From: Justin Ruggles Date: Sat, 14 Jul 2007 15:41:27 +0000 (+0000) Subject: AC-3 decoder, soc revision 26, Jul 5 04:55:15 2006 UTC by cloud9 X-Git-Tag: v0.5~8344 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=1b293437313ad9e6a6b14bf1f3d95e3d983bbc9a;p=platform%2Fupstream%2Flibav.git AC-3 decoder, soc revision 26, Jul 5 04:55:15 2006 UTC by cloud9 Mersenne Twister Dynamic Range Downmixing IMDCT Originally committed as revision 9652 to svn://svn.ffmpeg.org/ffmpeg/trunk --- diff --git a/libavcodec/ac3dec.c b/libavcodec/ac3dec.c index 8cd08f7..30f0ec3 100644 --- a/libavcodec/ac3dec.c +++ b/libavcodec/ac3dec.c @@ -24,402 +24,504 @@ #include #define ALT_BITSTREAM_READER + +#include "ac3.h" +#include "ac3tab.h" #include "ac3_decoder.h" #include "avcodec.h" #include "bitstream.h" #include "dsputil.h" #include "avutil.h" +#include "common.h" + +/* Synchronization information. */ +typedef struct { + uint16_t sync_word; //synchronization word = always 0x0b77 + uint16_t crc1; //crc for the first 5/8 of the frame + uint8_t fscod; //sampling rate code + uint8_t frmsizecod; //frame size code + + /* Derived Attributes */ + int sampling_rate; //sampling rate - 48, 44.1 or 32 kHz (value in Hz) + int bit_rate; //nominal bit rate (value in kbps) +} ac3_sync_info; + +/* flags for the BSI. */ +#define AC3_BSI_LFEON 0x00000001 //low frequency effects channel on +#define AC3_BSI_COMPRE 0x00000002 //compression exists +#define AC3_BSI_LANGCODE 0x00000004 //langcode exists +#define AC3_BSI_AUDPRODIE 0x00000008 //audio production information exists +#define AC3_BSI_COMPR2E 0x00000010 //compr2 exists +#define AC3_BSI_LANGCOD2E 0x00000020 //langcod2 exists +#define AC3_BSI_AUDPRODI2E 0x00000040 //audio production information 2 exists +#define AC3_BSI_COPYRIGHTB 0x00000080 //copyright +#define AC3_BSI_ORIGBS 0x00000100 //original bit stream +#define AC3_BSI_TIMECOD1E 0x00000200 //timecod1 exists +#define AC3_BSI_TIMECOD2E 0x00000400 //timecod2 exists +#define AC3_BSI_ADDBSIE 0x00000800 //additional bit stream information exists + +/* Bit Stream Information. */ +typedef struct { + uint32_t flags; + uint8_t bsid; //bit stream identification + uint8_t bsmod; //bit stream mode - type of service + uint8_t acmod; //audio coding mode - which channels are in use + uint8_t cmixlev; //center mix level + uint8_t surmixlev; //surround mix level + uint8_t dsurmod; //dynamic surround encoded + uint8_t dialnorm; //dialog normalization + uint8_t compr; //compression gain word + uint8_t langcod; //language code + uint8_t mixlevel; //mixing level + uint8_t roomtyp; //room type + uint8_t dialnorm2; //dialogue normalization for 1+1 mode + uint8_t compr2; //compression gain word for 1+1 mode + uint8_t langcod2; //language code for 1+1 mode + uint8_t mixlevel2; //mixing level for 1+1 mode + uint8_t roomtyp2; //room type for 1+1 mode + uint16_t timecod1; //timecode 1 + uint16_t timecod2; //timecode 2 + uint8_t addbsil; //additional bit stream information length + + /* Dervied Attributes */ + int nfchans; //number of full bandwidth channels - derived from acmod +} ac3_bsi; + +/* #defs relevant to Audio Block. */ +#define MAX_FBW_CHANNELS 5 //maximum full bandwidth channels +#define NUM_LFE_GROUPS 3 //number of LFE Groups +#define MAX_NUM_SEGS 8 //maximum number of segments per delta bit allocation +#define NUM_LFE_MANTS 7 //number of lfe mantissas +#define MAX_CPL_SUBNDS 18 //maximum number of coupling sub bands +#define MAX_CPL_BNDS 18 //maximum number of coupling bands +#define MAX_CPL_GRPS 253 //maximum number of coupling groups +#define MAX_CHNL_GRPS 88 //maximum number of channel groups +#define MAX_NUM_MANTISSAS 256 //maximum number of mantissas + +/* flags for the Audio Block. */ +#define AC3_AB_DYNRNGE 0x00000001 //dynamic range control exists +#define AC3_AB_DYNRNG2E 0x00000002 //dynamic range control 2 exists +#define AC3_AB_CPLSTRE 0x00000004 //coupling strategy exists +#define AC3_AB_CPLINU 0x00000008 //coupling in use +#define AC3_AB_PHSFLGINU 0x00000010 //phase flag in use +#define AC3_AB_REMATSTR 0x00000020 //rematrixing required +#define AC3_AB_LFEEXPSTR 0x00000100 //lfe exponent strategy +#define AC3_AB_BAIE 0x00000200 //bit allocation information exists +#define AC3_AB_SNROFFSTE 0x00000400 //SNR offset exists +#define AC3_AB_CPLLEAKE 0x00000800 //coupling leak initialization exists +#define AC3_AB_DELTBAIE 0x00001000 //delta bit allocation information exists +#define AC3_AB_SKIPLE 0x00002000 //skip length exists + +/* Exponent strategies. */ +#define AC3_EXPSTR_D15 0x01 +#define AC3_EXPSTR_D25 0x02 +#define AC3_EXPSTR_D45 0x03 +#define AC3_EXPSTR_REUSE 0x00 + +/* Bit allocation strategies */ +#define AC3_DBASTR_NEW 0x01 +#define AC3_DBASTR_NONE 0x02 +#define AC3_DBASTR_RESERVED 0x03 +#define AC3_DBASTR_REUSE 0x00 + +/* Audio Block */ +typedef struct { + uint32_t flags; + uint8_t blksw; //block switch flags for channels in use + uint8_t dithflag; //dithering flags for channels in use + int8_t dynrng; //dynamic range word + int8_t dynrng2; //dynamic range word for 1+1 mode + uint8_t chincpl; //channel in coupling flags for channels in use + uint8_t cplbegf; //coupling begin frequency code + uint8_t cplendf; //coupling end frequency code + uint32_t cplbndstrc; //coupling band structure + uint8_t cplcoe; //coupling co-ordinates exists for the channel in use + uint8_t mstrcplco[5]; //master coupling co-ordinate for channels in use + uint8_t cplcoexp[5][18]; //coupling co-ordinate exponenets + uint8_t cplcomant[5][18]; //coupling co-ordinate mantissas + uint32_t phsflg; //phase flag per band + uint8_t rematflg; //rematrixing flag + uint8_t cplexpstr; //coupling exponent strategy + uint8_t chexpstr[5]; //channel exponent strategy + uint8_t lfeexpstr; //lfe exponent strategy + uint8_t chbwcod[5]; //channel bandwdith code for channels in use + uint8_t cplabsexp; //coupling absolute exponent + uint8_t cplexps[72]; //coupling exponents + uint8_t exps[5][88]; //channel exponents + uint8_t gainrng[5]; //gain range + uint8_t lfeexps[3]; //LFE exponents + uint8_t sdcycod; //slow decay code + uint8_t fdcycod; //fast decay code + uint8_t sgaincod; //slow gain code + uint8_t dbpbcod; //dB per bit code + uint8_t floorcod; //masking floor code + uint8_t csnroffst; //coarse SNR offset + uint8_t cplfsnroffst; //coupling fine SNR offset + uint8_t cplfgaincod; //coupling fast gain code + uint8_t fsnroffst[5]; //fine SNR offset for channels in use + uint8_t fgaincod[5]; //fast gain code for channels in use + uint8_t lfefsnroffst; //lfe fine SNR offset + uint8_t lfefgaincod; //lfe fast gain code + uint8_t cplfleak; //coupling fast leak initialization value + uint8_t cplsleak; //coupling slow leak initialization value + uint8_t cpldeltbae; //coupling delta bit allocation exists + uint8_t deltbae[5]; //delta bit allocation exists for channels in use + uint8_t cpldeltnseg; //coupling delta bit allocation number of segments + uint8_t cpldeltoffst[8]; //coupling delta offset + uint8_t cpldeltlen[8]; //coupling delta len + uint8_t cpldeltba[8]; //coupling delta bit allocation + uint8_t deltnseg[5]; //delta bit allocation number of segments per channel + uint8_t deltoffst[5][8]; //delta offset for channels in use + uint8_t deltlen[5][8]; //delta len for channels in use + uint8_t deltba[5][8]; //delta bit allocation + uint16_t skipl; //skip length + + /* Derived Attributes */ + int ncplsubnd; //number of active coupling sub bands = 3 + cplendf - cplbegf + int ncplbnd; //derived from ncplsubnd and cplbndstrc + int ncplgrps; //derived from ncplsubnd, cplexpstr + int nchgrps[5]; //derived from chexpstr, and cplbegf or chbwcod + int nchmant[5]; //derived from cplbegf or chbwcod + int ncplmant; //derived from ncplsubnd = 12 * ncplsubnd + + uint8_t cplstrtbnd; //coupling start band for bit allocation + uint8_t cplstrtmant; //coupling start mantissa + uint8_t cplendmant; //coupling end mantissa + uint8_t endmant[5]; //channel end mantissas + + uint8_t dcplexps[256]; //decoded coupling exponents + uint8_t dexps[5][256]; //decoded fbw channel exponents + uint8_t dlfeexps[256]; //decoded lfe exponents + uint8_t cplbap[256]; //coupling bit allocation parameters table + uint8_t bap[5][256]; //fbw channels bit allocation parameters table + uint8_t lfebap[256]; //lfe bit allocaiton parameters table + + float cplcoeffs[256]; //temporary storage for coupling transform coefficients + float cplco[5][18]; //coupling co-ordinates + float chcoeffs[6]; //channel coefficients for downmix +} ac3_audio_block; + + + +#define AC3_OUTPUT_UNMODIFIED 0x00 +#define AC3_OUTPUT_MONO 0x01 +#define AC3_OUTPUT_STEREO 0x02 +#define AC3_OUTPUT_DOLBY 0x03 + +#define AC3_INPUT_DUALMONO 0x00 +#define AC3_INPUT_MONO 0x01 +#define AC3_INPUT_STEREO 0x02 +#define AC3_INPUT_3F 0x03 +#define AC3_INPUT_2F_1R 0x04 +#define AC3_INPUT_3F_1R 0x05 +#define AC3_INPUT_2F_2R 0x06 +#define AC3_INPUT_3F_2R 0x07 + +/* BEGIN Mersenne Twister Code. */ +#define N 624 +#define M 397 +#define MATRIX_A 0x9908b0df +#define UPPER_MASK 0x80000000 +#define LOWER_MASK 0x7fffffff + +typedef struct { + uint32_t mt[N]; + int mti; +} dither_state; + +static void dither_seed(dither_state *state, uint32_t seed) +{ + if (seed == 0) + seed = 0x1f2e3d4c; -static const int sampling_rates[3] = { 32000, 44100, 48000 }; + state->mt[0] = seed; + for (state->mti = 1; state->mti < N; state->mti++) + state->mt[state->mti] = ((69069 * state->mt[state->mti - 1]) + 1); +} -static const struct +static uint32_t dither_uint32(dither_state *state) { - int bit_rate; - int frame_sizes[3]; -} frame_size_table[38] = { - { 32, { 96, 69, 64 } }, - { 32, { 96, 70, 64 } }, - { 40, { 120, 87, 80 } }, - { 40, { 120, 88, 80 } }, - { 48, { 144, 104, 96 } }, - { 48, { 144, 105, 96 } }, - { 56, { 168, 121, 112 } }, - { 56, { 168, 122, 112 } }, - { 64, { 192, 139, 128 } }, - { 64, { 192, 140, 128 } }, - { 80, { 240, 174, 160 } }, - { 80, { 240, 175, 160 } }, - { 96, { 288, 208, 192 } }, - { 96, { 288, 209, 192 } }, - { 112, { 336, 243, 224 } }, - { 112, { 336, 244, 224 } }, - { 128, { 384, 278, 256 } }, - { 128, { 384, 279, 256 } }, - { 160, { 480, 348, 320 } }, - { 160, { 480, 349, 320 } }, - { 192, { 576, 417, 384 } }, - { 192, { 576, 418, 384 } }, - { 224, { 672, 487, 448 } }, - { 224, { 672, 488, 448 } }, - { 256, { 768, 557, 512 } }, - { 256, { 768, 558, 512 } }, - { 320, { 960, 696, 640 } }, - { 320, { 960, 697, 640 } }, - { 384, { 1152, 835, 768 } }, - { 384, { 1152, 836, 768 } }, - { 448, { 1344, 975, 896 } }, - { 448, { 1344, 976, 896 } }, - { 512, { 1536, 1114, 1024 } }, - { 512, { 1536, 1115, 1024 } }, - { 576, { 1728, 1253, 1152 } }, - { 576, { 1728, 1254, 1152 } }, - { 640, { 1920, 1393, 1280 } } -}; + uint32_t y; + static const uint32_t mag01[2] = { 0x00, MATRIX_A }; + int kk; + + if (state->mti >= N) { + for (kk = 0; kk < N - M; kk++) { + y = (state->mt[kk] & UPPER_MASK) | (state->mt[kk + 1] & LOWER_MASK); + state->mt[kk] = state->mt[kk + M] ^ (y >> 1) ^ mag01[y & 0x01]; + } + for (;kk < N - 1; kk++) { + y = (state->mt[kk] & UPPER_MASK) | (state->mt[kk + 1] & LOWER_MASK); + state->mt[kk] = state->mt[kk + (M - N)] ^ (y >> 1) ^ mag01[y & 0x01]; + } + y = (state->mt[N - 1] & UPPER_MASK) | (state->mt[0] & LOWER_MASK); + state->mt[N - 1] = state->mt[M - 1] ^ (y >> 1) ^ mag01[y & 0x01]; + + state->mti = 0; + } -static int -ac3_decode_init (AVCodecContext * avctx) + y = state->mt[state->mti++]; + y ^= (y >> 11); + y ^= ((y << 7) & 0x9d2c5680); + y ^= ((y << 15) & 0xefc60000); + y ^= (y >> 18); + + return y; +} + +static inline int16_t dither_int16(dither_state *state) { - AC3DecodeContext *ctx = avctx->priv_data; + return ((dither_uint32(state) << 16) >> 16); +} - ff_mdct_init (&ctx->mdct_ctx_256, 8, 1); - ff_mdct_init (&ctx->mdct_ctx_512, 9, 1); - ctx->samples = av_mallocz (6 * 6 * 256 * sizeof (float)); - if (!(ctx->samples)) - return -1; +/* END Mersenne Twister */ + +/* AC3 Context. */ +typedef struct { + ac3_sync_info sync_info; + ac3_bsi bsi; + ac3_audio_block audio_block; + float *samples; + int output; + dither_state state; + MDCTContext imdct_ctx_256; + MDCTContext imdct_ctx_512; + GetBitContext gb; +} AC3DecodeContext; + + +static int ac3_decode_init(AVCodecContext *avctx) +{ + AC3DecodeContext *ctx = avctx->priv_data; + + ac3_common_init(); + + ff_mdct_init(&ctx->imdct_ctx_256, 8, 1); + ff_mdct_init(&ctx->imdct_ctx_512, 9, 1); + ctx->samples = av_mallocz(6 * 256 * sizeof (float)); + if (!ctx->samples) { + av_log(avctx, AV_LOG_ERROR, "Cannot allocate memory for samples\n"); + return -1; + } + dither_seed(&ctx->state, 0); - return 0; + return 0; } -static int -ac3_synchronize (uint8_t * buf, int buf_size) +static int ac3_synchronize(uint8_t *buf, int buf_size) { - int i; + int i; - for (i = 0; i < buf_size - 1; i++) - if (buf[i] == 0x0b && buf[i + 1] == 0x77) - return i; + for (i = 0; i < buf_size - 1; i++) + if (buf[i] == 0x0b && buf[i + 1] == 0x77) + return i; - return -1; + return -1; } //Returns -1 when 'fscod' is not valid; -static int -ac3_parse_sync_info (AC3DecodeContext * ctx) +static int ac3_parse_sync_info(AC3DecodeContext *ctx) { - ac3_sync_info *sync_info = &ctx->sync_info; - GetBitContext *gb = &ctx->gb; + ac3_sync_info *sync_info = &ctx->sync_info; + GetBitContext *gb = &ctx->gb; - sync_info->sync_word = get_bits_long (gb, 16); - sync_info->crc1 = get_bits_long (gb, 16); - sync_info->fscod = get_bits_long (gb, 2); - if (sync_info->fscod == 0x03) - return -1; - sync_info->frmsizecod = get_bits_long (gb, 6); - if (sync_info->frmsizecod >= 0x38) - return -1; - sync_info->sampling_rate = sampling_rates[sync_info->fscod]; - sync_info->bit_rate = frame_size_table[sync_info->frmsizecod].bit_rate; - sync_info->frame_size = frame_size_table[sync_info->frmsizecod].frame_sizes[sync_info->fscod]; + sync_info->sync_word = get_bits(gb, 16); + sync_info->crc1 = get_bits(gb, 16); + sync_info->fscod = get_bits(gb, 2); + if (sync_info->fscod == 0x03) + return -1; + sync_info->frmsizecod = get_bits(gb, 6); + if (sync_info->frmsizecod >= 0x38) + return -1; + sync_info->sampling_rate = ac3_freqs[sync_info->fscod]; + sync_info->bit_rate = ac3_bitratetab[sync_info->frmsizecod >> 1]; - return 0; + return 0; } -static const int nfchans_tbl[8] = { 2, 1, 2, 3, 3, 4, 4, 5 }; - //Returns -1 when -static int -ac3_parse_bsi (AC3DecodeContext * ctx) +static int ac3_parse_bsi(AC3DecodeContext *ctx) { - ac3_bsi *bsi = &ctx->bsi; - uint32_t *flags = &bsi->flags; - GetBitContext *gb = &ctx->gb; + ac3_bsi *bsi = &ctx->bsi; + uint32_t *flags = &bsi->flags; + GetBitContext *gb = &ctx->gb; - *flags = 0; - bsi->cmixlev = 0; - bsi->surmixlev = 0; - bsi->dsurmod = 0; + *flags = 0; + bsi->cmixlev = 0; + bsi->surmixlev = 0; + bsi->dsurmod = 0; - bsi->bsid = get_bits_long (gb, 5); - if (bsi->bsid > 0x08) - return -1; - bsi->bsmod = get_bits_long (gb, 3); - bsi->acmod = get_bits_long (gb, 3); - if (bsi->acmod & 0x01 && bsi->acmod != 0x01) - bsi->cmixlev = get_bits_long (gb, 2); - if (bsi->acmod & 0x04) - bsi->surmixlev = get_bits_long (gb, 2); - if (bsi->acmod == 0x02) - bsi->dsurmod = get_bits_long (gb, 2); - if (get_bits_long (gb, 1)) - *flags |= AC3_BSI_LFEON; - bsi->dialnorm = get_bits_long (gb, 5); - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_COMPRE; - bsi->compr = get_bits_long (gb, 5); - } - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_LANGCODE; - bsi->langcod = get_bits_long (gb, 8); - } - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_AUDPRODIE; - bsi->mixlevel = get_bits_long (gb, 5); - bsi->roomtyp = get_bits_long (gb, 2); - } - if (bsi->acmod == 0x00) { - bsi->dialnorm2 = get_bits_long (gb, 5); - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_COMPR2E; - bsi->compr2 = get_bits_long (gb, 5); - } - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_LANGCOD2E; - bsi->langcod2 = get_bits_long (gb, 8); - } - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_AUDPRODIE; - bsi->mixlevel2 = get_bits_long (gb, 5); - bsi->roomtyp2 = get_bits_long (gb, 2); - } - } - if (get_bits_long (gb, 1)) - *flags |= AC3_BSI_COPYRIGHTB; - if (get_bits_long (gb, 1)) - *flags |= AC3_BSI_ORIGBS; - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_TIMECOD1E; - bsi->timecod1 = get_bits_long (gb, 14); - } - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_TIMECOD2E; - bsi->timecod2 = get_bits_long (gb, 14); - } - if (get_bits_long (gb, 1)) { - *flags |= AC3_BSI_ADDBSIE; - bsi->addbsil = get_bits_long (gb, 6); - do { - get_bits_long (gb, 8); - } while (bsi->addbsil--); - } + bsi->bsid = get_bits(gb, 5); + if (bsi->bsid > 0x08) + return -1; + bsi->bsmod = get_bits(gb, 3); + bsi->acmod = get_bits(gb, 3); + if (bsi->acmod & 0x01 && bsi->acmod != 0x01) + bsi->cmixlev = get_bits(gb, 2); + if (bsi->acmod & 0x04) + bsi->surmixlev = get_bits(gb, 2); + if (bsi->acmod == 0x02) + bsi->dsurmod = get_bits(gb, 2); + if (get_bits(gb, 1)) + *flags |= AC3_BSI_LFEON; + bsi->dialnorm = get_bits(gb, 5); + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_COMPRE; + bsi->compr = get_bits(gb, 5); + } + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_LANGCODE; + bsi->langcod = get_bits(gb, 8); + } + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_AUDPRODIE; + bsi->mixlevel = get_bits(gb, 5); + bsi->roomtyp = get_bits(gb, 2); + } + if (bsi->acmod == 0x00) { + bsi->dialnorm2 = get_bits(gb, 5); + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_COMPR2E; + bsi->compr2 = get_bits(gb, 5); + } + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_LANGCOD2E; + bsi->langcod2 = get_bits(gb, 8); + } + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_AUDPRODIE; + bsi->mixlevel2 = get_bits(gb, 5); + bsi->roomtyp2 = get_bits(gb, 2); + } + } + if (get_bits(gb, 1)) + *flags |= AC3_BSI_COPYRIGHTB; + if (get_bits(gb, 1)) + *flags |= AC3_BSI_ORIGBS; + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_TIMECOD1E; + bsi->timecod1 = get_bits(gb, 14); + } + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_TIMECOD2E; + bsi->timecod2 = get_bits(gb, 14); + } + if (get_bits(gb, 1)) { + *flags |= AC3_BSI_ADDBSIE; + bsi->addbsil = get_bits(gb, 6); + do { + get_bits(gb, 8); + } while (bsi->addbsil--); + } + + bsi->nfchans = nfchans_tbl[bsi->acmod]; - bsi->nfchans = nfchans_tbl[bsi->acmod]; - return 0; + return 0; } -static int bands[16] = -{ 31, 35, 37, 39, 41, 42, 43, 44, - 45, 45, 46, 46, 47, 47, 48, 48 }; - -static const int diff_exps_M1[128] = - { -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, - -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 25, 25, 25 }; - -static const int diff_exps_M2[128] = - { -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, - -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, - -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, - -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, - -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, - 25, 25, 25 }; - -static const int diff_exps_M3[128] = - { -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, - -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, - -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, - -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, - -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, - 25, 25, 25 }; - -/* Decodes the grouped exponents (gexps) and stores them + /* Decodes the grouped exponents (gexps) and stores them * in decoded exponents (dexps). + * The code is derived from liba52. + * Uses liba52 tables. */ -static int -_decode_exponents (int expstr, int ngrps, uint8_t absexp, uint8_t * gexps, uint8_t * dexps) +static int _decode_exponents(int expstr, int ngrps, uint8_t absexp, uint8_t *gexps, uint8_t *dexps) { - int i = 0, exp; - while (ngrps--) { - exp = gexps[i++]; - - absexp += diff_exps_M1[exp]; - if (absexp > 24) - return -1; - if (expstr == AC3_EXPSTR_D45) { - *(dexps++) = absexp; - *(dexps++) = absexp; - } - else if (expstr == AC3_EXPSTR_D25) - *(dexps++) = absexp; - else - *(dexps++) = absexp; - - absexp += diff_exps_M2[exp]; - if (absexp > 24) - return -1; - if (expstr == AC3_EXPSTR_D45) { - *(dexps++) = absexp; - *(dexps++) = absexp; - } - else if (expstr == AC3_EXPSTR_D25) - *(dexps++) = absexp; - else - *(dexps++) = absexp; + int exps; + int i = 0; + + while (ngrps--) { + exps = gexps[i++]; + + absexp += exp_1[exps]; + assert(absexp <= 24); + switch (expstr) { + case AC3_EXPSTR_D45: + *(dexps++) = absexp; + *(dexps++) = absexp; + case AC3_EXPSTR_D25: + *(dexps++) = absexp; + case AC3_EXPSTR_D15: + *(dexps++) = absexp; + } + absexp += exp_2[exps]; + assert(absexp <= 24); + switch (expstr) { + case AC3_EXPSTR_D45: + *(dexps++) = absexp; + *(dexps++) = absexp; + case AC3_EXPSTR_D25: + *(dexps++) = absexp; + case AC3_EXPSTR_D15: + *(dexps++) = absexp; + } - absexp += diff_exps_M3[exp]; - if (absexp > 24) - return -1; - if (expstr == AC3_EXPSTR_D45) { - *(dexps++) = absexp; - *(dexps++) = absexp; + absexp += exp_3[exps]; + assert(absexp <= 24); + switch (expstr) { + case AC3_EXPSTR_D45: + *(dexps++) = absexp; + *(dexps++) = absexp; + case AC3_EXPSTR_D25: + *(dexps++) = absexp; + case AC3_EXPSTR_D15: + *(dexps++) = absexp; + } } - else if (expstr == AC3_EXPSTR_D25) - *(dexps++) = absexp; - else - *(dexps++) = absexp; - } - return 0; + return 0; } -static int -decode_exponents (AC3DecodeContext * ctx) +static int decode_exponents(AC3DecodeContext *ctx) { - ac3_audio_block *ab = &ctx->audio_block; - int i; - uint8_t *exps; - uint8_t *dexps; - - if (ab->flags & AC3_AB_CPLINU && ab->cplexpstr != AC3_EXPSTR_REUSE) - if (_decode_exponents (ab->cplexpstr, ab->ncplgrps, ab->cplabsexp, - ab->cplexps, ab->dcplexps + ab->cplstrtmant)) - return -1; - for (i = 0; i < ctx->bsi.nfchans; i++) - if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) { - exps = ab->exps[i]; - dexps = ab->dexps[i]; - if (_decode_exponents (ab->chexpstr[i], ab->nchgrps[i], exps[0], exps + 1, dexps + 1)) - return -1; - } - if (ctx->bsi.flags & AC3_BSI_LFEON && ab->lfeexpstr != AC3_EXPSTR_REUSE) - if (_decode_exponents (ab->lfeexpstr, 2, ab->lfeexps[0], ab->lfeexps + 1, ab->dlfeexps)) - return -1; - return 0; + ac3_audio_block *ab = &ctx->audio_block; + int i; + uint8_t *exps; + uint8_t *dexps; + + if (ab->flags & AC3_AB_CPLINU && ab->cplexpstr != AC3_EXPSTR_REUSE) + if (_decode_exponents(ab->cplexpstr, ab->ncplgrps, ab->cplabsexp, + ab->cplexps, ab->dcplexps + ab->cplstrtmant)) + return -1; + for (i = 0; i < ctx->bsi.nfchans; i++) + if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) { + exps = ab->exps[i]; + dexps = ab->dexps[i]; + if (_decode_exponents(ab->chexpstr[i], ab->nchgrps[i], exps[0], exps + 1, dexps + 1)) + return -1; + } + if (ctx->bsi.flags & AC3_BSI_LFEON && ab->lfeexpstr != AC3_EXPSTR_REUSE) + if (_decode_exponents(ab->lfeexpstr, 2, ab->lfeexps[0], ab->lfeexps + 1, ab->dlfeexps)) + return -1; + return 0; } -static const int16_t slowdec[4] = { 0x0f, 0x11, 0x13, 0x15 }; /* slow decay table */ -static const int16_t fastdec[4] = { 0x3f, 0x53, 0x67, 0x7b }; /* fast decay table */ -static const int16_t slowgain[4] = { 0x540, 0x4d8, 0x478, 0x410 }; /* slow gain table */ -static const int16_t dbpbtab[4] = { 0x000, 0x700, 0x900, 0xb00 }; /* dB/bit table */ - -static const int16_t floortab[8] = /* floor table */ -{ 0x2f0, 0x2b0, 0x270, 0x230, - 0x1f0, 0x170, 0x0f0, 0xf800 }; - -static const int16_t fastgain[8] = /* fast gain table */ -{ 0x080, 0x100, 0x180, 0x200, - 0x280, 0x300, 0x380, 0x400 }; - -static const int16_t bndtab[50] = /* start band table */ -{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, - 27, 28, 31, 34, 37, 40, 43, 46, 49, 55, 61, 67, 73, 79, 85, 97, 109, 121, 133, 157, 181, 205, 229 }; - -static const int16_t bndsz[50] = /* band size table */ -{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 24, 24, 24, 24, 24 }; - -static const int16_t masktab[256] = /* masking table */ -{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, - 25, 26, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, - 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 39, 39, - 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, - 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, - 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, - 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, - 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, - 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, - 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, - 49, 49, 49, 0, 0, 0 }; - -static const int16_t latab[256] = /* log addition table */ -{ 0x0040, 0x003f, 0x003e, 0x003d, 0x003c, 0x003b, 0x003a, 0x0039, 0x0038, 0x0037, 0x0036, 0x0035, - 0x0034, 0x0034, 0x0033, 0x0032, 0x0031, 0x0030, 0x002f, 0x002f, 0x002e, 0x002d, 0x002c, 0x002c, - 0x002b, 0x002a, 0x0029, 0x0029, 0x0028, 0x0027, 0x0026, 0x0026, 0x0025, 0x0024, 0x0024, 0x0023, - 0x0023, 0x0022, 0x0021, 0x0021, 0x0020, 0x0020, 0x001f, 0x001e, 0x001e, 0x001d, 0x001d, 0x001c, - 0x001c, 0x001b, 0x001b, 0x001a, 0x001a, 0x0019, 0x0019, 0x0018, 0x0018, 0x0017, 0x0017, 0x0016, - 0x0016, 0x0015, 0x0015, 0x0015, 0x0014, 0x0014, 0x0013, 0x0013, 0x0013, 0x0012, 0x0012, 0x0012, - 0x0011, 0x0011, 0x0011, 0x0010, 0x0010, 0x0010, 0x000f, 0x000f, 0x000f, 0x000e, 0x000e, 0x000e, - 0x000d, 0x000d, 0x000d, 0x000d, 0x000c, 0x000c, 0x000c, 0x000c, 0x000b, 0x000b, 0x000b, 0x000b, - 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x0009, 0x0009, 0x0009, 0x0009, 0x0009, 0x0008, 0x0008, - 0x0008, 0x0008, 0x0008, 0x0008, 0x0007, 0x0007, 0x0007, 0x0007, 0x0007, 0x0007, 0x0006, 0x0006, - 0x0006, 0x0006, 0x0006, 0x0006, 0x0006, 0x0006, 0x0005, 0x0005, 0x0005, 0x0005, 0x0005, 0x0005, - 0x0005, 0x0005, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, - 0x0004, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, - 0x0003, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, - 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0001, 0x0001, - 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, - 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, - 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000 }; - -static const int16_t hth[3][50] = /* hearing threshold table */ -{ - {0x04d0, 0x04d0, 0x0440, 0x0400, 0x03e0, 0x03c0, 0x03b0, 0x03b0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, - 0x03a0, 0x0390, 0x0390, 0x0390, 0x0380, 0x0380, 0x0370, 0x0370, 0x0360, 0x0360, 0x0350, 0x0350, - 0x0340, 0x0340, 0x0330, 0x0320, 0x0310, 0x0300, 0x02f0, 0x02f0, 0x02f0, 0x02f0, 0x0300, 0x0310, - 0x0340, 0x0390, 0x03e0, 0x0420, 0x0460, 0x0490, 0x04a0, 0x0440, 0x0440, 0x0400, 0x0520, 0x0800, - 0x0840, 0x0840}, - {0x04f0, 0x04f0, 0x0460, 0x0410, 0x03e0, 0x03d0, 0x03c0, 0x03b0, 0x03b0, 0x03a0, 0x03a0, 0x03a0, - 0x03a0, 0x03a0, 0x0390, 0x0390, 0x0390, 0x0380, 0x0380, 0x0380, 0x0370, 0x0370, 0x0360, 0x0360, - 0x0350, 0x0350, 0x0340, 0x0340, 0x0320, 0x0310, 0x0300, 0x02f0, 0x02f0, 0x02f0, 0x02f0, 0x0300, - 0x0320, 0x0350, 0x0390, 0x03e0, 0x0420, 0x0450, 0x04a0, 0x0490, 0x0460, 0x0440, 0x0480, 0x0630, - 0x0840, 0x0840}, - {0x0580, 0x0580, 0x04b0, 0x0450, 0x0420, 0x03f0, 0x03e0, 0x03d0, 0x03c0, 0x03b0, 0x03b0, 0x03b0, - 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x0390, 0x0390, 0x0390, 0x0390, - 0x0380, 0x0380, 0x0380, 0x0370, 0x0360, 0x0350, 0x0340, 0x0330, 0x0320, 0x0310, 0x0300, 0x02f0, - 0x02f0, 0x02f0, 0x0300, 0x0310, 0x0330, 0x0350, 0x03c0, 0x0410, 0x0470, 0x04a0, 0x0460, 0x0440, - 0x0450, 0x04e0} -}; - -static const uint8_t baptab[64] = /* bit allocation pointer table */ -{ 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, - 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, - 15, 15, 15, 15, 15, 15, 15, 15 }; - -static inline int16_t -logadd (int16_t a, int16_t b) +static inline int16_t logadd(int16_t a, int16_t b) { - int16_t c = a - b; - uint8_t address = FFMIN ((ABS (c) >> 1), 255); + int16_t c = a - b; + uint8_t address = FFMIN((ABS(c) >> 1), 255); - return ((c >= 0) ? (a + latab[address]) : (b + latab[address])); + return ((c >= 0) ? (a + latab[address]) : (b + latab[address])); } -static inline int16_t -calc_lowcomp (int16_t a, int16_t b0, int16_t b1, uint8_t bin) +static inline int16_t calc_lowcomp(int16_t a, int16_t b0, int16_t b1, uint8_t bin) { - if (bin < 7) { - if ((b0 + 256) == b1) - a = 384; - else if (b0 > b1) - a = FFMAX (0, a - 64); - } - else if (bin < 20) { - if ((b0 + 256) == b1) - a = 320; - else if (b0 > b1) - a = FFMAX (0, a - 64); - } - else { - a = FFMAX (0, a - 128); - } - - return a; + if (bin < 7) { + if ((b0 + 256) == b1) + a = 384; + else if (b0 > b1) + a = FFMAX(0, a - 64); + } + else if (bin < 20) { + if ((b0 + 256) == b1) + a = 320; + else if (b0 > b1) + a = FFMAX(0, a - 64); + } + else { + a = FFMAX(0, a - 128); + } + + return a; } /* do the bit allocation for chnl. @@ -427,762 +529,1263 @@ calc_lowcomp (int16_t a, int16_t b0, int16_t b1, uint8_t bin) * chnl = 5 coupling channel * chnl = 6 lfe channel */ -static int -_do_bit_allocation (AC3DecodeContext * ctx, int chnl) +static int _do_bit_allocation(AC3DecodeContext *ctx, int chnl) { - ac3_audio_block *ab = &ctx->audio_block; - int16_t sdecay, fdecay, sgain, dbknee, floor; - int16_t lowcomp, fgain, snroffset, fastleak, slowleak; - int16_t psd[256], bndpsd[50], excite[50], mask[50], delta; - uint8_t start, end, bin, i, j, k, lastbin, bndstrt, bndend, begin, deltnseg, band, seg, address; - uint8_t fscod = ctx->sync_info.fscod; - uint8_t *exps, *deltoffst, *deltlen, *deltba; - uint8_t *baps; - int do_delta = 0; - - /* initialization */ - sdecay = slowdec[ab->sdcycod]; - fdecay = fastdec[ab->fdcycod]; - sgain = slowgain[ab->sgaincod]; - dbknee = dbpbtab[ab->dbpbcod]; - floor = dbpbtab[ab->floorcod]; - - if (chnl == 5) { - start = ab->cplstrtmant; - end = ab->cplendmant; - fgain = fastgain[ab->cplfgaincod]; - snroffset = (((ab->csnroffst - 15) << 4) + ab->cplfsnroffst) << 2; - fastleak = (ab->cplfleak << 8) + 768; - slowleak = (ab->cplsleak << 8) + 768; - exps = ab->dcplexps; - baps = ab->cplbap; - if (ab->cpldeltbae == 0 || ab->cpldeltbae == 1) { - do_delta = 1; - deltnseg = ab->cpldeltnseg; - deltoffst = ab->cpldeltoffst; - deltlen = ab->cpldeltlen; - deltba = ab->cpldeltba; - } - } - else if (chnl == 6) { - start = 0; - end = 7; - lowcomp = 0; - fgain = fastgain[ab->lfefgaincod]; - snroffset = (((ab->csnroffst - 15) << 4) + ab->lfefsnroffst) << 2; - exps = ab->dlfeexps; - baps = ab->lfebap; - } - else { - start = 0; - end = ab->endmant[chnl]; - lowcomp = 0; - fgain = fastgain[ab->fgaincod[chnl]]; - snroffset = (((ab->csnroffst - 15) << 4) + ab->fsnroffst[chnl]) << 2; - exps = ab->dexps[chnl]; - baps = ab->bap[chnl]; - if (ab->deltbae[chnl] == 0 || ab->deltbae[chnl] == 1) { - do_delta = 1; - deltnseg = ab->deltnseg[chnl]; - deltoffst = ab->deltoffst[chnl]; - deltlen = ab->deltlen[chnl]; - deltba = ab->deltba[chnl]; - } - } - - for (bin = start; bin < end; bin++) /* exponent mapping into psd */ - psd[bin] = (3072 - ((int16_t) (exps[bin] << 7))); - - /* psd integration */ - j = start; - k = masktab[start]; - do { - lastbin = FFMIN (bndtab[k] + bndsz[k], end); - bndpsd[k] = psd[j]; - j++; - for (i = j; i < lastbin; i++) { - bndpsd[k] = logadd (bndpsd[k], psd[j]); - j++; - } - k++; - } while (end > lastbin); - - /* compute the excite function */ - bndstrt = masktab[start]; - bndend = masktab[end - 1] + 1; - if (bndstrt == 0) { - lowcomp = calc_lowcomp (lowcomp, bndpsd[0], bndpsd[1], 0); - excite[0] = bndpsd[0] - fgain - lowcomp; - lowcomp = calc_lowcomp (lowcomp, bndpsd[1], bndpsd[2], 1); - excite[1] = bndpsd[1] - fgain - lowcomp; - begin = 7; - for (bin = 2; bin < 7; bin++) { - if (bndend != 7 || bin != 6) - lowcomp = calc_lowcomp (lowcomp, bndpsd[bin], bndpsd[bin + 1], bin); - fastleak = bndpsd[bin] - fgain; - slowleak = bndpsd[bin] - sgain; - excite[bin] = fastleak - lowcomp; - if (bndend != 7 || bin != 6) - if (bndpsd[bin] <= bndpsd[bin + 1]) { - begin = bin + 1; - break; + ac3_audio_block *ab = &ctx->audio_block; + int16_t sdecay, fdecay, sgain, dbknee, floor; + int16_t lowcomp, fgain, snroffset, fastleak, slowleak; + int16_t psd[256], bndpsd[50], excite[50], mask[50], delta; + uint8_t start, end, bin, i, j, k, lastbin, bndstrt, bndend, begin, deltnseg, band, seg, address; + uint8_t fscod = ctx->sync_info.fscod; + uint8_t *exps, *deltoffst, *deltlen, *deltba; + uint8_t *baps; + int do_delta = 0; + + /* initialization */ + sdecay = sdecaytab[ab->sdcycod]; + fdecay = fdecaytab[ab->fdcycod]; + sgain = sgaintab[ab->sgaincod]; + dbknee = dbkneetab[ab->dbpbcod]; + floor = floortab[ab->floorcod]; + + if (chnl == 5) { + start = ab->cplstrtmant; + end = ab->cplendmant; + fgain = fgaintab[ab->cplfgaincod]; + snroffset = (((ab->csnroffst - 15) << 4) + ab->cplfsnroffst) << 2; + fastleak = (ab->cplfleak << 8) + 768; + slowleak = (ab->cplsleak << 8) + 768; + exps = ab->dcplexps; + baps = ab->cplbap; + if (ab->cpldeltbae == 0 || ab->cpldeltbae == 1) { + do_delta = 1; + deltnseg = ab->cpldeltnseg; + deltoffst = ab->cpldeltoffst; + deltlen = ab->cpldeltlen; + deltba = ab->cpldeltba; } } - for (bin = begin; bin < (FFMIN (bndend, 22)); bin++) { - if (bndend != 7 || bin != 6) - lowcomp = calc_lowcomp (lowcomp, bndpsd[bin], bndpsd[bin + 1], bin); - fastleak -= fdecay; - fastleak = FFMAX (fastleak, bndpsd[bin] - fgain); - slowleak -= sdecay; - slowleak = FFMAX (slowleak, bndpsd[bin] - sgain); - excite[bin] = FFMAX (fastleak - lowcomp, slowleak); - } - begin = 22; - } - else { - begin = bndstrt; - } - for (bin = begin; bin < bndend; bin++) { - fastleak -= fdecay; - fastleak = FFMAX (fastleak, bndpsd[bin] - fgain); - slowleak -= sdecay; - slowleak = FFMAX (slowleak, bndpsd[bin] - sgain); - excite[bin] = FFMAX (fastleak, slowleak); - } - - /* compute the masking curve */ - for (bin = bndstrt; bin < bndend; bin++) { - if (bndpsd[bin] < dbknee) - excite[bin] += ((dbknee - bndpsd[bin]) >> 2); - mask[bin] = FFMAX (excite[bin], hth[fscod][bin]); - } - - /* apply the delta bit allocation */ - if (do_delta) { - band = 0; - for (seg = 0; seg < deltnseg + 1; seg++) { - band += deltoffst[seg]; - if (deltba[seg] >= 4) - delta = (deltba[seg] - 3) << 7; - else - delta = (deltba[seg] - 4) << 7; - for (k = 0; k < deltlen[seg]; k++) { - mask[band] += delta; - band++; - } - } - } - - /*compute the bit allocation */ - i = start; - j = masktab[start]; - do { - lastbin = FFMIN (bndtab[j] + bndsz[j], end); - mask[j] -= snroffset; - mask[j] -= floor; - if (mask[j] < 0) - mask[j] = 0; - mask[j] &= 0x1fe0; - mask[j] += floor; - for (k = i; k < lastbin; k++) { - address = (psd[i] - mask[j]) >> 5; - address = FFMIN (63, (FFMAX (0, address))); - baps[i] = baptab[address]; - i++; - } - j++; - } while (end > lastbin); - - return 0; + else if (chnl == 6) { + start = 0; + end = 7; + lowcomp = 0; + fgain = fgaintab[ab->lfefgaincod]; + snroffset = (((ab->csnroffst - 15) << 4) + ab->lfefsnroffst) << 2; + exps = ab->dlfeexps; + baps = ab->lfebap; + } + else { + start = 0; + end = ab->endmant[chnl]; + lowcomp = 0; + fgain = fgaintab[ab->fgaincod[chnl]]; + snroffset = (((ab->csnroffst - 15) << 4) + ab->fsnroffst[chnl]) << 2; + exps = ab->dexps[chnl]; + baps = ab->bap[chnl]; + if (ab->deltbae[chnl] == 0 || ab->deltbae[chnl] == 1) { + do_delta = 1; + deltnseg = ab->deltnseg[chnl]; + deltoffst = ab->deltoffst[chnl]; + deltlen = ab->deltlen[chnl]; + deltba = ab->deltba[chnl]; + } + } + + for (bin = start; bin < end; bin++) /* exponent mapping into psd */ + psd[bin] = (3072 - ((int16_t) (exps[bin] << 7))); + + /* psd integration */ + j = start; + k = masktab[start]; + do { + lastbin = FFMIN(bndtab[k] + bndsz[k], end); + bndpsd[k] = psd[j]; + j++; + for (i = j; i < lastbin; i++) { + bndpsd[k] = logadd(bndpsd[k], psd[j]); + j++; + } + k++; + } while (end > lastbin); + + /* compute the excite function */ + bndstrt = masktab[start]; + bndend = masktab[end - 1] + 1; + if (bndstrt == 0) { + lowcomp = calc_lowcomp(lowcomp, bndpsd[0], bndpsd[1], 0); + excite[0] = bndpsd[0] - fgain - lowcomp; + lowcomp = calc_lowcomp(lowcomp, bndpsd[1], bndpsd[2], 1); + excite[1] = bndpsd[1] - fgain - lowcomp; + begin = 7; + for (bin = 2; bin < 7; bin++) { + if (bndend != 7 || bin != 6) + lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin + 1], bin); + fastleak = bndpsd[bin] - fgain; + slowleak = bndpsd[bin] - sgain; + excite[bin] = fastleak - lowcomp; + if (bndend != 7 || bin != 6) + if (bndpsd[bin] <= bndpsd[bin + 1]) { + begin = bin + 1; + break; + } + } + for (bin = begin; bin < (FFMIN(bndend, 22)); bin++) { + if (bndend != 7 || bin != 6) + lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin + 1], bin); + fastleak -= fdecay; + fastleak = FFMAX(fastleak, bndpsd[bin] - fgain); + slowleak -= sdecay; + slowleak = FFMAX(slowleak, bndpsd[bin] - sgain); + excite[bin] = FFMAX(fastleak - lowcomp, slowleak); + } + begin = 22; + } + else { + begin = bndstrt; + } + for (bin = begin; bin < bndend; bin++) { + fastleak -= fdecay; + fastleak = FFMAX(fastleak, bndpsd[bin] - fgain); + slowleak -= sdecay; + slowleak = FFMAX(slowleak, bndpsd[bin] - sgain); + excite[bin] = FFMAX(fastleak, slowleak); + } + + /* compute the masking curve */ + for (bin = bndstrt; bin < bndend; bin++) { + if (bndpsd[bin] < dbknee) + excite[bin] += ((dbknee - bndpsd[bin]) >> 2); + mask[bin] = FFMAX(excite[bin], hth[bin][fscod]); + } + + /* apply the delta bit allocation */ + if (do_delta) { + band = 0; + for (seg = 0; seg < deltnseg + 1; seg++) { + band += deltoffst[seg]; + if (deltba[seg] >= 4) + delta = (deltba[seg] - 3) << 7; + else + delta = (deltba[seg] - 4) << 7; + for (k = 0; k < deltlen[seg]; k++) { + mask[band] += delta; + band++; + } + } + } + + /*compute the bit allocation */ + i = start; + j = masktab[start]; + do { + lastbin = FFMIN(bndtab[j] + bndsz[j], end); + mask[j] -= snroffset; + mask[j] -= floor; + if (mask[j] < 0) + mask[j] = 0; + mask[j] &= 0x1fe0; + mask[j] += floor; + for (k = i; k < lastbin; k++) { + address = (psd[i] - mask[j]) >> 5; + address = FFMIN(63, (FFMAX(0, address))); + baps[i] = baptab[address]; + i++; + } + j++; + } while (end > lastbin); + + return 0; } -static int -do_bit_allocation (AC3DecodeContext * ctx, int flags) +static int do_bit_allocation(AC3DecodeContext *ctx, int flags) { - ac3_audio_block *ab = &ctx->audio_block; - int i, snroffst = 0; + ac3_audio_block *ab = &ctx->audio_block; + int i, snroffst = 0; + + if (!flags) /* bit allocation is not required */ + return 0; + + if (ab->flags & AC3_AB_SNROFFSTE) { /* check whether snroffsts are zero */ + snroffst += ab->csnroffst; + if (ab->flags & AC3_AB_CPLINU) + snroffst += ab->cplfsnroffst; + for (i = 0; i < ctx->bsi.nfchans; i++) + snroffst += ab->fsnroffst[i]; + if (ctx->bsi.flags & AC3_BSI_LFEON) + snroffst += ab->lfefsnroffst; + if (!snroffst) { + memset(ab->cplbap, 0, sizeof (ab->cplbap)); + for (i = 0; i < ctx->bsi.nfchans; i++) + memset(ab->bap[i], 0, sizeof (ab->bap[i])); + memset(ab->lfebap, 0, sizeof (ab->lfebap)); + + return 0; + } + } + + /* perform bit allocation */ + if ((ab->flags & AC3_AB_CPLINU) && (flags & 64)) + if (_do_bit_allocation(ctx, 5)) + return -1; + for (i = 0; i < ctx->bsi.nfchans; i++) + if (flags & (1 << i)) + if (_do_bit_allocation(ctx, i)) + return -1; + if ((ctx->bsi.flags & AC3_BSI_LFEON) && (flags & 32)) + if (_do_bit_allocation(ctx, 6)) + return -1; - if (!flags) /* bit allocation is not required */ return 0; +} - if (ab->flags & AC3_AB_SNROFFSTE) { /* check whether snroffsts are zero */ - snroffst += ab->csnroffst; - if (ab->flags & AC3_AB_CPLINU) - snroffst += ab->cplfsnroffst; - for (i = 0; i < ctx->bsi.nfchans; i++) - snroffst += ab->fsnroffst[i]; +static inline float to_float(uint8_t exp, int16_t mantissa) +{ + return ((float) (mantissa * scale_factors[exp])); +} + +typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */ + uint8_t gcodes[3]; + uint8_t gcptr; +} mant_group; + +/* Get the transform coefficients for particular channel */ +static int _get_transform_coeffs(uint8_t *exps, uint8_t *bap, float chcoeff, + float *samples, int start, int end, int dith_flag, GetBitContext *gb, + dither_state *state) +{ + int16_t mantissa; + int i; + int gcode; + mant_group l3_grp, l5_grp, l11_grp; + + for (i = 0; i < 3; i++) + l3_grp.gcodes[i] = l5_grp.gcodes[i] = l11_grp.gcodes[i] = -1; + l3_grp.gcptr = l5_grp.gcptr = 3; + l11_grp.gcptr = 2; + + i = 0; + while (i < start) + samples[i++] = 0; + + for (i = start; i < end; i++) { + switch (bap[i]) { + case 0: + if (!dith_flag) + mantissa = 0; + else + mantissa = dither_int16(state); + samples[i] = to_float(exps[i], mantissa) * chcoeff; + break; + + case 1: + if (l3_grp.gcptr > 2) { + gcode = get_bits(gb, qntztab[1]); + if (gcode > 26) + return -1; + l3_grp.gcodes[0] = gcode / 9; + l3_grp.gcodes[1] = (gcode % 9) / 3; + l3_grp.gcodes[2] = (gcode % 9) % 3; + l3_grp.gcptr = 0; + } + mantissa = l3_q_tab[l3_grp.gcodes[l3_grp.gcptr++]]; + samples[i] = to_float(exps[i], mantissa) * chcoeff; + break; + + case 2: + if (l5_grp.gcptr > 2) { + gcode = get_bits(gb, qntztab[2]); + if (gcode > 124) + return -1; + l5_grp.gcodes[0] = gcode / 25; + l5_grp.gcodes[1] = (gcode % 25) / 5; + l5_grp.gcodes[2] = (gcode % 25) % 5; + l5_grp.gcptr = 0; + } + mantissa = l5_q_tab[l5_grp.gcodes[l5_grp.gcptr++]]; + samples[i] = to_float(exps[i], mantissa) * chcoeff; + break; + + case 3: + mantissa = get_bits(gb, qntztab[3]); + if (mantissa > 6) + return -1; + mantissa = l7_q_tab[mantissa]; + samples[i] = to_float(exps[i], mantissa); + break; + + case 4: + if (l11_grp.gcptr > 1) { + gcode = get_bits(gb, qntztab[4]); + if (gcode > 120) + return -1; + l11_grp.gcodes[0] = gcode / 11; + l11_grp.gcodes[1] = gcode % 11; + } + mantissa = l11_q_tab[l11_grp.gcodes[l11_grp.gcptr++]]; + samples[i] = to_float(exps[i], mantissa) * chcoeff; + break; + + case 5: + mantissa = get_bits(gb, qntztab[5]); + if (mantissa > 14) + return -1; + mantissa = l15_q_tab[mantissa]; + samples[i] = to_float(exps[i], mantissa) * chcoeff; + break; + + default: + mantissa = get_bits(gb, qntztab[bap[i]]) << (16 - qntztab[bap[i]]); + samples[i] = to_float(exps[i], mantissa) * chcoeff; + break; + } + } + + i = end; + while (i < 256) + samples[i++] = 0; + + return 0; +} + +static int uncouple_channels(AC3DecodeContext * ctx) +{ + ac3_audio_block *ab = &ctx->audio_block; + int ch, sbnd, bin; + int index; + float (*samples)[256]; + int16_t mantissa; + + samples = (float (*)[256])((ctx->bsi.flags & AC3_BSI_LFEON) ? (ctx->samples + 256) : (ctx->samples)); + + /* uncouple channels */ + for (ch = 0; ch < ctx->bsi.nfchans; ch++) + if (ab->chincpl & (1 << ch)) + for (sbnd = ab->cplbegf; sbnd < 3 + ab->cplendf; sbnd++) + for (bin = 0; bin < 12; bin++) { + index = sbnd * 12 + bin + 37; + samples[ch][index] = ab->cplcoeffs[index] * ab->cplco[ch][sbnd] * ab->chcoeffs[ch]; + } + + /* generate dither if required */ + for (ch = 0; ch < ctx->bsi.nfchans; ch++) + if ((ab->chincpl & (1 << ch)) && (ab->dithflag & (1 << ch))) + for (index = 0; index < ab->endmant[ch]; index++) + if (!ab->bap[ch][index]) { + mantissa = dither_int16(&ctx->state); + samples[ch][index] = to_float(ab->dexps[ch][index], mantissa) * ab->chcoeffs[ch]; + } + + return 0; +} + +static int get_transform_coeffs(AC3DecodeContext * ctx) +{ + int i; + ac3_audio_block *ab = &ctx->audio_block; + float *samples = ctx->samples; + int got_cplchan = 0; + int dithflag = 0; + + samples += (ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0; + for (i = 0; i < ctx->bsi.nfchans; i++) { + if ((ab->flags & AC3_AB_CPLINU) && (ab->chincpl & (1 << i))) + dithflag = 0; /* don't generate dither until channels are decoupled */ + else + dithflag = ab->dithflag & (1 << i); + /* transform coefficients for individual channel */ + if (_get_transform_coeffs(ab->dexps[i], ab->bap[i], ab->chcoeffs[i], samples + (i * 256), + 0, ab->endmant[i], dithflag, &ctx->gb, &ctx->state)) + return -1; + /* tranform coefficients for coupling channels */ + if ((ab->flags & AC3_AB_CPLINU) && (ab->chincpl & (1 << i)) && !got_cplchan) { + if (_get_transform_coeffs(ab->dcplexps, ab->cplbap, 1.0f, ab->cplcoeffs, + ab->cplstrtmant, ab->cplendmant, 0, &ctx->gb, &ctx->state)) + return -1; + got_cplchan = 1; + } + } if (ctx->bsi.flags & AC3_BSI_LFEON) - snroffst += ab->lfefsnroffst; - if (!snroffst) { - memset (ab->cplbap, 0, sizeof (ab->cplbap)); - for (i = 0; i < ctx->bsi.nfchans; i++) - memset (ab->bap[i], 0, sizeof (ab->bap[i])); - memset (ab->lfebap, 0, sizeof (ab->lfebap)); - - return 0; - } - } - - /* perform bit allocation */ - if ((ab->flags & AC3_AB_CPLINU) && (flags & 64)) - if (_do_bit_allocation (ctx, 5)) - return -1; - for (i = 0; i < ctx->bsi.nfchans; i++) - if (flags & (1 << i)) - if (_do_bit_allocation (ctx, i)) - return -1; - if ((ctx->bsi.flags & AC3_BSI_LFEON) && (flags & 32)) - if (_do_bit_allocation (ctx, 6)) - return -1; + if (_get_transform_coeffs(ab->lfeexps, ab->lfebap, 1.0f, samples - 256, 0, 7, 0, &ctx->gb, &ctx->state)) + return -1; - return 0; + /* uncouple the channels from the coupling channel */ + if (ab->flags & AC3_AB_CPLINU) + if (uncouple_channels(ctx)) + return -1; + + return 0; } -/* table for exponent to scale_factor mapping - * scale_factor[i] = 2 ^ -(i + 15) +/* generate coupling co-ordinates for each coupling subband + * from coupling co-ordinates of each band and coupling band + * structure information */ -static const float scale_factors[25] = { - 0.000030517578125000000000000000000000000, - 0.000015258789062500000000000000000000000, - 0.000007629394531250000000000000000000000, - 0.000003814697265625000000000000000000000, - 0.000001907348632812500000000000000000000, - 0.000000953674316406250000000000000000000, - 0.000000476837158203125000000000000000000, - 0.000000238418579101562500000000000000000, - 0.000000119209289550781250000000000000000, - 0.000000059604644775390625000000000000000, - 0.000000029802322387695312500000000000000, - 0.000000014901161193847656250000000000000, - 0.000000007450580596923828125000000000000, - 0.000000003725290298461914062500000000000, - 0.000000001862645149230957031250000000000, - 0.000000000931322574615478515625000000000, - 0.000000000465661287307739257812500000000, - 0.000000000232830643653869628906250000000, - 0.000000000116415321826934814453125000000, - 0.000000000058207660913467407226562500000, - 0.000000000029103830456733703613281250000, - 0.000000000014551915228366851806640625000, - 0.000000000007275957614183425903320312500, - 0.000000000003637978807091712951660156250, - 0.000000000001818989403545856475830078125 -}; +static int generate_coupling_coordinates(AC3DecodeContext * ctx) +{ + ac3_audio_block *ab = &ctx->audio_block; + uint8_t exp, mstrcplco; + int16_t mant; + uint32_t cplbndstrc = (1 << ab->ncplsubnd) >> 1; + int ch, bnd, sbnd; + float cplco; + + if (ab->cplcoe) + for (ch = 0; ch < ctx->bsi.nfchans; ch++) + if (ab->cplcoe & (1 << ch)) { + mstrcplco = 3 * ab->mstrcplco[ch]; + sbnd = ab->cplbegf; + for (bnd = 0; bnd < ab->ncplbnd; bnd++) { + exp = ab->cplcoexp[ch][bnd]; + if (exp == 15) + mant = ab->cplcomant[ch][bnd] <<= 14; + else + mant = (ab->cplcomant[ch][bnd] | 0x10) << 13; + cplco = to_float(exp + mstrcplco, mant); + if (ctx->bsi.acmod == 0x02 && (ab->flags & AC3_AB_PHSFLGINU) && ch == 1 + && (ab->phsflg & (1 << bnd))) + cplco = -cplco; /* invert the right channel */ + ab->cplco[ch][sbnd++] = cplco; + while (cplbndstrc & ab->cplbndstrc) { + cplbndstrc >>= 1; + ab->cplco[ch][sbnd++] = cplco; + } + cplbndstrc >>= 1; + } + } -static const int16_t l3_q_tab[3] = { /* 3-level quantization table */ - (-2 << 15) / 3, 0, (2 << 15) / 3 -}; + return 0; +} -static const int16_t l5_q_tab[5] = { /* 5-level quantization table */ - (-4 << 15) / 5, (-2 << 15) / 5, 0, (2 << 15) / 5, (4 << 15) / 5 -}; +static int _do_rematrixing(AC3DecodeContext *ctx, int start, int end) +{ + float tmp0, tmp1; + + while (start < end) { + tmp0 = ctx->samples[start]; + tmp1 = (ctx->samples + 256)[start]; + ctx->samples[start] = tmp0 + tmp1; + (ctx->samples + 256)[start] = tmp0 - tmp1; + start++; + } -static const int16_t l7_q_tab[7] = { /* 7-level quantization table */ - (-6 << 15) / 7, (-4 << 15) / 7, (-2 << 15) / 7, 0, - (2 << 15) / 7, (4 << 15) / 7, (6 << 15) / 7 -}; + return 0; +} -static const int16_t l11_q_tab[11] = { /* 11-level quantization table */ - (-10 << 15) / 11, (-8 << 15) / 11, (-6 << 15) / 11, (-4 << 15) / 11, (-2 << 15) / 11, 0, - (2 << 15) / 11, (4 << 15) / 11, (6 << 15) / 11, (8 << 15) / 11, (10 << 15) / 11 -}; +static void do_rematrixing(AC3DecodeContext *ctx) +{ + ac3_audio_block *ab = &ctx->audio_block; + uint8_t bnd1 = 13, bnd2 = 25, bnd3 = 37, bnd4 = 61; + uint8_t bndend; + + bndend = FFMIN(ab->endmant[0], ab->endmant[1]); + if (ab->rematflg & 1) + _do_rematrixing(ctx, bnd1, bnd2); + if (ab->rematflg & 2) + _do_rematrixing(ctx, bnd2, bnd3); + if (ab->rematflg & 4) { + if (ab->cplbegf > 0 && ab->cplbegf <= 2 && (ab->flags & AC3_AB_CPLINU)) + _do_rematrixing(ctx, bnd3, bndend); + else { + _do_rematrixing(ctx, bnd3, bnd4); + if (ab->rematflg & 8) + _do_rematrixing(ctx, bnd4, bndend); + } + } +} -static const int16_t l15_q_tab[15] = { /* 15-level quantization table */ - (-14 << 15) / 15, (-12 << 15) / 15, (-10 << 15) / 15, (-8 << 15) / 15, - (-6 << 15) / 15, (-4 << 15) / 15, (-2 << 15) / 15, 0, - (2 << 15) / 15, (4 << 15) / 15, (6 << 15) / 15, (8 << 15) / 15, - (10 << 15) / 15, (12 << 15) / 15, (14 << 15) / 15 -}; +static void get_downmix_coeffs(AC3DecodeContext *ctx) +{ + int from = ctx->bsi.acmod; + int to = ctx->output; + float clev = clevs[ctx->bsi.cmixlev]; + float slev = slevs[ctx->bsi.surmixlev]; + ac3_audio_block *ab = &ctx->audio_block; + + if (to == AC3_OUTPUT_UNMODIFIED) + return 0; + + switch (from) { + case AC3_INPUT_DUALMONO: + switch (to) { + case AC3_OUTPUT_MONO: + case AC3_OUTPUT_STEREO: /* We Assume that sum of both mono channels is requested */ + ab->chcoeffs[0] *= LEVEL_MINUS_6DB; + ab->chcoeffs[1] *= LEVEL_MINUS_6DB; + break; + } + break; + case AC3_INPUT_MONO: + switch (to) { + case AC3_OUTPUT_STEREO: + ab->chcoeffs[0] *= LEVEL_MINUS_3DB; + break; + } + break; + case AC3_INPUT_STEREO: + switch (to) { + case AC3_OUTPUT_MONO: + ab->chcoeffs[0] *= LEVEL_MINUS_3DB; + ab->chcoeffs[1] *= LEVEL_MINUS_3DB; + break; + } + break; + case AC3_INPUT_3F: + switch (to) { + case AC3_OUTPUT_MONO: + ab->chcoeffs[0] *= LEVEL_MINUS_3DB; + ab->chcoeffs[2] *= LEVEL_MINUS_3DB; + ab->chcoeffs[1] *= clev * LEVEL_PLUS_3DB; + break; + case AC3_OUTPUT_STEREO: + ab->chcoeffs[1] *= clev; + break; + } + break; + case AC3_INPUT_2F_1R: + switch (to) { + case AC3_OUTPUT_MONO: + ab->chcoeffs[0] *= LEVEL_MINUS_3DB; + ab->chcoeffs[1] *= LEVEL_MINUS_3DB; + ab->chcoeffs[2] *= slev * LEVEL_MINUS_3DB; + break; + case AC3_OUTPUT_STEREO: + ab->chcoeffs[2] *= slev * LEVEL_MINUS_3DB; + break; + case AC3_OUTPUT_DOLBY: + ab->chcoeffs[2] *= LEVEL_MINUS_3DB; + break; + } + break; + case AC3_INPUT_3F_1R: + switch (to) { + case AC3_OUTPUT_MONO: + ab->chcoeffs[0] *= LEVEL_MINUS_3DB; + ab->chcoeffs[2] *= LEVEL_MINUS_3DB; + ab->chcoeffs[1] *= clev * LEVEL_PLUS_3DB; + ab->chcoeffs[3] *= slev * LEVEL_MINUS_3DB; + break; + case AC3_OUTPUT_STEREO: + ab->chcoeffs[1] *= clev; + ab->chcoeffs[3] *= slev * LEVEL_MINUS_3DB; + break; + case AC3_OUTPUT_DOLBY: + ab->chcoeffs[1] *= LEVEL_MINUS_3DB; + ab->chcoeffs[3] *= LEVEL_MINUS_3DB; + break; + } + break; + case AC3_INPUT_2F_2R: + switch (to) { + case AC3_OUTPUT_MONO: + ab->chcoeffs[0] *= LEVEL_MINUS_3DB; + ab->chcoeffs[1] *= LEVEL_MINUS_3DB; + ab->chcoeffs[2] *= slev * LEVEL_MINUS_3DB; + ab->chcoeffs[3] *= slev * LEVEL_MINUS_3DB; + break; + case AC3_OUTPUT_STEREO: + ab->chcoeffs[2] *= slev; + ab->chcoeffs[3] *= slev; + break; + case AC3_OUTPUT_DOLBY: + ab->chcoeffs[2] *= LEVEL_MINUS_3DB; + ab->chcoeffs[3] *= LEVEL_MINUS_3DB; + break; + } + break; + case AC3_INPUT_3F_2R: + switch (to) { + case AC3_OUTPUT_MONO: + ab->chcoeffs[0] *= LEVEL_MINUS_3DB; + ab->chcoeffs[2] *= LEVEL_MINUS_3DB; + ab->chcoeffs[1] *= clev * LEVEL_PLUS_3DB; + ab->chcoeffs[3] *= slev * LEVEL_MINUS_3DB; + ab->chcoeffs[4] *= slev * LEVEL_MINUS_3DB; + break; + case AC3_OUTPUT_STEREO: + ab->chcoeffs[1] *= clev; + ab->chcoeffs[3] *= slev; + ab->chcoeffs[4] *= slev; + break; + case AC3_OUTPUT_DOLBY: + ab->chcoeffs[1] *= LEVEL_MINUS_3DB; + ab->chcoeffs[3] *= LEVEL_MINUS_3DB; + ab->chcoeffs[4] *= LEVEL_MINUS_3DB; + break; + } + break; + } +} -static const uint8_t qntztab[16] = { 0, 5, 7, 3, 7, 4, 5, 6, 7, 8, 9, 10, 12, 12, 14, 16 }; +static inline void downmix_dualmono_to_mono(float *samples) +{ + int i; -static inline float -to_float (uint8_t exp, int16_t mantissa) + for (i = 0; i < 256; i++) { + samples[i] += samples[i + 256]; + samples[i + 256] = 0; + } +} + +static inline void downmix_dualmono_to_stereo(float *samples) { - return ((float) (mantissa * scale_factors[exp])); + int i; + float tmp; + + for (i = 0; i < 256; i++) { + tmp = samples[i] + samples[i + 256]; + samples[i] = samples[i + 256] = tmp; + } } -typedef struct -{ /* grouped mantissas for 3-level 5-leve and 11-level quantization */ - uint8_t gcodes[3]; - uint8_t gcptr; -} mant_group; +static inline void downmix_mono_to_stereo(float *samples) +{ + int i; -/* Get the transform coefficients for particular channel */ -static int -_get_transform_coeffs (uint8_t * exps, uint8_t * bap, float *samples, - int start, int end, int dith_flag, GetBitContext * gb) + for (i = 0; i < 256; i++) + samples[i + 256] = samples[i]; +} + +static inline void downmix_stereo_to_mono(float *samples) { - int16_t mantissa; - int i; - int gcode; - mant_group l3_grp, l5_grp, l11_grp; - - for (i = 0; i < 3; i++) - l3_grp.gcodes[i] = l5_grp.gcodes[i] = l11_grp.gcodes[i] = -1; - l3_grp.gcptr = l5_grp.gcptr = 3; - l11_grp.gcptr = 2; - - i = 0; - while (i < start) - samples[i++] = 0; - - for (i = start; i < end; i++) { - switch (bap[i]) { - case 0: - if (!dith_flag) - mantissa = 0; - else - mantissa = gen_dither (); - samples[i] = to_float (exps[i], mantissa); - break; - - case 1: - if (l3_grp.gcptr > 2) { - gcode = get_bits_long (gb, qntztab[1]); - if (gcode > 26) - return -1; - l3_grp.gcodes[0] = gcode / 9; - l3_grp.gcodes[1] = (gcode % 9) / 3; - l3_grp.gcodes[2] = (gcode % 9) % 3; - l3_grp.gcptr = 0; - } - mantissa = l3_q_tab[l3_grp.gcodes[l3_grp.gcptr++]]; - samples[i] = to_float (exps[i], mantissa); - break; - - case 2: - if (l5_grp.gcptr > 2) { - gcode = get_bits_long (gb, qntztab[2]); - if (gcode > 124) - return -1; - l5_grp.gcodes[0] = gcode / 25; - l5_grp.gcodes[1] = (gcode % 25) / 5; - l5_grp.gcodes[2] = (gcode % 25) % 5; - l5_grp.gcptr = 0; - } - mantissa = l5_q_tab[l5_grp.gcodes[l5_grp.gcptr++]]; - samples[i] = to_float (exps[i], mantissa); - break; - - case 3: - mantissa = get_bits_long (gb, qntztab[3]); - if (mantissa > 6) - return -1; - mantissa = l7_q_tab[mantissa]; - samples[i] = to_float (exps[i], mantissa); - break; - - case 4: - if (l11_grp.gcptr > 1) { - gcode = get_bits_long (gb, qntztab[4]); - if (gcode > 120) - return -1; - l11_grp.gcodes[0] = gcode / 11; - l11_grp.gcodes[1] = gcode % 11; - } - mantissa = l11_q_tab[l11_grp.gcodes[l11_grp.gcptr++]]; - samples[i] = to_float (exps[i], mantissa); - break; - - case 5: - mantissa = get_bits_long (gb, qntztab[5]); - if (mantissa > 14) - return -1; - mantissa = l15_q_tab[mantissa]; - break; + int i; - default: - mantissa = get_bits_long (gb, qntztab[bap[i]]) << (16 - qntztab[bap[i]]); - samples[i] = to_float (exps[i], mantissa); - break; + for (i = 0; i < 256; i++) { + samples[i] += samples[i + 256]; + samples[i + 256] = 0; } - } +} - i = end; - while (i < 256) - samples[i++] = 0; +static inline void downmix_3f_to_mono(float *samples) +{ + int i; - return 0; + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] + samples[i + 512]); + samples[i + 256] = samples[i + 512] = 0; + } } -static int -uncouple_channels (AC3DecodeContext * ctx) +static inline void downmix_3f_to_stereo(float *samples) { - ac3_audio_block *ab = &ctx->audio_block; - int ch, sbnd, bin; - int index; - float (*samples)[256]; - int16_t mantissa; - - samples = (float (*)[256]) (ab->ab_samples); - samples += (ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0; - - /* uncouple channels */ - for (ch = 0; ch < ctx->bsi.nfchans; ch++) - if (ab->chincpl & (1 << ch)) - for (sbnd = ab->cplbegf; sbnd < 3 + ab->cplendf; sbnd++) - for (bin = 0; bin < 12; bin++) { - index = sbnd * 12 + bin + 37; - samples[ch][index] = ab->cplcoeffs[index] * ab->cplco[ch][sbnd] * 8; - } + int i; - /* generate dither if required */ - for (ch = 0; ch < ctx->bsi.nfchans; ch++) - if ((ab->chincpl & (1 << ch)) && (ab->dithflag & (1 << ch))) - for (index = 0; index < ab->endmant[ch]; index++) - if (!ab->bap[ch][index]) { - mantissa = gen_dither (); - samples[ch][index] = to_float (ab->dexps[ch][index], mantissa); - } + for (i = 0; i < 256; i++) { + samples[i] += samples[i + 256]; + samples[i + 256] = samples[i + 512]; + samples[i + 512] = 0; + } +} - return 0; +static inline void downmix_2f_1r_to_mono(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] + samples[i + 512]); + samples[i + 256] = samples[i + 512] = 0; + } } -static int -get_transform_coeffs (AC3DecodeContext * ctx) +static inline void downmix_2f_1r_to_stereo(float *samples) { - int i; - ac3_audio_block *ab = &ctx->audio_block; - float *samples = ab->ab_samples; - int got_cplchan = 0; - int dithflag = 0; - - samples += (ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0; - for (i = 0; i < ctx->bsi.nfchans; i++) { - if ((ab->flags & AC3_AB_CPLINU) && (ab->chincpl & (1 << i))) - dithflag = 0; /* don't generate dither until channels are decoupled */ - else - dithflag = ab->dithflag & (1 << i); - /* transform coefficients for individual channel */ - if (_get_transform_coeffs (ab->dexps[i], ab->bap[i], samples + (i * 256), - 0, ab->endmant[i], dithflag, &ctx->gb)) - return -1; - /* tranform coefficients for coupling channels */ - if ((ab->flags & AC3_AB_CPLINU) && (ab->chincpl & (1 << i)) && !got_cplchan) { - if (_get_transform_coeffs (ab->dcplexps, ab->cplbap, ab->cplcoeffs, - ab->cplstrtmant, ab->cplendmant, 0, &ctx->gb)) - return -1; - got_cplchan = 1; + int i; + + for (i = 0; i < 256; i++) { + samples[i] += samples[i + 512]; + samples[i + 256] += samples[i + 512]; + samples[i + 512] = 0; } - } +} - /* uncouple the channels from the coupling channel */ - if (ab->flags & AC3_AB_CPLINU) - if (uncouple_channels (ctx)) - return -1; +static inline void downmix_2f_1r_to_dolby(float *samples) +{ + int i; - return 0; + for (i = 0; i < 256; i++) { + samples[i] -= samples[i + 512]; + samples[i + 256] += samples[i + 512]; + samples[i + 512] = 0; + } } -/* generate coupling co-ordinates for each coupling subband - * from coupling co-ordinates of each band and coupling band - * structure information - */ -static int -generate_coupling_coordinates (AC3DecodeContext * ctx) +static inline void downmix_3f_1r_to_mono(float *samples) { - ac3_audio_block *ab = &ctx->audio_block; - uint8_t exp, mstrcplco; - int16_t mant; - uint32_t cplbndstrc = (1 << ab->ncplsubnd) >> 1; - int ch, bnd, sbnd; - float cplco; - - if (ab->cplcoe) - for (ch = 0; ch < ctx->bsi.nfchans; ch++) - if (ab->cplcoe & (1 << ch)) { - mstrcplco = 3 * ab->mstrcplco[ch]; - sbnd = ab->cplbegf; - for (bnd = 0; bnd < ab->ncplbnd; bnd++) { - exp = ab->cplcoexp[ch][bnd]; - if (exp == 15) - mant = ab->cplcomant[ch][bnd] <<= 14; - else - mant = (ab->cplcomant[ch][bnd] | 0x10) << 13; - cplco = to_float (exp + mstrcplco, mant); - if (ctx->bsi.acmod == 0x02 && (ab->flags & AC3_AB_PHSFLGINU) && ch == 1 - && (ab->phsflg & (1 << bnd))) - cplco = -cplco; /* invert the right channel */ - ab->cplco[ch][sbnd++] = cplco; - while (cplbndstrc & ab->cplbndstrc) { - cplbndstrc >>= 1; - ab->cplco[ch][sbnd++] = cplco; - } - cplbndstrc >>= 1; - } - } + int i; + + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] + samples[i + 512] + samples[i + 768]); + samples[i + 256] = samples[i + 512] = samples[i + 768] = 0; + } +} + +static inline void downmix_3f_1r_to_stereo(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] + samples[i + 768]); + samples[i + 256] += (samples[i + 512] + samples[i + 768]); + samples[i + 512] = samples[i + 768] = 0; + } +} + +static inline void downmix_3f_1r_to_dolby(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] - samples[i + 768]); + samples[i + 256] += (samples[i + 512] + samples[i + 768]); + samples[i + 512] = samples[i + 768] = 0; + } +} + +static inline void downmix_2f_2r_to_mono(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] + samples[i + 512] + samples[i + 768]); + samples[i + 256] = samples[i + 512] = samples[i + 768] = 0; + } +} + +static inline void downmix_2f_2r_to_stereo(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] += samples[i + 512]; + samples[i + 256] = samples[i + 768]; + samples[i + 512] = samples[i + 768] = 0; + } +} + +static inline void downmix_2f_2r_to_dolby(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] -= samples[i + 512]; + samples[i + 256] += samples[i + 768]; + samples[i + 512] = samples[i + 768] = 0; + } +} + +static inline void downmix_3f_2r_to_mono(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] + samples[i + 512] + samples[i + 768] + samples[i + 1024]); + samples[i + 256] = samples[i + 512] = samples[i + 768] = samples[i + 1024] = 0; + } +} + +static inline void downmix_3f_2r_to_stereo(float *samples) +{ + int i; + + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] + samples[i + 768]); + samples[i + 256] = (samples[i + 512] + samples[i + 1024]); + samples[i + 512] = samples[i + 768] = samples[i + 1024] = 0; + } +} + +static inline void downmix_3f_2r_to_dolby(float *samples) +{ + int i; - return 0; + for (i = 0; i < 256; i++) { + samples[i] += (samples[i + 256] - samples[i + 768]); + samples[i + 256] = (samples[i + 512] + samples[i + 1024]); + samples[i + 512] = samples[i + 768] = samples[i + 1024] = 0; + } +} + +static void do_downmix(AC3DecodeContext *ctx) +{ + int from = ctx->bsi.acmod; + int to = ctx->output; + float *samples = ctx->samples + ((ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0); + + switch (from) { + case AC3_INPUT_DUALMONO: + switch (to) { + case AC3_OUTPUT_MONO: + downmix_dualmono_to_mono(samples); + break; + case AC3_OUTPUT_STEREO: /* We Assume that sum of both mono channels is requested */ + downmix_dualmono_to_stereo(samples); + break; + } + break; + case AC3_INPUT_MONO: + switch (to) { + case AC3_OUTPUT_STEREO: + downmix_mono_to_stereo(samples); + break; + } + break; + case AC3_INPUT_STEREO: + switch (to) { + case AC3_OUTPUT_MONO: + downmix_stereo_to_mono(samples); + break; + } + break; + case AC3_INPUT_3F: + switch (to) { + case AC3_OUTPUT_MONO: + downmix_3f_to_mono(samples); + break; + case AC3_OUTPUT_STEREO: + downmix_3f_to_stereo(samples); + break; + } + break; + case AC3_INPUT_2F_1R: + switch (to) { + case AC3_OUTPUT_MONO: + downmix_2f_1r_to_mono(samples); + break; + case AC3_OUTPUT_STEREO: + downmix_2f_1r_to_stereo(samples); + break; + case AC3_OUTPUT_DOLBY: + downmix_2f_1r_to_dolby(samples); + break; + } + break; + case AC3_INPUT_3F_1R: + switch (to) { + case AC3_OUTPUT_MONO: + downmix_3f_1r_to_mono(samples); + break; + case AC3_OUTPUT_STEREO: + downmix_3f_1r_to_stereo(samples); + break; + case AC3_OUTPUT_DOLBY: + downmix_3f_1r_to_dolby(samples); + break; + } + break; + case AC3_INPUT_2F_2R: + switch (to) { + case AC3_OUTPUT_MONO: + downmix_2f_2r_to_mono(samples); + break; + case AC3_OUTPUT_STEREO: + downmix_2f_2r_to_stereo(samples); + break; + case AC3_OUTPUT_DOLBY: + downmix_2f_2r_to_dolby(samples); + break; + } + break; + case AC3_INPUT_3F_2R: + switch (to) { + case AC3_OUTPUT_MONO: + downmix_3f_2r_to_mono(samples); + break; + case AC3_OUTPUT_STEREO: + downmix_3f_2r_to_stereo(samples); + break; + case AC3_OUTPUT_DOLBY: + downmix_3f_2r_to_dolby(samples); + break; + } + break; + } } -static int -ac3_parse_audio_block (AC3DecodeContext * ctx, int index) +static int ac3_parse_audio_block(AC3DecodeContext * ctx, int index) { - ac3_audio_block *ab = &ctx->audio_block; - int nfchans = ctx->bsi.nfchans; - int acmod = ctx->bsi.acmod; - int i, bnd, rbnd, grp, seg; - GetBitContext *gb = &ctx->gb; - uint32_t *flags = &ab->flags; - int bit_alloc_flags = 0; - - *flags = 0; - ab->blksw = 0; - for (i = 0; i < nfchans; i++) /*block switch flag */ - ab->blksw |= get_bits_long (gb, 1) << i; - ab->dithflag = 0; - for (i = 0; i < nfchans; i++) /* dithering flag */ - ab->dithflag |= get_bits_long (gb, 1) << i; - if (get_bits_long (gb, 1)) { /* dynamic range */ - *flags |= AC3_AB_DYNRNGE; - ab->dynrng = get_bits_long (gb, 8); - } - if (acmod == 0x00) { /* dynamic range 1+1 mode */ - if (get_bits_long (gb, 1)) { - *flags |= AC3_AB_DYNRNG2E; - ab->dynrng2 = get_bits_long (gb, 8); - } - } - ab->chincpl = 0; - if (get_bits_long (gb, 1)) { /* coupling strategy */ - *flags |= AC3_AB_CPLSTRE; - ab->cplbndstrc = 0; - if (get_bits_long (gb, 1)) { /* coupling in use */ - *flags |= AC3_AB_CPLINU; - for (i = 0; i < nfchans; i++) - ab->chincpl |= get_bits_long (gb, 1) << i; - if (acmod == 0x02) - if (get_bits_long (gb, 1)) /* phase flag in use */ - *flags |= AC3_AB_PHSFLGINU; - ab->cplbegf = get_bits_long (gb, 4); - ab->cplendf = get_bits_long (gb, 4); - if ((ab->ncplsubnd = 3 + ab->cplendf - ab->cplbegf) < 0) - return -1; - ab->ncplbnd = ab->ncplsubnd; - for (i = 0; i < ab->ncplsubnd - 1; i++) /* coupling band structure */ - if (get_bits_long (gb, 1)) { - ab->cplbndstrc |= 1 << i; - ab->ncplbnd--; - } - } - } - if (*flags & AC3_AB_CPLINU) { - ab->cplcoe = 0; - for (i = 0; i < nfchans; i++) - if (ab->chincpl & (1 << i)) - if (get_bits_long (gb, 1)) { /* coupling co-ordinates */ - ab->cplcoe |= 1 << i; - ab->mstrcplco[i] = get_bits_long (gb, 2); - for (bnd = 0; bnd < ab->ncplbnd; bnd++) { - ab->cplcoexp[i][bnd] = get_bits_long (gb, 4); - ab->cplcomant[i][bnd] = get_bits_long (gb, 4); - } + ac3_audio_block *ab = &ctx->audio_block; + int nfchans = ctx->bsi.nfchans; + int acmod = ctx->bsi.acmod; + int i, bnd, rbnd, grp, seg; + GetBitContext *gb = &ctx->gb; + uint32_t *flags = &ab->flags; + int bit_alloc_flags = 0; + float drange; + + *flags = 0; + ab->blksw = 0; + for (i = 0; i < 5; i++) + ab->chcoeffs[i] = 1.0; + for (i = 0; i < nfchans; i++) /*block switch flag */ + ab->blksw |= get_bits(gb, 1) << i; + ab->dithflag = 0; + for (i = 0; i < nfchans; i++) /* dithering flag */ + ab->dithflag |= get_bits(gb, 1) << i; + if (get_bits(gb, 1)) { /* dynamic range */ + *flags |= AC3_AB_DYNRNGE; + ab->dynrng = get_bits(gb, 8); + drange = ((((ab->dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (ab->dynrng >> 5)]); + for (i = 0; i < nfchans; i++) + ab->chcoeffs[i] *= drange; + } + if (acmod == 0x00) { /* dynamic range 1+1 mode */ + if (get_bits(gb, 1)) { + *flags |= AC3_AB_DYNRNG2E; + ab->dynrng2 = get_bits(gb, 8); + drange = ((((ab->dynrng2 & 0x1f) | 0x20) << 13) * scale_factors[3 - (ab->dynrng2 >> 5)]); + ab->chcoeffs[1] *= drange; } - } - ab->phsflg = 0; - if ((acmod == 0x02) && (*flags & AC3_AB_PHSFLGINU) && (ab->cplcoe & 1 || ab->cplcoe & (1 << 1))) { - for (bnd = 0; bnd < ab->ncplbnd; bnd++) - if (get_bits_long (gb, 1)) - ab->phsflg |= 1 << bnd; - } - generate_coupling_coordinates (ctx); - ab->rematflg = 0; - if (acmod == 0x02) /* rematrixing */ - if (get_bits_long (gb, 1)) { - *flags |= AC3_AB_REMATSTR; - if (ab->cplbegf > 2 || !(*flags & AC3_AB_CPLINU)) - for (rbnd = 0; rbnd < 4; rbnd++) - ab->rematflg |= get_bits_long (gb, 1) << bnd; - else if (ab->cplbegf > 0 && ab->cplbegf <= 2 && *flags & AC3_AB_CPLINU) - for (rbnd = 0; rbnd < 3; rbnd++) - ab->rematflg |= get_bits_long (gb, 1) << bnd; - else if (!(ab->cplbegf) && *flags & AC3_AB_CPLINU) - for (rbnd = 0; rbnd < 2; rbnd++) - ab->rematflg |= get_bits_long (gb, 1) << bnd; - } - if (*flags & AC3_AB_CPLINU) /* coupling exponent strategy */ - ab->cplexpstr = get_bits_long (gb, 2); - for (i = 0; i < nfchans; i++) /* channel exponent strategy */ - ab->chexpstr[i] = get_bits_long (gb, 2); - if (ctx->bsi.flags & AC3_BSI_LFEON) /* lfe exponent strategy */ - ab->lfeexpstr = get_bits_long (gb, 1); - for (i = 0; i < nfchans; i++) /* channel bandwidth code */ - if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) - if (!(ab->chincpl & (1 << i))) { - ab->chbwcod[i] = get_bits_long (gb, 6); - if (ab->chbwcod[i] > 60) - return -1; - } - if (*flags & AC3_AB_CPLINU) - if (ab->cplexpstr != AC3_EXPSTR_REUSE) {/* coupling exponents */ - bit_alloc_flags |= 64; - ab->cplabsexp = get_bits_long (gb, 4) << 1; - ab->cplstrtmant = (ab->cplbegf * 12) + 37; - ab->cplendmant = ((ab->cplendmant + 3) * 12) + 37; - ab->ncplgrps = (ab->cplendmant - ab->cplstrtmant) / (3 << (ab->cplexpstr - 1)); - for (grp = 0; grp < ab->ncplgrps; grp++) - ab->cplexps[grp] = get_bits_long (gb, 7); - } - for (i = 0; i < nfchans; i++) /* fbw channel exponents */ - if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) { - bit_alloc_flags |= 1 << i; - if (ab->chincpl & (1 << i)) - ab->endmant[i] = (ab->cplbegf * 12) + 37; - else - ab->endmant[i] = ((ab->chbwcod[i] + 3) * 12) + 37; - ab->nchgrps[i] = - (ab->endmant[i] + (3 << (ab->chexpstr[i] - 1)) - 4) / (3 << (ab->chexpstr[i] - 1)); - ab->exps[i][0] = ab->dexps[i][0] = get_bits_long (gb, 4); - for (grp = 1; grp <= ab->nchgrps[i]; grp++) - ab->exps[i][grp] = get_bits_long (gb, 7); - ab->gainrng[i] = get_bits_long (gb, 2); - } - if (ctx->bsi.flags & AC3_BSI_LFEON) /* lfe exponents */ - if (ab->lfeexpstr != AC3_EXPSTR_REUSE) { - bit_alloc_flags |= 32; - ab->lfeexps[0] = ab->dlfeexps[0] = get_bits_long (gb, 4); - ab->lfeexps[1] = get_bits_long (gb, 7); - ab->lfeexps[2] = get_bits_long (gb, 7); - } - if (decode_exponents (ctx)) /* decode the exponents for this block */ - return -1; - if (get_bits_long (gb, 1)) { /* bit allocation information */ - *flags |= AC3_AB_BAIE; - bit_alloc_flags |= 127; - ab->sdcycod = get_bits_long (gb, 2); - ab->fdcycod = get_bits_long (gb, 2); - ab->sgaincod = get_bits_long (gb, 2); - ab->dbpbcod = get_bits_long (gb, 2); - ab->floorcod = get_bits_long (gb, 3); - } - if (get_bits_long (gb, 1)) { /* snroffset */ - *flags |= AC3_AB_SNROFFSTE; - bit_alloc_flags |= 127; - ab->csnroffst = get_bits_long (gb, 6); - if (*flags & AC3_AB_CPLINU) { /* couling fine snr offset and fast gain code */ - ab->cplfsnroffst = get_bits_long (gb, 4); - ab->cplfgaincod = get_bits_long (gb, 3); - } - for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */ - ab->fsnroffst[i] = get_bits_long (gb, 4); - ab->fgaincod[i] = get_bits_long (gb, 3); - } - if (ctx->bsi.flags & AC3_BSI_LFEON) { /* lfe fine snr offset and fast gain code */ - ab->lfefsnroffst = get_bits_long (gb, 4); - ab->lfefgaincod = get_bits_long (gb, 3); - } - } - if (*flags & AC3_AB_CPLINU) - if (get_bits_long (gb, 1)) { /* coupling leak information */ - bit_alloc_flags |= 64; - *flags |= AC3_AB_CPLLEAKE; - ab->cplfleak = get_bits_long (gb, 3); - ab->cplsleak = get_bits_long (gb, 3); - } - if (get_bits_long (gb, 1)) { /* delta bit allocation information */ - *flags |= AC3_AB_DELTBAIE; - bit_alloc_flags |= 127; + } + get_downmix_coeffs(ctx); + ab->chincpl = 0; + if (get_bits(gb, 1)) { /* coupling strategy */ + *flags |= AC3_AB_CPLSTRE; + ab->cplbndstrc = 0; + if (get_bits(gb, 1)) { /* coupling in use */ + *flags |= AC3_AB_CPLINU; + for (i = 0; i < nfchans; i++) + ab->chincpl |= get_bits(gb, 1) << i; + if (acmod == 0x02) + if (get_bits(gb, 1)) /* phase flag in use */ + *flags |= AC3_AB_PHSFLGINU; + ab->cplbegf = get_bits(gb, 4); + ab->cplendf = get_bits(gb, 4); + assert((ab->ncplsubnd = 3 + ab->cplendf - ab->cplbegf) > 0); + ab->ncplbnd = ab->ncplsubnd; + for (i = 0; i < ab->ncplsubnd - 1; i++) /* coupling band structure */ + if (get_bits(gb, 1)) { + ab->cplbndstrc |= 1 << i; + ab->ncplbnd--; + } + } + } if (*flags & AC3_AB_CPLINU) { - ab->cpldeltbae = get_bits_long (gb, 2); - if (ab->cpldeltbae == AC3_DBASTR_RESERVED) - return -1; + ab->cplcoe = 0; + for (i = 0; i < nfchans; i++) + if (ab->chincpl & (1 << i)) + if (get_bits(gb, 1)) { /* coupling co-ordinates */ + ab->cplcoe |= 1 << i; + ab->mstrcplco[i] = get_bits(gb, 2); + for (bnd = 0; bnd < ab->ncplbnd; bnd++) { + ab->cplcoexp[i][bnd] = get_bits(gb, 4); + ab->cplcomant[i][bnd] = get_bits(gb, 4); + } + } + } + ab->phsflg = 0; + if ((acmod == 0x02) && (*flags & AC3_AB_PHSFLGINU) && (ab->cplcoe & 1 || ab->cplcoe & (1 << 1))) { + for (bnd = 0; bnd < ab->ncplbnd; bnd++) + if (get_bits(gb, 1)) + ab->phsflg |= 1 << bnd; } - for (i = 0; i < nfchans; i++) { - ab->deltbae[i] = get_bits_long (gb, 2); - if (ab->deltbae[i] == AC3_DBASTR_RESERVED) + generate_coupling_coordinates(ctx); + ab->rematflg = 0; + if (acmod == 0x02) /* rematrixing */ + if (get_bits(gb, 1)) { + *flags |= AC3_AB_REMATSTR; + if (ab->cplbegf > 2 || !(*flags & AC3_AB_CPLINU)) + for (rbnd = 0; rbnd < 4; rbnd++) + ab->rematflg |= get_bits(gb, 1) << bnd; + else if (ab->cplbegf > 0 && ab->cplbegf <= 2 && *flags & AC3_AB_CPLINU) + for (rbnd = 0; rbnd < 3; rbnd++) + ab->rematflg |= get_bits(gb, 1) << bnd; + else if (!(ab->cplbegf) && *flags & AC3_AB_CPLINU) + for (rbnd = 0; rbnd < 2; rbnd++) + ab->rematflg |= get_bits(gb, 1) << bnd; + } + if (*flags & AC3_AB_CPLINU) /* coupling exponent strategy */ + ab->cplexpstr = get_bits(gb, 2); + for (i = 0; i < nfchans; i++) /* channel exponent strategy */ + ab->chexpstr[i] = get_bits(gb, 2); + if (ctx->bsi.flags & AC3_BSI_LFEON) /* lfe exponent strategy */ + ab->lfeexpstr = get_bits(gb, 1); + for (i = 0; i < nfchans; i++) /* channel bandwidth code */ + if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) + if (!(ab->chincpl & (1 << i))) { + ab->chbwcod[i] = get_bits(gb, 6); + assert (ab->chbwcod[i] <= 60); + } + if (*flags & AC3_AB_CPLINU) + if (ab->cplexpstr != AC3_EXPSTR_REUSE) {/* coupling exponents */ + bit_alloc_flags |= 64; + ab->cplabsexp = get_bits(gb, 4) << 1; + ab->cplstrtmant = (ab->cplbegf * 12) + 37; + ab->cplendmant = ((ab->cplendmant + 3) * 12) + 37; + ab->ncplgrps = (ab->cplendmant - ab->cplstrtmant) / (3 << (ab->cplexpstr - 1)); + for (grp = 0; grp < ab->ncplgrps; grp++) + ab->cplexps[grp] = get_bits(gb, 7); + } + for (i = 0; i < nfchans; i++) /* fbw channel exponents */ + if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) { + bit_alloc_flags |= 1 << i; + if (ab->chincpl & (1 << i)) + ab->endmant[i] = (ab->cplbegf * 12) + 37; + else + ab->endmant[i] = ((ab->chbwcod[i] + 3) * 12) + 37; + ab->nchgrps[i] = + (ab->endmant[i] + (3 << (ab->chexpstr[i] - 1)) - 4) / (3 << (ab->chexpstr[i] - 1)); + ab->exps[i][0] = ab->dexps[i][0] = get_bits(gb, 4); + for (grp = 1; grp <= ab->nchgrps[i]; grp++) + ab->exps[i][grp] = get_bits(gb, 7); + ab->gainrng[i] = get_bits(gb, 2); + } + if (ctx->bsi.flags & AC3_BSI_LFEON) /* lfe exponents */ + if (ab->lfeexpstr != AC3_EXPSTR_REUSE) { + bit_alloc_flags |= 32; + ab->lfeexps[0] = ab->dlfeexps[0] = get_bits(gb, 4); + ab->lfeexps[1] = get_bits(gb, 7); + ab->lfeexps[2] = get_bits(gb, 7); + } + if (decode_exponents(ctx)) {/* decode the exponents for this block */ + av_log(NULL, AV_LOG_ERROR, "Error parsing exponents\n"); return -1; } + + if (get_bits(gb, 1)) { /* bit allocation information */ + *flags |= AC3_AB_BAIE; + bit_alloc_flags |= 127; + ab->sdcycod = get_bits(gb, 2); + ab->fdcycod = get_bits(gb, 2); + ab->sgaincod = get_bits(gb, 2); + ab->dbpbcod = get_bits(gb, 2); + ab->floorcod = get_bits(gb, 3); + } + if (get_bits(gb, 1)) { /* snroffset */ + *flags |= AC3_AB_SNROFFSTE; + bit_alloc_flags |= 127; + ab->csnroffst = get_bits(gb, 6); + if (*flags & AC3_AB_CPLINU) { /* couling fine snr offset and fast gain code */ + ab->cplfsnroffst = get_bits(gb, 4); + ab->cplfgaincod = get_bits(gb, 3); + } + for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */ + ab->fsnroffst[i] = get_bits(gb, 4); + ab->fgaincod[i] = get_bits(gb, 3); + } + if (ctx->bsi.flags & AC3_BSI_LFEON) { /* lfe fine snr offset and fast gain code */ + ab->lfefsnroffst = get_bits(gb, 4); + ab->lfefgaincod = get_bits(gb, 3); + } + } if (*flags & AC3_AB_CPLINU) - if (ab->cpldeltbae == AC3_DBASTR_NEW) { /*coupling delta offset, len and bit allocation */ - ab->cpldeltnseg = get_bits_long (gb, 3); - for (seg = 0; seg <= ab->cpldeltnseg; seg++) { - ab->cpldeltoffst[seg] = get_bits_long (gb, 5); - ab->cpldeltlen[seg] = get_bits_long (gb, 4); - ab->cpldeltba[seg] = get_bits_long (gb, 3); - } - } - for (i = 0; i < nfchans; i++) - if (ab->deltbae[i] == AC3_DBASTR_NEW) {/*channel delta offset, len and bit allocation */ - ab->deltnseg[i] = get_bits_long (gb, 3); - for (seg = 0; seg <= ab->deltnseg[i]; seg++) { - ab->deltoffst[i][seg] = get_bits_long (gb, 5); - ab->deltlen[i][seg] = get_bits_long (gb, 4); - ab->deltba[i][seg] = get_bits_long (gb, 3); - } - } - } - if (do_bit_allocation (ctx, bit_alloc_flags)) /* perform the bit allocation */ - return -1; - if (get_bits_long (gb, 1)) { /* unused dummy data */ - *flags |= AC3_AB_SKIPLE; - ab->skipl = get_bits_long (gb, 9); - while (ab->skipl) { - get_bits_long (gb, 8); - ab->skipl--; - } - } - /* point ab_samples to the right place within smaples */ - if (!index) - ab->ab_samples = ctx->samples; - else { - ab->ab_samples = ctx->samples + (i * nfchans * 256); - ab->ab_samples += ((ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0); - } - /* unpack the transform coefficients - * this also uncouples channels if coupling is in use. - */ - if (get_transform_coeffs (ctx)) - return -1; + if (get_bits(gb, 1)) { /* coupling leak information */ + bit_alloc_flags |= 64; + *flags |= AC3_AB_CPLLEAKE; + ab->cplfleak = get_bits(gb, 3); + ab->cplsleak = get_bits(gb, 3); + } + if (get_bits(gb, 1)) { /* delta bit allocation information */ + *flags |= AC3_AB_DELTBAIE; + bit_alloc_flags |= 127; + if (*flags & AC3_AB_CPLINU) { + ab->cpldeltbae = get_bits(gb, 2); + if (ab->cpldeltbae == AC3_DBASTR_RESERVED) { + av_log(NULL, AV_LOG_ERROR, "coupling delta bit allocation strategy reserved\n"); + return -1; + } + } + for (i = 0; i < nfchans; i++) { + ab->deltbae[i] = get_bits(gb, 2); + if (ab->deltbae[i] == AC3_DBASTR_RESERVED) { + av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); + return -1; + } + } + if (*flags & AC3_AB_CPLINU) + if (ab->cpldeltbae == AC3_DBASTR_NEW) { /*coupling delta offset, len and bit allocation */ + ab->cpldeltnseg = get_bits(gb, 3); + for (seg = 0; seg <= ab->cpldeltnseg; seg++) { + ab->cpldeltoffst[seg] = get_bits(gb, 5); + ab->cpldeltlen[seg] = get_bits(gb, 4); + ab->cpldeltba[seg] = get_bits(gb, 3); + } + } + for (i = 0; i < nfchans; i++) + if (ab->deltbae[i] == AC3_DBASTR_NEW) {/*channel delta offset, len and bit allocation */ + ab->deltnseg[i] = get_bits(gb, 3); + for (seg = 0; seg <= ab->deltnseg[i]; seg++) { + ab->deltoffst[i][seg] = get_bits(gb, 5); + ab->deltlen[i][seg] = get_bits(gb, 4); + ab->deltba[i][seg] = get_bits(gb, 3); + } + } + } + if (do_bit_allocation (ctx, bit_alloc_flags)) /* perform the bit allocation */ { + av_log(NULL, AV_LOG_ERROR, "Error in bit allocation routine\n"); + return -1; + } + if (get_bits(gb, 1)) { /* unused dummy data */ + *flags |= AC3_AB_SKIPLE; + ab->skipl = get_bits(gb, 9); + while (ab->skipl) { + get_bits(gb, 8); + ab->skipl--; + } + } + /* unpack the transform coefficients + * * this also uncouples channels if coupling is in use. + */ + if (get_transform_coeffs(ctx)) { + av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); + return -1; + } + /* recover coefficients if rematrixing is in use */ + if (*flags & AC3_AB_REMATSTR) + do_rematrixing(ctx); + + if (ctx->output != AC3_OUTPUT_UNMODIFIED) + do_downmix(ctx); + + return 0; +} + +/**** the following two functions comes from ac3dec */ +static inline int blah (int32_t i) +{ + if (i > 0x43c07fff) + return 32767; + else if (i < 0x43bf8000) + return -32768; + else + return i - 0x43c00000; +} + +static inline void float_to_int (float * _f, int16_t * s16, int samples) +{ + int32_t * f = (int32_t *) _f; // XXX assumes IEEE float format + int i; - return 0; + for (i = 0; i < samples; i++) { + s16[i] = blah (f[i]); + } } +/**** end */ + -static int -ac3_decode_frame (AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) +static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { - AC3DecodeContext *ctx = avctx->priv_data; - int frame_start; - int i; - - //Synchronize the frame. - frame_start = ac3_synchronize (buf, buf_size); - if (frame_start == -1) { - *data_size = 0; - return -1; - } + AC3DecodeContext *ctx = avctx->priv_data; + int frame_start; + int i, j, k, l; + float tmp0[128], tmp1[128], tmp[512]; + short *out_samples = (short *)data; + float *samples = ctx->samples; + + //Synchronize the frame. + frame_start = ac3_synchronize(buf, buf_size); + if (frame_start == -1) { + av_log(avctx, AV_LOG_ERROR, "frame is not synchronized\n"); + *data_size = 0; + return -1; + } - //Initialize the GetBitContext with the start of valid AC3 Frame. - init_get_bits (&(ctx->gb), buf + frame_start, (buf_size - frame_start) * 8); + //Initialize the GetBitContext with the start of valid AC3 Frame. + init_get_bits(&(ctx->gb), buf + frame_start, (buf_size - frame_start) * 8); + //Parse the syncinfo. + ////If 'fscod' is not valid the decoder shall mute as per the standard. + if (ac3_parse_sync_info(ctx)) { + av_log(avctx, AV_LOG_ERROR, "fscod is not valid\n"); + *data_size = 0; + return -1; + } - //Parse the syncinfo. - //If 'fscod' is not valid the decoder shall mute as per the standard. - if (ac3_parse_sync_info (ctx)) { - *data_size = 0; - return -1; - } - - //Check for the errors. - /*if (ac3_error_check(ctx)) - { - *data_size = 0; - return -1; - } */ - - //Parse the BSI. - //If 'bsid' is not valid decoder shall not decode the audio as per the standard. - if (ac3_parse_bsi (ctx)) { - *data_size = 0; - return -1; - } + //Check for the errors. + /* if (ac3_error_check(ctx)) { + *data_size = 0; + return -1; + } */ - //Parse the Audio Blocks. - for (i = 0; i < 6; i++) - if (ac3_parse_audio_block (ctx, i)) { - *data_size = 0; - return -1; + //Parse the BSI. + //If 'bsid' is not valid decoder shall not decode the audio as per the standard. + if (ac3_parse_bsi(ctx)) { + av_log(avctx, AV_LOG_ERROR, "bsid is not valid\n"); + *data_size = 0; + return -1; } - return 0; + avctx->sample_rate = ctx->sync_info.sampling_rate; + if (avctx->channels == 0) { + avctx->channels = ctx->bsi.nfchans + ((ctx->bsi.flags & AC3_BSI_LFEON) ? 1 : 0); + ctx->output = AC3_OUTPUT_UNMODIFIED; + } + else if ((ctx->bsi.nfchans + ((ctx->bsi.flags & AC3_BSI_LFEON) ? 1 : 0)) < avctx->channels) { + av_log(avctx, AV_LOG_INFO, "ac3_decoder: AC3 Source Channels Are Less Then Specified %d: Output to %d Channels\n", + avctx->channels, (ctx->bsi.nfchans + ((ctx->bsi.flags & AC3_BSI_LFEON) ? 1 : 0))); + avctx->channels = ctx->bsi.nfchans + ((ctx->bsi.flags & AC3_BSI_LFEON) ? 1 : 0); + ctx->output = AC3_OUTPUT_UNMODIFIED; + } + else if (avctx->channels == 1) { + ctx->output = AC3_OUTPUT_MONO; + } else if (avctx->channels == 2) { + if (ctx->bsi.dsurmod == 0x02) + ctx->output = AC3_OUTPUT_DOLBY; + else + ctx->output = AC3_OUTPUT_STEREO; + } + + + avctx->bit_rate = ctx->sync_info.bit_rate; + av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->sample_rate, avctx->bit_rate); + + //Parse the Audio Blocks. + for (i = 0; i < 6; i++) { + if (ac3_parse_audio_block(ctx, i)) { + av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); + *data_size = 0; + return -1; + } + samples = ctx->samples; + if (ctx->bsi.flags & AC3_BSI_LFEON) { + ff_imdct_calc(&ctx->imdct_ctx_512, ctx->samples + 1536, samples, tmp); + for (l = 0; l < 256; l++) + samples[l] = (ctx->samples + 1536)[l]; + float_to_int(samples, out_samples, 256); + samples += 256; + out_samples += 256; + } + for (j = 0; j < ctx->bsi.nfchans; j++) { + if (ctx->audio_block.blksw & (1 << j)) { + for (k = 0; k < 128; k++) { + tmp0[k] = samples[2 * k]; + tmp1[k] = samples[2 * k + 1]; + } + ff_imdct_calc(&ctx->imdct_ctx_256, ctx->samples + 1536, tmp0, tmp); + for (l = 0; l < 256; l++) + samples[l] = (ctx->samples + 1536)[l] * window[l] + (ctx->samples + 2048)[l] * window[255 - l]; + ff_imdct_calc(&ctx->imdct_ctx_256, ctx->samples + 2048, tmp1, tmp); + float_to_int(samples, out_samples, 256); + samples += 256; + out_samples += 256; + } + else { + ff_imdct_calc(&ctx->imdct_ctx_512, ctx->samples + 1536, samples, tmp); + for (l = 0; l < 256; l++) + samples[l] = (ctx->samples + 1536)[l] * window[l] + (ctx->samples + 2048)[l] * window[255 - l]; + float_to_int(samples, out_samples, 256); + memcpy(ctx->samples + 2048, ctx->samples + 1792, 256 * sizeof (float)); + samples += 256; + out_samples += 256; + } + } + } + *data_size = 6 * ctx->bsi.nfchans * 256 * sizeof (int16_t); + + return (buf_size - frame_start); } + +static int ac3_decode_end(AVCodecContext *ctx) +{ + return 0; +} + +AVCodec lgpl_ac3_decoder = { + "ac3", + CODEC_TYPE_AUDIO, + CODEC_ID_AC3, + sizeof (AC3DecodeContext), + ac3_decode_init, + NULL, + ac3_decode_end, + ac3_decode_frame, +}; +