-columned transformation matrix. + * Otherwise, we compute the generic solution to + * + * A y = 0 mod d + * + * Let K be the right kernel of A, then any y = K y'' is a solution. + * Any multiple of a unit vector s_j e_j such that for each row i, + * we have that s_j a_{i,j} is a multiple of d_i, is also a generator + * for the set of solutions. The smallest such s_j can be obtained + * by taking the lcm of all the a_{i,j}/gcd(a_{i,j},d). + * That is, y = K y'' + S y''', with S = diag s is the general solution. + * To obtain a minimal representation we compute the Hermite normal + * form [ G 0 ] of [ S K ]. + * The affine transformation matrix returned is then + * + * [ 1 0 ] + * [ y_0 G ] + * + * as any y = y_0 + G y' with y' integer is a solution to the original + * modulo constraints. + */ +struct isl_mat *isl_mat_parameter_compression(struct isl_ctx *ctx, + struct isl_mat *B, struct isl_vec *d) +{ + int i, j; + struct isl_mat *cst = NULL; + struct isl_mat *K = NULL; + struct isl_mat *M = NULL; + struct isl_mat *T; + isl_int v; + + if (!B || !d) + goto error; + isl_assert(ctx, B->n_row == d->size, goto error); + cst = particular_solution(ctx, B, d); + if (!cst) + goto error; + if (cst->n_col == 0) { + T = isl_mat_alloc(ctx, B->n_col, 0); + isl_mat_free(ctx, cst); + isl_mat_free(ctx, B); + isl_vec_free(ctx, d); + return T; + } + T = isl_mat_sub_alloc(ctx, B->row, 0, B->n_row, 1, B->n_col - 1); + K = isl_mat_right_kernel(ctx, T); + if (!K) + goto error; + M = isl_mat_alloc(ctx, B->n_col - 1, B->n_col - 1 + K->n_col); + if (!M) + goto error; + isl_mat_sub_copy(ctx, M->row, K->row, M->n_row, + B->n_col - 1, 0, K->n_col); + for (i = 0; i < M->n_row; ++i) { + isl_seq_clr(M->row[i], B->n_col - 1); + isl_int_set_si(M->row[i][i], 1); + } + isl_int_init(v); + for (i = 0; i < B->n_row; ++i) + for (j = 0; j < B->n_col - 1; ++j) { + isl_int_gcd(v, B->row[i][1+j], d->block.data[i]); + isl_int_divexact(v, d->block.data[i], v); + isl_int_lcm(M->row[j][j], M->row[j][j], v); + } + isl_int_clear(v); + M = isl_mat_left_hermite(ctx, M, 0, NULL, NULL); + if (!M) + goto error; + T = isl_mat_alloc(ctx, 1 + B->n_col - 1, B->n_col); + if (!T) + goto error; + isl_int_set_si(T->row[0][0], 1); + isl_seq_clr(T->row[0] + 1, T->n_col - 1); + isl_mat_sub_copy(ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1); + isl_mat_sub_copy(ctx, T->row + 1, M->row, M->n_row, 1, 0, T->n_col - 1); + isl_mat_free(ctx, K); + isl_mat_free(ctx, M); + isl_mat_free(ctx, cst); + isl_mat_free(ctx, B); + isl_vec_free(ctx, d); + return T; +error: + isl_mat_free(ctx, K); + isl_mat_free(ctx, M); + isl_mat_free(ctx, cst); + isl_mat_free(ctx, B); + isl_vec_free(ctx, d); + return NULL; +} + /* Given a set of equalities * * M x - c = 0 diff --git a/isl_equalities.h b/isl_equalities.h index 88489aa..d892e47 100644 --- a/isl_equalities.h +++ b/isl_equalities.h @@ -10,6 +10,8 @@ extern "C" { struct isl_mat *isl_mat_variable_compression(struct isl_ctx *ctx, struct isl_mat *B, struct isl_mat **T2); +struct isl_mat *isl_mat_parameter_compression(struct isl_ctx *ctx, + struct isl_mat *B, struct isl_vec *d); struct isl_basic_set *isl_basic_set_remove_equalities( struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2);