From: Jasper Shemilt Date: Mon, 2 Oct 2017 15:38:41 +0000 (+0100) Subject: Adds fitEllipseAMS to imgproc: The Approximate Mean Square (AMS) proposed by Taubin... X-Git-Tag: accepted/tizen/6.0/unified/20201030.111113~538^2~1 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=0136711cf4133d5a9c95792146f0125cdafe4d3e;p=platform%2Fupstream%2Fopencv.git Adds fitEllipseAMS to imgproc: The Approximate Mean Square (AMS) proposed by Taubin 1991. Adds fitEllipseDirect to imgproc: The Direct least square (Direct) method by Fitzgibbon1999. New Tests are included for the methods. fitEllipseAMS Tests fitEllipseDirect Tests Comparative examples are added to fitEllipse.cpp in Samples. --- diff --git a/doc/opencv.bib b/doc/opencv.bib index f4bb251..62b649d 100644 --- a/doc/opencv.bib +++ b/doc/opencv.bib @@ -295,6 +295,66 @@ pages = {513--522}, organization = {BMVA Press} } +@ARTICLE{fitzgibbon1999, + abstract = {This work presents a new efficient method for fitting + ellipses to scattered data. Previous algorithms either + fitted general conics or were computationally expensive. By + minimizing the algebraic distance subject to the constraint + 4ac-b2=1, the new method incorporates the + ellipticity constraint into the normalization factor. The + proposed method combines several advantages: It is + ellipse-specific, so that even bad data will always return + an ellipse. It can be solved naturally by a generalized + eigensystem. It is extremely robust, efficient, and easy to + implement}, + author = {Fitzgibbon, Andrew and Pilu, Maurizio and Fisher, Robert B.}, + doi= {10.1109/34.765658}, + isbn= {0162-8828}, + issn= {01628828}, + journal = {IEEE Transactions on Pattern Analysis and Machine + Intelligence}, + number = {5}, + pages= {476--480}, + pmid= {708}, + title= {{Direct least square fitting of ellipses}}, + volume = {21}, + year= {1999} +} +@Article{taubin1991, + abstract = {The author addresses the problem of parametric + representation and estimation of complex planar curves in + 2-D surfaces in 3-D, and nonplanar space curves in 3-D. + Curves and surfaces can be defined either parametrically or + implicitly, with the latter representation used here. A + planar curve is the set of zeros of a smooth function of + two variables x-y, a surface is the set + of zeros of a smooth function of three variables + x-y-z, and a space curve is the + intersection of two surfaces, which are the set of zeros of + two linearly independent smooth functions of three + variables x-y-z For example, the + surface of a complex object in 3-D can be represented as a + subset of a single implicit surface, with similar results + for planar and space curves. It is shown how this unified + representation can be used for object recognition, object + position estimation, and segmentation of objects into + meaningful subobjects, that is, the detection of `interest + regions' that are more complex than high curvature regions + and, hence, more useful as features for object + recognition}, + author = {Taubin, Gabriel}, + doi= {10.1109/34.103273}, + isbn= {0162-8828}, + issn= {01628828}, + journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, + number = {11}, + pages= {1115--1138}, + title= {{Estimation of planar curves, surfaces, and nonplanar + space curves defined by implicit equations with + applications to edge and range image segmentation}}, + volume = {13}, + year= {1991} +} @INPROCEEDINGS{G11, author = {Grundmann, Matthias and Kwatra, Vivek and Essa, Irfan}, title = {Auto-directed video stabilization with robust l1 optimal camera paths}, diff --git a/modules/core/include/opencv2/core/utils/logger.hpp b/modules/core/include/opencv2/core/utils/logger.hpp index d7e73de..c7b31ea 100644 --- a/modules/core/include/opencv2/core/utils/logger.hpp +++ b/modules/core/include/opencv2/core/utils/logger.hpp @@ -16,6 +16,7 @@ // //! @{ +namespace cv { namespace utils { namespace logging { @@ -77,7 +78,7 @@ enum LogLevel { #endif -}} // namespace +}}} // namespace //! @} diff --git a/modules/imgproc/include/opencv2/imgproc.hpp b/modules/imgproc/include/opencv2/imgproc.hpp index 5a127fb..076af52 100644 --- a/modules/imgproc/include/opencv2/imgproc.hpp +++ b/modules/imgproc/include/opencv2/imgproc.hpp @@ -4066,6 +4066,88 @@ border of the containing Mat element. */ CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); +/** @brief Fits an ellipse around a set of 2D points. + + The function calculates the ellipse that fits a set of 2D points. + It returns the rotated rectangle in which the ellipse is inscribed. + The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used. + + For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, + which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. + However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, + the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, + quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. + If the fit is found to be a parabolic or hyperbolic function then the standard fitEllipse method is used. + The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves + by imposing the condition that \f$ A^T ( D_x^T D_x + D_y^T D_y) A = 1 \f$ where + the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with + respect to x and y. The matrices are formed row by row applying the following to + each of the points in the set: + \f{align*}{ + D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} & + D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} & + D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\} + \f} + The AMS method minimizes the cost function + \f{equation*}{ + \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T } + \f} + + The minimum cost is found by solving the generalized eigenvalue problem. + + \f{equation*}{ + D^T D A = \lambda \left( D_x^T D_x + D_y^T D_y\right) A + \f} + + @param points Input 2D point set, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points ); + + +/** @brief Fits an ellipse around a set of 2D points. + + The function calculates the ellipse that fits a set of 2D points. + It returns the rotated rectangle in which the ellipse is inscribed. + The Direct least square (Direct) method by @cite Fitzgibbon1999 is used. + + For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, + which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. + However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, + the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, + quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. + The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$. + The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality + and as the coefficients can be arbitrarily scaled is not overly restrictive. + + \f{equation*}{ + \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix} + 0 & 0 & 2 & 0 & 0 & 0 \\ + 0 & -1 & 0 & 0 & 0 & 0 \\ + 2 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 0 + \end{matrix} \right) + \f} + + The minimum cost is found by solving the generalized eigenvalue problem. + + \f{equation*}{ + D^T D A = \lambda \left( C\right) A + \f} + + The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution + with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients + + \f{equation*}{ + A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u} + \f} + The scaling factor guarantees that \f$A^T C A =1\f$. + + @param points Input 2D point set, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points ); + /** @brief Fits a line to a 2D or 3D point set. The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where diff --git a/modules/imgproc/src/shapedescr.cpp b/modules/imgproc/src/shapedescr.cpp index 9661c26..a145310 100644 --- a/modules/imgproc/src/shapedescr.cpp +++ b/modules/imgproc/src/shapedescr.cpp @@ -39,7 +39,6 @@ // //M*/ #include "precomp.hpp" - namespace cv { @@ -454,6 +453,329 @@ cv::RotatedRect cv::fitEllipse( InputArray _points ) return box; } +cv::RotatedRect cv::fitEllipseAMS( InputArray _points ) +{ + Mat points = _points.getMat(); + int i, n = points.checkVector(2); + int depth = points.depth(); + CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S)); + + RotatedRect box; + + if( n < 5 ) + CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" ); + + Point2f c(0,0); + + bool is_float = depth == CV_32F; + const Point* ptsi = points.ptr(); + const Point2f* ptsf = points.ptr(); + + Mat A( n, 6, CV_64F); + Matx DM; + Matx M; + Matx pVec; + Matx coeffs; + + double x0, y0, a, b, theta; + + for( i = 0; i < n; i++ ) + { + Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); + c += p; + } + c.x /= (float)n; + c.y /= (float)n; + + for( i = 0; i < n; i++ ) + { + Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); + p -= c; + + A.at(i,0) = (double)(p.x)*(p.x); + A.at(i,1) = (double)(p.x)*(p.y); + A.at(i,2) = (double)(p.y)*(p.y); + A.at(i,3) = (double)p.x; + A.at(i,4) = (double)p.y; + A.at(i,5) = 1.0; + } + cv::mulTransposed( A, DM, true, noArray(), 1.0, -1 ); + DM *= (1.0/n); + double dnm = ( DM(2,5)*(DM(0,5) + DM(2,5)) - (DM(1,5)*DM(1,5)) ); + double ddm = (4.*(DM(0,5) + DM(2,5))*( (DM(0,5)*DM(2,5)) - (DM(1,5)*DM(1,5)))); + double ddmm = (2.*(DM(0,5) + DM(2,5))*( (DM(0,5)*DM(2,5)) - (DM(1,5)*DM(1,5)))); + + M(0,0)=((-DM(0,0) + DM(0,2) + DM(0,5)*DM(0,5))*(DM(1,5)*DM(1,5)) + (-2*DM(0,1)*DM(1,5) + DM(0,5)*(DM(0,0) \ + - (DM(0,5)*DM(0,5)) + (DM(1,5)*DM(1,5))))*DM(2,5) + (DM(0,0) - (DM(0,5)*DM(0,5)))*(DM(2,5)*DM(2,5))) / ddm; + M(0,1)=((DM(1,5)*DM(1,5))*(-DM(0,1) + DM(1,2) + DM(0,5)*DM(1,5)) + (DM(0,1)*DM(0,5) - ((DM(0,5)*DM(0,5)) + 2*DM(1,1))*DM(1,5) + \ + (DM(1,5)*DM(1,5)*DM(1,5)))*DM(2,5) + (DM(0,1) - DM(0,5)*DM(1,5))*(DM(2,5)*DM(2,5))) / ddm; + M(0,2)=(-2*DM(1,2)*DM(1,5)*DM(2,5) - DM(0,5)*(DM(2,5)*DM(2,5))*(DM(0,5) + DM(2,5)) + DM(0,2)*dnm + \ + (DM(1,5)*DM(1,5))*(DM(2,2) + DM(2,5)*(DM(0,5) + DM(2,5))))/ddm; + M(0,3)=(DM(1,5)*(DM(1,5)*DM(2,3) - 2*DM(1,3)*DM(2,5)) + DM(0,3)*dnm) / ddm; + M(0,4)=(DM(1,5)*(DM(1,5)*DM(2,4) - 2*DM(1,4)*DM(2,5)) + DM(0,4)*dnm) / ddm; + M(1,0)=(-(DM(0,2)*DM(0,5)*DM(1,5)) + (2*DM(0,1)*DM(0,5) - DM(0,0)*DM(1,5))*DM(2,5))/ddmm; + M(1,1)=(-(DM(0,1)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,2)*DM(1,5)) + 2*DM(1,1)*DM(2,5)))/ddmm; + M(1,2)=(-(DM(0,2)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,2)) + 2*DM(1,2)*DM(2,5)))/ddmm; + M(1,3)=(-(DM(0,3)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,3)) + 2*DM(1,3)*DM(2,5)))/ddmm; + M(1,4)=(-(DM(0,4)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,4)) + 2*DM(1,4)*DM(2,5)))/ddmm; + M(2,0)=(-2*DM(0,1)*DM(0,5)*DM(1,5) + (DM(0,0) + (DM(0,5)*DM(0,5)))*(DM(1,5)*DM(1,5)) + DM(0,5)*(-(DM(0,5)*DM(0,5)) \ + + (DM(1,5)*DM(1,5)))*DM(2,5) - (DM(0,5)*DM(0,5))*(DM(2,5)*DM(2,5)) + DM(0,2)*(-(DM(1,5)*DM(1,5)) + DM(0,5)*(DM(0,5) + DM(2,5)))) / ddm; + M(2,1)=((DM(0,5)*DM(0,5))*(DM(1,2) - DM(1,5)*DM(2,5)) + (DM(1,5)*DM(1,5))*(DM(0,1) - DM(1,2) + DM(1,5)*DM(2,5)) \ + + DM(0,5)*(DM(1,2)*DM(2,5) + DM(1,5)*(-2*DM(1,1) + (DM(1,5)*DM(1,5)) - (DM(2,5)*DM(2,5))))) / ddm; + M(2,2)=((DM(0,5)*DM(0,5))*(DM(2,2) - (DM(2,5)*DM(2,5))) + (DM(1,5)*DM(1,5))*(DM(0,2) - DM(2,2) + (DM(2,5)*DM(2,5))) + \ + DM(0,5)*(-2*DM(1,2)*DM(1,5) + DM(2,5)*((DM(1,5)*DM(1,5)) + DM(2,2) - (DM(2,5)*DM(2,5))))) / ddm; + M(2,3)=((DM(1,5)*DM(1,5))*(DM(0,3) - DM(2,3)) + (DM(0,5)*DM(0,5))*DM(2,3) + DM(0,5)*(-2*DM(1,3)*DM(1,5) + DM(2,3)*DM(2,5))) / ddm; + M(2,4)=((DM(1,5)*DM(1,5))*(DM(0,4) - DM(2,4)) + (DM(0,5)*DM(0,5))*DM(2,4) + DM(0,5)*(-2*DM(1,4)*DM(1,5) + DM(2,4)*DM(2,5))) / ddm; + M(3,0)=DM(0,3); + M(3,1)=DM(1,3); + M(3,2)=DM(2,3); + M(3,3)=DM(3,3); + M(3,4)=DM(3,4); + M(4,0)=DM(0,4); + M(4,1)=DM(1,4); + M(4,2)=DM(2,4); + M(4,3)=DM(3,4); + M(4,4)=DM(4,4); + + if (fabs(cv::determinant(M)) > 1.0e-10) { + Mat eVal, eVec; + eigenNonSymmetric(M, eVal, eVec); + + // Select the eigen vector {a,b,c,d,e} which has the lowest eigenvalue + int minpos = 0; + double normi, normEVali, normMinpos, normEValMinpos; + normMinpos = sqrt(eVec.at(0,minpos)*eVec.at(0,minpos) + eVec.at(1,minpos)*eVec.at(1,minpos) + \ + eVec.at(2,minpos)*eVec.at(2,minpos) + eVec.at(3,minpos)*eVec.at(3,minpos) + \ + eVec.at(4,minpos)*eVec.at(4,minpos) ); + normEValMinpos = eVal.at(0,minpos) * normMinpos; + for (i=1; i<5; i++) { + normi = sqrt(eVec.at(0,i)*eVec.at(0,i) + eVec.at(1,i)*eVec.at(1,i) + \ + eVec.at(2,i)*eVec.at(2,i) + eVec.at(3,i)*eVec.at(3,i) + \ + eVec.at(4,i)*eVec.at(4,i) ); + normEVali = eVal.at(0,i) * normi; + if (normEVali < normEValMinpos) { + minpos = i; + normMinpos=normi; + normEValMinpos=normEVali; + } + }; + + pVec(0) =eVec.at(0,minpos) / normMinpos; + pVec(1) =eVec.at(1,minpos) / normMinpos; + pVec(2) =eVec.at(2,minpos) / normMinpos; + pVec(3) =eVec.at(3,minpos) / normMinpos; + pVec(4) =eVec.at(4,minpos) / normMinpos; + + coeffs(0) =pVec(0) ; + coeffs(1) =pVec(1) ; + coeffs(2) =pVec(2) ; + coeffs(3) =pVec(3) ; + coeffs(4) =pVec(4) ; + coeffs(5) =-pVec(0) *DM(0,5)-pVec(1) *DM(1,5)-coeffs(2) *DM(2,5); + + // Check that an elliptical solution has been found. AMS sometimes produces Parabolic solutions. + bool is_ellipse = (coeffs(0) < 0 && \ + coeffs(2) < (coeffs(1) *coeffs(1) )/(4.*coeffs(0) ) && \ + coeffs(5) > (-(coeffs(2) *(coeffs(3) *coeffs(3) )) + coeffs(1) *coeffs(3) *coeffs(4) - coeffs(0) *(coeffs(4) *coeffs(4) )) / \ + ((coeffs(1) *coeffs(1) ) - 4*coeffs(0) *coeffs(2) )) || \ + (coeffs(0) > 0 && \ + coeffs(2) > (coeffs(1) *coeffs(1) )/(4.*coeffs(0) ) && \ + coeffs(5) < (-(coeffs(2) *(coeffs(3) *coeffs(3) )) + coeffs(1) *coeffs(3) *coeffs(4) - coeffs(0) *(coeffs(4) *coeffs(4) )) / \ + ( (coeffs(1) *coeffs(1) ) - 4*coeffs(0) *coeffs(2) )); + if (is_ellipse) { + double u1 = pVec(2) *pVec(3) *pVec(3) - pVec(1) *pVec(3) *pVec(4) + pVec(0) *pVec(4) *pVec(4) + pVec(1) *pVec(1) *coeffs(5) ; + double u2 = pVec(0) *pVec(2) *coeffs(5) ; + double l1 = sqrt(pVec(1) *pVec(1) + (pVec(0) - pVec(2) )*(pVec(0) - pVec(2) )); + double l2 = pVec(0) + pVec(2) ; + double l3 = pVec(1) *pVec(1) - 4.0*pVec(0) *pVec(2) ; + double p1 = 2.0*pVec(2) *pVec(3) - pVec(1) *pVec(4) ; + double p2 = 2.0*pVec(0) *pVec(4) -(pVec(1) *pVec(3) ); + + x0 = p1/l3 + c.x; + y0 = p2/l3 + c.y; + a = sqrt(2)*sqrt((u1 - 4.0*u2)/((l1 - l2)*l3)); + b = sqrt(2)*sqrt(-1.0*((u1 - 4.0*u2)/((l1 + l2)*l3))); + if (pVec(1) == 0) { + if (pVec(0) < pVec(2) ) { + theta = 0; + } else { + theta = CV_PI/2.; + } + } else { + theta = CV_PI/2. + 0.5*std::atan2(pVec(1) , (pVec(0) - pVec(2) )); + } + + box.center.x = (float)x0; // +c.x; + box.center.y = (float)y0; // +c.y; + box.size.width = (float)(2.0*a); + box.size.height = (float)(2.0*b); + if( box.size.width > box.size.height ) + { + float tmp; + CV_SWAP( box.size.width, box.size.height, tmp ); + box.angle = (float)(90 + theta*180/CV_PI); + } else { + box.angle = (float)(fmod(theta*180/CV_PI,180.0)); + }; + + + } else { + box = cv::fitEllipseDirect( points ); + } + } else { + box = cv::fitEllipse( points ); + } + + return box; +} + +cv::RotatedRect cv::fitEllipseDirect( InputArray _points ) +{ + Mat points = _points.getMat(); + int i, n = points.checkVector(2); + int depth = points.depth(); + CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S)); + + RotatedRect box; + + if( n < 5 ) + CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" ); + + Point2f c(0,0); + + bool is_float = (depth == CV_32F); + const Point* ptsi = points.ptr(); + const Point2f* ptsf = points.ptr(); + + Mat A( n, 6, CV_64F); + Matx DM; + Matx33d M, TM, Q; + Matx pVec; + + double x0, y0, a, b, theta, Ts; + + for( i = 0; i < n; i++ ) + { + Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); + c += p; + } + c.x /= (float)n; + c.y /= (float)n; + + for( i = 0; i < n; i++ ) + { + Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); + p -= c; + + A.at(i,0) = (double)(p.x)*(p.x); + A.at(i,1) = (double)(p.x)*(p.y); + A.at(i,2) = (double)(p.y)*(p.y); + A.at(i,3) = (double)p.x; + A.at(i,4) = (double)p.y; + A.at(i,5) = 1.0; + } + cv::mulTransposed( A, DM, true, noArray(), 1.0, -1 ); + DM *= (1.0/n); + + TM(0,0) = DM(0,5)*DM(3,5)*DM(4,4) - DM(0,5)*DM(3,4)*DM(4,5) - DM(0,4)*DM(3,5)*DM(5,4) + \ + DM(0,3)*DM(4,5)*DM(5,4) + DM(0,4)*DM(3,4)*DM(5,5) - DM(0,3)*DM(4,4)*DM(5,5); + TM(0,1) = DM(1,5)*DM(3,5)*DM(4,4) - DM(1,5)*DM(3,4)*DM(4,5) - DM(1,4)*DM(3,5)*DM(5,4) + \ + DM(1,3)*DM(4,5)*DM(5,4) + DM(1,4)*DM(3,4)*DM(5,5) - DM(1,3)*DM(4,4)*DM(5,5); + TM(0,2) = DM(2,5)*DM(3,5)*DM(4,4) - DM(2,5)*DM(3,4)*DM(4,5) - DM(2,4)*DM(3,5)*DM(5,4) + \ + DM(2,3)*DM(4,5)*DM(5,4) + DM(2,4)*DM(3,4)*DM(5,5) - DM(2,3)*DM(4,4)*DM(5,5); + TM(1,0) = DM(0,5)*DM(3,3)*DM(4,5) - DM(0,5)*DM(3,5)*DM(4,3) + DM(0,4)*DM(3,5)*DM(5,3) - \ + DM(0,3)*DM(4,5)*DM(5,3) - DM(0,4)*DM(3,3)*DM(5,5) + DM(0,3)*DM(4,3)*DM(5,5); + TM(1,1) = DM(1,5)*DM(3,3)*DM(4,5) - DM(1,5)*DM(3,5)*DM(4,3) + DM(1,4)*DM(3,5)*DM(5,3) - \ + DM(1,3)*DM(4,5)*DM(5,3) - DM(1,4)*DM(3,3)*DM(5,5) + DM(1,3)*DM(4,3)*DM(5,5); + TM(1,2) = DM(2,5)*DM(3,3)*DM(4,5) - DM(2,5)*DM(3,5)*DM(4,3) + DM(2,4)*DM(3,5)*DM(5,3) - \ + DM(2,3)*DM(4,5)*DM(5,3) - DM(2,4)*DM(3,3)*DM(5,5) + DM(2,3)*DM(4,3)*DM(5,5); + TM(2,0) = DM(0,5)*DM(3,4)*DM(4,3) - DM(0,5)*DM(3,3)*DM(4,4) - DM(0,4)*DM(3,4)*DM(5,3) + \ + DM(0,3)*DM(4,4)*DM(5,3) + DM(0,4)*DM(3,3)*DM(5,4) - DM(0,3)*DM(4,3)*DM(5,4); + TM(2,1) = DM(1,5)*DM(3,4)*DM(4,3) - DM(1,5)*DM(3,3)*DM(4,4) - DM(1,4)*DM(3,4)*DM(5,3) + \ + DM(1,3)*DM(4,4)*DM(5,3) + DM(1,4)*DM(3,3)*DM(5,4) - DM(1,3)*DM(4,3)*DM(5,4); + TM(2,2) = DM(2,5)*DM(3,4)*DM(4,3) - DM(2,5)*DM(3,3)*DM(4,4) - DM(2,4)*DM(3,4)*DM(5,3) + \ + DM(2,3)*DM(4,4)*DM(5,3) + DM(2,4)*DM(3,3)*DM(5,4) - DM(2,3)*DM(4,3)*DM(5,4); + + Ts=(-(DM(3,5)*DM(4,4)*DM(5,3)) + DM(3,4)*DM(4,5)*DM(5,3) + DM(3,5)*DM(4,3)*DM(5,4) - \ + DM(3,3)*DM(4,5)*DM(5,4) - DM(3,4)*DM(4,3)*DM(5,5) + DM(3,3)*DM(4,4)*DM(5,5)); + + M(0,0) = (DM(2,0) + (DM(2,3)*TM(0,0) + DM(2,4)*TM(1,0) + DM(2,5)*TM(2,0))/Ts)/2.; + M(0,1) = (DM(2,1) + (DM(2,3)*TM(0,1) + DM(2,4)*TM(1,1) + DM(2,5)*TM(2,1))/Ts)/2.; + M(0,2) = (DM(2,2) + (DM(2,3)*TM(0,2) + DM(2,4)*TM(1,2) + DM(2,5)*TM(2,2))/Ts)/2.; + M(1,0) = -DM(1,0) - (DM(1,3)*TM(0,0) + DM(1,4)*TM(1,0) + DM(1,5)*TM(2,0))/Ts; + M(1,1) = -DM(1,1) - (DM(1,3)*TM(0,1) + DM(1,4)*TM(1,1) + DM(1,5)*TM(2,1))/Ts; + M(1,2) = -DM(1,2) - (DM(1,3)*TM(0,2) + DM(1,4)*TM(1,2) + DM(1,5)*TM(2,2))/Ts; + M(2,0) = (DM(0,0) + (DM(0,3)*TM(0,0) + DM(0,4)*TM(1,0) + DM(0,5)*TM(2,0))/Ts)/2.; + M(2,1) = (DM(0,1) + (DM(0,3)*TM(0,1) + DM(0,4)*TM(1,1) + DM(0,5)*TM(2,1))/Ts)/2.; + M(2,2) = (DM(0,2) + (DM(0,3)*TM(0,2) + DM(0,4)*TM(1,2) + DM(0,5)*TM(2,2))/Ts)/2.; + + if (fabs(cv::determinant(M)) > 1.0e-10) { + Mat eVal, eVec; + eigenNonSymmetric(M, eVal, eVec); + + // Select the eigen vector {a,b,c} which satisfies 4ac-b^2 > 0 + double cond[3]; + cond[0]=(4.0 * eVec.at(0,0) * eVec.at(2,0) - eVec.at(1,0) * eVec.at(1,0)); + cond[1]=(4.0 * eVec.at(0,1) * eVec.at(2,1) - eVec.at(1,1) * eVec.at(1,1)); + cond[2]=(4.0 * eVec.at(0,2) * eVec.at(2,2) - eVec.at(1,2) * eVec.at(1,2)); + if (cond[0](0,i)*eVec.at(0,i) + eVec.at(1,i)*eVec.at(1,i) + eVec.at(2,i)*eVec.at(2,i)); + if (((eVec.at(0,i)<0.0 ? -1 : 1) * (eVec.at(1,i)<0.0 ? -1 : 1) * (eVec.at(2,i)<0.0 ? -1 : 1)) <= 0.0) { + norm=-1.0*norm; + } + pVec(0) =eVec.at(0,i)/norm; pVec(1) =eVec.at(1,i)/norm;pVec(2) =eVec.at(2,i)/norm; + + // Q = (TM . pVec)/Ts; + Q(0,0) = (TM(0,0)*pVec(0) +TM(0,1)*pVec(1) +TM(0,2)*pVec(2) )/Ts; + Q(0,1) = (TM(1,0)*pVec(0) +TM(1,1)*pVec(1) +TM(1,2)*pVec(2) )/Ts; + Q(0,2) = (TM(2,0)*pVec(0) +TM(2,1)*pVec(1) +TM(2,2)*pVec(2) )/Ts; + + // We compute the ellipse properties in the shifted coordinates as doing so improves the numerical accuracy. + + double u1 = pVec(2)*Q(0,0)*Q(0,0) - pVec(1)*Q(0,0)*Q(0,1) + pVec(0)*Q(0,1)*Q(0,1) + pVec(1)*pVec(1)*Q(0,2); + double u2 = pVec(0)*pVec(2)*Q(0,2); + double l1 = sqrt(pVec(1)*pVec(1) + (pVec(0) - pVec(2))*(pVec(0) - pVec(2))); + double l2 = pVec(0) + pVec(2) ; + double l3 = pVec(1)*pVec(1) - 4*pVec(0)*pVec(2) ; + double p1 = 2*pVec(2)*Q(0,0) - pVec(1)*Q(0,1); + double p2 = 2*pVec(0)*Q(0,1) - pVec(1)*Q(0,0); + + x0 = p1/l3 + c.x; + y0 = p2/l3 + c.y; + a = sqrt(2)*sqrt((u1 - 4.0*u2)/((l1 - l2)*l3)); + b = sqrt(2)*sqrt(-1.0*((u1 - 4.0*u2)/((l1 + l2)*l3))); + if (pVec(1) == 0) { + if (pVec(0) < pVec(2) ) { + theta = 0; + } else { + theta = CV_PI/2.; + } + } else { + theta = CV_PI/2. + 0.5*std::atan2(pVec(1) , (pVec(0) - pVec(2) )); + } + + box.center.x = (float)x0; + box.center.y = (float)y0; + box.size.width = (float)(2.0*a); + box.size.height = (float)(2.0*b); + if( box.size.width > box.size.height ) + { + float tmp; + CV_SWAP( box.size.width, box.size.height, tmp ); + box.angle = (float)(fmod((90 + theta*180/CV_PI),180.0)) ; + } else { + box.angle = (float)(fmod(theta*180/CV_PI,180.0)); + }; + } else { + box = cv::fitEllipse( points ); + } + return box; +} + namespace cv { @@ -1080,5 +1402,4 @@ cvBoundingRect( CvArr* array, int update ) return rect; } - /* End of file. */ diff --git a/modules/imgproc/test/test_fitellipseAMS.cpp b/modules/imgproc/test/test_fitellipseAMS.cpp new file mode 100644 index 0000000..405d1f4 --- /dev/null +++ b/modules/imgproc/test/test_fitellipseAMS.cpp @@ -0,0 +1,441 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. +// +// Copyright (C) 2016, Itseez, Inc, all rights reserved. + +#include "test_precomp.hpp" +#include +#include + +using namespace cv; +using namespace std; + +TEST(Imgproc_FitEllipseAMS_Issue_1, accuracy) { + vectorpts; + pts.push_back(Point2f(173.41854895999165f, 125.84473135880411f)); + pts.push_back(Point2f(180.63769498640912f, 130.960006577589f)); + pts.push_back(Point2f(174.99173759130173f, 137.34265632926764f)); + pts.push_back(Point2f(170.9044645313217f, 141.68017556480243f)); + pts.push_back(Point2f(163.48965388499656f, 141.9404438924043f)); + pts.push_back(Point2f(159.37687818401147f, 148.60835331594876f)); + pts.push_back(Point2f(150.38917629356735f, 155.68825577720446f)); + pts.push_back(Point2f(147.16319653316862f, 157.06039984963923f)); + pts.push_back(Point2f(141.73118707843207f, 157.2570155198414f)); + pts.push_back(Point2f(130.61569602948597f, 159.40742182929364f)); + pts.push_back(Point2f(127.00573042229027f, 161.34430232187867f)); + pts.push_back(Point2f(120.49383815053747f, 163.72610883128334f)); + pts.push_back(Point2f(114.62383760040998f, 162.6788666385239f)); + pts.push_back(Point2f(108.84871269183333f, 161.90597054388132f)); + pts.push_back(Point2f(103.04574087829076f, 167.44352944383985f)); + pts.push_back(Point2f(96.31623870161255f, 163.71641295746116f)); + pts.push_back(Point2f(89.86174417295126f, 157.2967811253635f)); + pts.push_back(Point2f(84.27940674801192f, 168.6331304010667f)); + pts.push_back(Point2f(76.61995117937661f, 159.4445412678832f)); + pts.push_back(Point2f(72.22526316142418f, 154.60770776728293f)); + pts.push_back(Point2f(64.97742405067658f, 152.3687174339018f)); + pts.push_back(Point2f(58.34612797237003f, 155.61116802371583f)); + pts.push_back(Point2f(55.59089117268539f, 148.56245696566418f)); + pts.push_back(Point2f(45.22711195983706f, 145.6713241271927f)); + pts.push_back(Point2f(40.090542298840234f, 142.36141304004002f)); + pts.push_back(Point2f(31.788996807277414f, 136.26164877915585f)); + pts.push_back(Point2f(27.27613006088805f, 137.46860042141503f)); + pts.push_back(Point2f(23.972392188502226f, 129.17993872328594f)); + pts.push_back(Point2f(20.688046711616977f, 121.52750840733087f)); + pts.push_back(Point2f(14.635115184257643f, 115.36942800110485f)); + pts.push_back(Point2f(14.850919318756809f, 109.43609786936987f)); + pts.push_back(Point2f(7.476847697758103f, 102.67657265589285f)); + pts.push_back(Point2f(1.8896944088091914f, 95.78878215565676f)); + pts.push_back(Point2f(1.731997022935417f, 88.17674033990495f)); + pts.push_back(Point2f(1.6780841363402033f, 80.65581939883002f)); + pts.push_back(Point2f(0.035330281415411946f, 73.1088693846768f)); + pts.push_back(Point2f(0.14652518786238033f, 65.42769523404296f)); + pts.push_back(Point2f(6.99914645302843f, 58.436451064804245f)); + pts.push_back(Point2f(6.719616410428614f, 50.15263031354927f)); + pts.push_back(Point2f(5.122267598477748f, 46.03603214691343f)); + + bool AMSGoodQ; + float tol = 0.01f; + + RotatedRect ellipseAMSTrue = cv::RotatedRect(Point2f(94.4037f, 84.743f), Size2f(190.614f, 153.543f), 19.832f); + RotatedRect ellipseAMSTest = fitEllipseAMS(pts); + Point2f ellipseAMSTrueVertices[4]; + Point2f ellipseAMSTestVertices[4]; + ellipseAMSTest.points(ellipseAMSTestVertices); + ellipseAMSTrue.points(ellipseAMSTrueVertices); + float AMSDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(436.59985753246326f, 99.52113368023126f)); + pts.push_back(Point2f(454.40214161915856f, 160.47565296546912f)); + pts.push_back(Point2f(406.01996690372687f, 215.41999534561575f)); + pts.push_back(Point2f(362.8738685722881f, 262.1842668997318f)); + pts.push_back(Point2f(300.72864073265407f, 290.8182699272777f)); + pts.push_back(Point2f(247.62963883830972f, 311.383137106776f)); + pts.push_back(Point2f(194.15394659099445f, 313.30260991427565f)); + pts.push_back(Point2f(138.934393338296f, 310.50203123324223f)); + pts.push_back(Point2f(91.66999301197541f, 300.57303988670515f)); + pts.push_back(Point2f(28.286233855826133f, 268.0670159317756f)); + + bool AMSGoodQ; + float tol = 0.01f; + + RotatedRect ellipseAMSTrue = cv::RotatedRect(Point2f(223.917f, 169.701f), Size2f(456.628f, 277.809f), -12.6378f); + RotatedRect ellipseAMSTest = fitEllipseAMS(pts); + Point2f ellipseAMSTrueVertices[4]; + Point2f ellipseAMSTestVertices[4]; + ellipseAMSTest.points(ellipseAMSTestVertices); + ellipseAMSTrue.points(ellipseAMSTrueVertices); + float AMSDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(459.59217920219083f, 480.1054989283611f)); + pts.push_back(Point2f(427.2759071813645f, 501.82653857689616f)); + pts.push_back(Point2f(388.35145730295574f, 520.9488690267101f)); + pts.push_back(Point2f(349.53248668650656f, 522.9153107979839f)); + pts.push_back(Point2f(309.56018996762094f, 527.449631776843f)); + pts.push_back(Point2f(272.07480726768665f, 508.12367135706165f)); + pts.push_back(Point2f(234.69230939247115f, 519.8943877180591f)); + pts.push_back(Point2f(201.65185545142472f, 509.47870288702813f)); + pts.push_back(Point2f(169.37222144138462f, 498.2681549419808f)); + pts.push_back(Point2f(147.96233740677815f, 467.0923094529034f)); + pts.push_back(Point2f(109.68331701139209f, 433.39069422941986f)); + pts.push_back(Point2f(81.95454413977822f, 397.34325168750087f)); + pts.push_back(Point2f(63.74923800767195f, 371.939105294963f)); + pts.push_back(Point2f(39.966434417279885f, 329.9581349942296f)); + pts.push_back(Point2f(21.581668415402532f, 292.6692716276865f)); + pts.push_back(Point2f(13.687334926511767f, 248.91164234903772f)); + pts.push_back(Point2f(0.0f, 201.25693715845716f)); + pts.push_back(Point2f(3.90259455356599f, 155.68155247210575f)); + pts.push_back(Point2f(39.683930802331844f, 110.26290871953987f)); + pts.push_back(Point2f(47.85826684019932f, 70.82454140948524f)); + + bool AMSGoodQ; + float tol = 0.01f; + + RotatedRect ellipseAMSTrue = cv::RotatedRect(Point2f(266.796f, 260.167f), Size2f(580.374f, 469.465f), 50.3961f); + RotatedRect ellipseAMSTest = fitEllipseAMS(pts); + Point2f ellipseAMSTrueVertices[4]; + Point2f ellipseAMSTestVertices[4]; + ellipseAMSTest.points(ellipseAMSTestVertices); + ellipseAMSTrue.points(ellipseAMSTrueVertices); + float AMSDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(461.1761758124861f, 79.55196261616746f)); + pts.push_back(Point2f(470.5034888757249f, 100.56760245239015f)); + pts.push_back(Point2f(470.7814479849749f, 127.45783922150272f)); + pts.push_back(Point2f(465.214384653262f, 157.51792078285405f)); + pts.push_back(Point2f(465.3739691861813f, 185.89204350118942f)); + pts.push_back(Point2f(443.36043162278366f, 214.43399982709002f)); + pts.push_back(Point2f(435.04682693174095f, 239.2657073987589f)); + pts.push_back(Point2f(444.48553588292697f, 262.0816619678671f)); + pts.push_back(Point2f(407.1290185495328f, 285.07828783776347f)); + pts.push_back(Point2f(397.71436554935804f, 304.782713567108f)); + pts.push_back(Point2f(391.65678619785854f, 323.6809382153118f)); + pts.push_back(Point2f(366.3904205781036f, 328.09416679736563f)); + pts.push_back(Point2f(341.7656517790918f, 346.9672607008338f)); + pts.push_back(Point2f(335.8021864809171f, 358.22416661090296f)); + pts.push_back(Point2f(313.29224574204227f, 373.3267160317279f)); + pts.push_back(Point2f(291.121216115417f, 377.3339312050791f)); + pts.push_back(Point2f(284.20367595990547f, 389.5930108233698f)); + pts.push_back(Point2f(270.9682061106809f, 388.4352006517971f)); + pts.push_back(Point2f(253.10188273008825f, 392.35120876055373f)); + pts.push_back(Point2f(234.2306946938868f, 407.0773705761117f)); + pts.push_back(Point2f(217.0544384092144f, 407.54850609237235f)); + pts.push_back(Point2f(198.40910966657933f, 423.7008860314684f)); + pts.push_back(Point2f(175.47011114845057f, 420.4223434173364f)); + pts.push_back(Point2f(154.92083551695902f, 418.5288198459268f)); + pts.push_back(Point2f(136.52988517939698f, 417.8311217226818f)); + pts.push_back(Point2f(114.74657291069317f, 410.1534699388714f)); + pts.push_back(Point2f(78.9220388330042f, 397.6266608135022f)); + pts.push_back(Point2f(76.82658673144391f, 404.27399269891055f)); + pts.push_back(Point2f(50.953595435605116f, 386.3824077178053f)); + pts.push_back(Point2f(43.603489077456985f, 368.7894972436907f)); + pts.push_back(Point2f(19.37402592752713f, 343.3511017547511f)); + pts.push_back(Point2f(8.714663367287343f, 322.2148323327599f)); + pts.push_back(Point2f(0., 288.7836318007535f)); + pts.push_back(Point2f(3.98686689837605f, 263.1748167870333f)); + pts.push_back(Point2f(9.536389714519785f, 233.02995195684738f)); + pts.push_back(Point2f(17.83246556512455f, 205.6536519851621f)); + pts.push_back(Point2f(33.00593702846919f, 180.52628138608327f)); + pts.push_back(Point2f(41.572400996463394f, 153.95185568689314f)); + pts.push_back(Point2f(54.55733659450332f, 136.54322891729444f)); + pts.push_back(Point2f(78.60990563833005f, 112.76538180538182f)); + + bool AMSGoodQ; + float tol = 0.01f; + + RotatedRect ellipseAMSTrue = cv::RotatedRect(Point2f(237.108f, 207.32f), Size2f(517.287f, 357.591f), -36.3653f); + RotatedRect ellipseAMSTest = fitEllipseAMS(pts); + Point2f ellipseAMSTrueVertices[4]; + Point2f ellipseAMSTestVertices[4]; + ellipseAMSTest.points(ellipseAMSTestVertices); + ellipseAMSTrue.points(ellipseAMSTrueVertices); + float AMSDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(509.60609444351917f, 484.8233016998119f)); + pts.push_back(Point2f(508.55357451809846f, 498.61004779125176f)); + pts.push_back(Point2f(495.59325478416525f, 507.9238702677585f)); + pts.push_back(Point2f(455.32905012177747f, 517.7518674113691f)); + pts.push_back(Point2f(461.24821761238667f, 524.2115477440211f)); + pts.push_back(Point2f(438.8983455906825f, 528.424911702069f)); + pts.push_back(Point2f(425.9259699875303f, 532.5700430134499f)); + pts.push_back(Point2f(405.77496728300616f, 535.7295008444993f)); + pts.push_back(Point2f(384.31968113982475f, 536.3076260371831f)); + pts.push_back(Point2f(381.5356536818977f, 540.183355729414f)); + pts.push_back(Point2f(378.2530503455792f, 540.2871855284832f)); + pts.push_back(Point2f(357.7242088314752f, 543.473075733281f)); + pts.push_back(Point2f(339.27871831324853f, 541.2099003613087f)); + pts.push_back(Point2f(339.22481874867435f, 541.1105421426018f)); + pts.push_back(Point2f(331.50337377509396f, 539.7296050163102f)); + pts.push_back(Point2f(317.8306501537862f, 540.9077275195326f)); + pts.push_back(Point2f(304.9192648323086f, 541.3434792768918f)); + pts.push_back(Point2f(297.33855427908617f, 543.0590309600501f)); + pts.push_back(Point2f(288.95330515997694f, 543.8756702506837f)); + pts.push_back(Point2f(278.5850913122515f, 538.1343888329859f)); + pts.push_back(Point2f(266.05355938101724f, 538.4115695907074f)); + pts.push_back(Point2f(255.30186994366096f, 534.2459272411796f)); + pts.push_back(Point2f(238.52054973466758f, 537.5007401480628f)); + pts.push_back(Point2f(228.444463024996f, 533.8992361116678f)); + pts.push_back(Point2f(217.8111623149833f, 538.2269193558991f)); + pts.push_back(Point2f(209.43502138981037f, 532.8057062984569f)); + pts.push_back(Point2f(193.33570716763276f, 527.2038128630041f)); + pts.push_back(Point2f(172.66725340039625f, 526.4020881005537f)); + pts.push_back(Point2f(158.33654199771337f, 525.2093856704676f)); + pts.push_back(Point2f(148.65905485249067f, 521.0146762179431f)); + pts.push_back(Point2f(147.6615365176719f, 517.4315201992808f)); + pts.push_back(Point2f(122.43568509949394f, 514.2089723387337f)); + pts.push_back(Point2f(110.88482982039073f, 509.14004840857046f)); + pts.push_back(Point2f(107.10516681523065f, 502.49943180234266f)); + pts.push_back(Point2f(82.66611013934804f, 494.0581153893113f)); + pts.push_back(Point2f(63.573319848965966f, 485.6772487054385f)); + pts.push_back(Point2f(47.65729058071245f, 475.4468806518075f)); + pts.push_back(Point2f(19.96819458379347f, 463.98285210241943f)); + pts.push_back(Point2f(27.855803175234342f, 450.2298664426336f)); + pts.push_back(Point2f(12.832198085636549f, 435.6317753810441f)); + + bool AMSGoodQ; + float tol = 0.01f; + + RotatedRect ellipseAMSTrue = cv::RotatedRect(Point2f(265.252f, 451.597f), Size2f(503.386f, 174.674f), 5.31814f); + RotatedRect ellipseAMSTest = fitEllipseAMS(pts); + Point2f ellipseAMSTrueVertices[4]; + Point2f ellipseAMSTestVertices[4]; + ellipseAMSTest.points(ellipseAMSTestVertices); + ellipseAMSTrue.points(ellipseAMSTrueVertices); + float AMSDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(414.90156479295905f, 29.063453659930833f)); + pts.push_back(Point2f(393.79576036337977f, 58.59512774879134f)); + pts.push_back(Point2f(387.9100725249931f, 94.65067695657254f)); + pts.push_back(Point2f(351.6987114318621f, 124.6049267560123f)); + pts.push_back(Point2f(335.3270519942532f, 154.52182750730412f)); + pts.push_back(Point2f(329.2955843262556f, 179.38031343427303f)); + pts.push_back(Point2f(322.7316812937696f, 201.88774427737036f)); + pts.push_back(Point2f(301.48326350826585f, 217.63331351026562f)); + pts.push_back(Point2f(287.4603938315088f, 228.68790184154113f)); + pts.push_back(Point2f(273.36617750656023f, 234.48397257849905f)); + pts.push_back(Point2f(270.7787206270782f, 242.85279436204632f)); + pts.push_back(Point2f(268.6973828073692f, 246.10891460870312f)); + pts.push_back(Point2f(261.60715070464255f, 252.65744793902192f)); + pts.push_back(Point2f(262.9041824871923f, 257.1813047575656f)); + pts.push_back(Point2f(263.3210079177046f, 260.0532193246593f)); + pts.push_back(Point2f(248.49568488533242f, 264.56723557175013f)); + pts.push_back(Point2f(245.4134174127509f, 264.87259401292f)); + pts.push_back(Point2f(244.73208618171216f, 272.32307359830884f)); + pts.push_back(Point2f(232.82093196087555f, 272.0239734764616f)); + pts.push_back(Point2f(235.28539413113458f, 276.8668447478244f)); + pts.push_back(Point2f(231.9766571511147f, 277.71179872893083f)); + pts.push_back(Point2f(227.23880706209866f, 284.5588878789101f)); + pts.push_back(Point2f(222.53202223537826f, 282.2293154479012f)); + pts.push_back(Point2f(217.27525654729595f, 297.42961148365725f)); + pts.push_back(Point2f(212.19490057230672f, 294.5344078014253f)); + pts.push_back(Point2f(207.47417472945446f, 301.72230412668307f)); + pts.push_back(Point2f(202.11143229969164f, 298.8588627545512f)); + pts.push_back(Point2f(196.62967096845824f, 309.39738607353223f)); + pts.push_back(Point2f(190.37809841992106f, 318.3250479151242f)); + pts.push_back(Point2f(183.1296129732803f, 322.35242231955453f)); + pts.push_back(Point2f(171.58530535265993f, 330.4981441404153f)); + pts.push_back(Point2f(160.40092880652247f, 337.47275990208226f)); + pts.push_back(Point2f(149.44888762618092f, 343.42296086656717f)); + pts.push_back(Point2f(139.7923528305302f, 353.4821948045352f)); + pts.push_back(Point2f(121.08414969113318f, 359.7010225709457f)); + pts.push_back(Point2f(100.10629739219641f, 375.3155744055458f)); + pts.push_back(Point2f(78.15715630786733f, 389.0311284319413f)); + pts.push_back(Point2f(51.22820988075294f, 396.98646504159547f)); + pts.push_back(Point2f(30.71132492338431f, 402.85098740402844f)); + pts.push_back(Point2f(10.994737323179852f, 394.6764602972333f)); + + bool AMSGoodQ; + float tol = 0.01f; + + RotatedRect ellipseAMSTrue = cv::RotatedRect(Point2f(192.467f, 204.404f), Size2f(551.397f, 165.068f), 136.913f); + RotatedRect ellipseAMSTest = fitEllipseAMS(pts); + Point2f ellipseAMSTrueVertices[4]; + Point2f ellipseAMSTestVertices[4]; + ellipseAMSTest.points(ellipseAMSTestVertices); + ellipseAMSTrue.points(ellipseAMSTrueVertices); + float AMSDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(386.7497806918209f, 119.55623710363142f)); + pts.push_back(Point2f(399.0712613744503f, 132.61095972401034f)); + pts.push_back(Point2f(400.3582576852657f, 146.71942033652573f)); + pts.push_back(Point2f(383.31046706707906f, 160.13631428164982f)); + pts.push_back(Point2f(387.1626582455823f, 173.82700569763574f)); + pts.push_back(Point2f(378.88843308401425f, 186.10333319745317f)); + pts.push_back(Point2f(367.55061701208f, 201.41492900400164f)); + pts.push_back(Point2f(360.3254967185148f, 209.03834085076022f)); + pts.push_back(Point2f(346.2645164278429f, 222.03214282040395f)); + pts.push_back(Point2f(342.3483403634167f, 230.58290419787073f)); + pts.push_back(Point2f(326.2900969991908f, 240.23679566682756f)); + pts.push_back(Point2f(324.5622396580625f, 249.56961396707823f)); + pts.push_back(Point2f(304.23417130914095f, 259.6693711280021f)); + pts.push_back(Point2f(295.54035697534675f, 270.82284542557704f)); + pts.push_back(Point2f(291.7403057147348f, 276.1536825048371f)); + pts.push_back(Point2f(269.19344116558665f, 287.1705579044651f)); + pts.push_back(Point2f(256.5350613899267f, 274.91264707500943f)); + pts.push_back(Point2f(245.93644351417183f, 286.12398028743064f)); + pts.push_back(Point2f(232.40892420943732f, 282.73986583867065f)); + pts.push_back(Point2f(216.17957969101082f, 293.22229708237705f)); + pts.push_back(Point2f(205.66843722622573f, 295.7032575625158f)); + pts.push_back(Point2f(192.219969335765f, 302.6968969534755f)); + pts.push_back(Point2f(178.37758801730416f, 295.56656776633287f)); + pts.push_back(Point2f(167.60089103756644f, 301.4629292267722f)); + pts.push_back(Point2f(157.44802813915317f, 298.90830855734504f)); + pts.push_back(Point2f(138.44311818820313f, 293.951927187897f)); + pts.push_back(Point2f(128.92747660038592f, 291.4122695492978f)); + pts.push_back(Point2f(119.75160909865994f, 282.5809454721714f)); + pts.push_back(Point2f(98.48443737042328f, 290.39938776333247f)); + pts.push_back(Point2f(88.05275635126131f, 280.11156058895745f)); + pts.push_back(Point2f(82.45799026448167f, 271.46668468419773f)); + pts.push_back(Point2f(68.04031962064084f, 267.8136468580707f)); + pts.push_back(Point2f(58.99967170878713f, 263.8859310392943f)); + pts.push_back(Point2f(41.256097220823484f, 260.6041605773932f)); + pts.push_back(Point2f(40.66198797608645f, 246.64973068177196f)); + pts.push_back(Point2f(31.085484380646008f, 239.28615601336074f)); + pts.push_back(Point2f(24.069417111444253f, 225.2228746297288f)); + pts.push_back(Point2f(22.10122953275156f, 212.75509683149195f)); + pts.push_back(Point2f(9.929991244497518f, 203.20662088477752f)); + pts.push_back(Point2f(0.0f, 190.04891498441148f)); + + bool AMSGoodQ; + float tol = 0.01f; + + RotatedRect ellipseAMSTrue = cv::RotatedRect(Point2f(197.292f, 134.64f), Size2f(401.092f, 320.051f), 165.429f); + RotatedRect ellipseAMSTest = fitEllipseAMS(pts); + Point2f ellipseAMSTrueVertices[4]; + Point2f ellipseAMSTestVertices[4]; + ellipseAMSTest.points(ellipseAMSTestVertices); + ellipseAMSTrue.points(ellipseAMSTrueVertices); + float AMSDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseAMSTrueVertices[i] - ellipseAMSTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(dd +#include + +using namespace cv; +using namespace std; + + +TEST(Imgproc_FitEllipseDirect_Issue_1, accuracy) { + vectorpts; + pts.push_back(Point2f(173.41854895999165f, 125.84473135880411f)); + pts.push_back(Point2f(180.63769498640912f, 130.960006577589f)); + pts.push_back(Point2f(174.99173759130173f, 137.34265632926764f)); + pts.push_back(Point2f(170.9044645313217f, 141.68017556480243f)); + pts.push_back(Point2f(163.48965388499656f, 141.9404438924043f)); + pts.push_back(Point2f(159.37687818401147f, 148.60835331594876f)); + pts.push_back(Point2f(150.38917629356735f, 155.68825577720446f)); + pts.push_back(Point2f(147.16319653316862f, 157.06039984963923f)); + pts.push_back(Point2f(141.73118707843207f, 157.2570155198414f)); + pts.push_back(Point2f(130.61569602948597f, 159.40742182929364f)); + pts.push_back(Point2f(127.00573042229027f, 161.34430232187867f)); + pts.push_back(Point2f(120.49383815053747f, 163.72610883128334f)); + pts.push_back(Point2f(114.62383760040998f, 162.6788666385239f)); + pts.push_back(Point2f(108.84871269183333f, 161.90597054388132f)); + pts.push_back(Point2f(103.04574087829076f, 167.44352944383985f)); + pts.push_back(Point2f(96.31623870161255f, 163.71641295746116f)); + pts.push_back(Point2f(89.86174417295126f, 157.2967811253635f)); + pts.push_back(Point2f(84.27940674801192f, 168.6331304010667f)); + pts.push_back(Point2f(76.61995117937661f, 159.4445412678832f)); + pts.push_back(Point2f(72.22526316142418f, 154.60770776728293f)); + pts.push_back(Point2f(64.97742405067658f, 152.3687174339018f)); + pts.push_back(Point2f(58.34612797237003f, 155.61116802371583f)); + pts.push_back(Point2f(55.59089117268539f, 148.56245696566418f)); + pts.push_back(Point2f(45.22711195983706f, 145.6713241271927f)); + pts.push_back(Point2f(40.090542298840234f, 142.36141304004002f)); + pts.push_back(Point2f(31.788996807277414f, 136.26164877915585f)); + pts.push_back(Point2f(27.27613006088805f, 137.46860042141503f)); + pts.push_back(Point2f(23.972392188502226f, 129.17993872328594f)); + pts.push_back(Point2f(20.688046711616977f, 121.52750840733087f)); + pts.push_back(Point2f(14.635115184257643f, 115.36942800110485f)); + pts.push_back(Point2f(14.850919318756809f, 109.43609786936987f)); + pts.push_back(Point2f(7.476847697758103f, 102.67657265589285f)); + pts.push_back(Point2f(1.8896944088091914f, 95.78878215565676f)); + pts.push_back(Point2f(1.731997022935417f, 88.17674033990495f)); + pts.push_back(Point2f(1.6780841363402033f, 80.65581939883002f)); + pts.push_back(Point2f(0.035330281415411946f, 73.1088693846768f)); + pts.push_back(Point2f(0.14652518786238033f, 65.42769523404296f)); + pts.push_back(Point2f(6.99914645302843f, 58.436451064804245f)); + pts.push_back(Point2f(6.719616410428614f, 50.15263031354927f)); + pts.push_back(Point2f(5.122267598477748f, 46.03603214691343f)); + + bool directGoodQ; + float tol = 0.01f; + + RotatedRect ellipseDirectTrue = cv::RotatedRect(Point2f(91.3256f, 90.4668f),Size2f(187.211f, 140.031f), 21.5808f); + RotatedRect ellipseDirectTest = fitEllipseDirect(pts); + Point2f ellipseDirectTrueVertices[4]; + Point2f ellipseDirectTestVertices[4]; + ellipseDirectTest.points(ellipseDirectTestVertices); + ellipseDirectTrue.points(ellipseDirectTrueVertices); + float directDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(436.59985753246326f, 99.52113368023126f)); + pts.push_back(Point2f(454.40214161915856f, 160.47565296546912f)); + pts.push_back(Point2f(406.01996690372687f, 215.41999534561575f)); + pts.push_back(Point2f(362.8738685722881f, 262.1842668997318f)); + pts.push_back(Point2f(300.72864073265407f, 290.8182699272777f)); + pts.push_back(Point2f(247.62963883830972f, 311.383137106776f)); + pts.push_back(Point2f(194.15394659099445f, 313.30260991427565f)); + pts.push_back(Point2f(138.934393338296f, 310.50203123324223f)); + pts.push_back(Point2f(91.66999301197541f, 300.57303988670515f)); + pts.push_back(Point2f(28.286233855826133f, 268.0670159317756f)); + + bool directGoodQ; + float tol = 0.01f; + + RotatedRect ellipseDirectTrue = cv::RotatedRect(Point2f(228.232f, 174.879f),Size2f(450.68f, 265.556f), 166.181f); + RotatedRect ellipseDirectTest = fitEllipseDirect(pts); + Point2f ellipseDirectTrueVertices[4]; + Point2f ellipseDirectTestVertices[4]; + ellipseDirectTest.points(ellipseDirectTestVertices); + ellipseDirectTrue.points(ellipseDirectTrueVertices); + float directDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(459.59217920219083f, 480.1054989283611f)); + pts.push_back(Point2f(427.2759071813645f, 501.82653857689616f)); + pts.push_back(Point2f(388.35145730295574f, 520.9488690267101f)); + pts.push_back(Point2f(349.53248668650656f, 522.9153107979839f)); + pts.push_back(Point2f(309.56018996762094f, 527.449631776843f)); + pts.push_back(Point2f(272.07480726768665f, 508.12367135706165f)); + pts.push_back(Point2f(234.69230939247115f, 519.8943877180591f)); + pts.push_back(Point2f(201.65185545142472f, 509.47870288702813f)); + pts.push_back(Point2f(169.37222144138462f, 498.2681549419808f)); + pts.push_back(Point2f(147.96233740677815f, 467.0923094529034f)); + pts.push_back(Point2f(109.68331701139209f, 433.39069422941986f)); + pts.push_back(Point2f(81.95454413977822f, 397.34325168750087f)); + pts.push_back(Point2f(63.74923800767195f, 371.939105294963f)); + pts.push_back(Point2f(39.966434417279885f, 329.9581349942296f)); + pts.push_back(Point2f(21.581668415402532f, 292.6692716276865f)); + pts.push_back(Point2f(13.687334926511767f, 248.91164234903772f)); + pts.push_back(Point2f(0.0f, 201.25693715845716f)); + pts.push_back(Point2f(3.90259455356599f, 155.68155247210575f)); + pts.push_back(Point2f(39.683930802331844f, 110.26290871953987f)); + pts.push_back(Point2f(47.85826684019932f, 70.82454140948524f)); + + bool directGoodQ; + float tol = 0.01f; + + RotatedRect ellipseDirectTrue = cv::RotatedRect(Point2f(255.326f, 272.626f),Size2f(570.999f, 434.23f), 49.0265f); + RotatedRect ellipseDirectTest = fitEllipseDirect(pts); + Point2f ellipseDirectTrueVertices[4]; + Point2f ellipseDirectTestVertices[4]; + ellipseDirectTest.points(ellipseDirectTestVertices); + ellipseDirectTrue.points(ellipseDirectTrueVertices); + float directDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(461.1761758124861f, 79.55196261616746f)); + pts.push_back(Point2f(470.5034888757249f, 100.56760245239015f)); + pts.push_back(Point2f(470.7814479849749f, 127.45783922150272f)); + pts.push_back(Point2f(465.214384653262f, 157.51792078285405f)); + pts.push_back(Point2f(465.3739691861813f, 185.89204350118942f)); + pts.push_back(Point2f(443.36043162278366f, 214.43399982709002f)); + pts.push_back(Point2f(435.04682693174095f, 239.2657073987589f)); + pts.push_back(Point2f(444.48553588292697f, 262.0816619678671f)); + pts.push_back(Point2f(407.1290185495328f, 285.07828783776347f)); + pts.push_back(Point2f(397.71436554935804f, 304.782713567108f)); + pts.push_back(Point2f(391.65678619785854f, 323.6809382153118f)); + pts.push_back(Point2f(366.3904205781036f, 328.09416679736563f)); + pts.push_back(Point2f(341.7656517790918f, 346.9672607008338f)); + pts.push_back(Point2f(335.8021864809171f, 358.22416661090296f)); + pts.push_back(Point2f(313.29224574204227f, 373.3267160317279f)); + pts.push_back(Point2f(291.121216115417f, 377.3339312050791f)); + pts.push_back(Point2f(284.20367595990547f, 389.5930108233698f)); + pts.push_back(Point2f(270.9682061106809f, 388.4352006517971f)); + pts.push_back(Point2f(253.10188273008825f, 392.35120876055373f)); + pts.push_back(Point2f(234.2306946938868f, 407.0773705761117f)); + pts.push_back(Point2f(217.0544384092144f, 407.54850609237235f)); + pts.push_back(Point2f(198.40910966657933f, 423.7008860314684f)); + pts.push_back(Point2f(175.47011114845057f, 420.4223434173364f)); + pts.push_back(Point2f(154.92083551695902f, 418.5288198459268f)); + pts.push_back(Point2f(136.52988517939698f, 417.8311217226818f)); + pts.push_back(Point2f(114.74657291069317f, 410.1534699388714f)); + pts.push_back(Point2f(78.9220388330042f, 397.6266608135022f)); + pts.push_back(Point2f(76.82658673144391f, 404.27399269891055f)); + pts.push_back(Point2f(50.953595435605116f, 386.3824077178053f)); + pts.push_back(Point2f(43.603489077456985f, 368.7894972436907f)); + pts.push_back(Point2f(19.37402592752713f, 343.3511017547511f)); + pts.push_back(Point2f(8.714663367287343f, 322.2148323327599f)); + pts.push_back(Point2f(0., 288.7836318007535f)); + pts.push_back(Point2f(3.98686689837605f, 263.1748167870333f)); + pts.push_back(Point2f(9.536389714519785f, 233.02995195684738f)); + pts.push_back(Point2f(17.83246556512455f, 205.6536519851621f)); + pts.push_back(Point2f(33.00593702846919f, 180.52628138608327f)); + pts.push_back(Point2f(41.572400996463394f, 153.95185568689314f)); + pts.push_back(Point2f(54.55733659450332f, 136.54322891729444f)); + pts.push_back(Point2f(78.60990563833005f, 112.76538180538182f)); + + bool directGoodQ; + float tol = 0.01f; + + RotatedRect ellipseDirectTrue = cv::RotatedRect(Point2f(236.836f, 208.089f),Size2f(515.893f, 357.166f), -35.9996f); + RotatedRect ellipseDirectTest = fitEllipseDirect(pts); + Point2f ellipseDirectTrueVertices[4]; + Point2f ellipseDirectTestVertices[4]; + ellipseDirectTest.points(ellipseDirectTestVertices); + ellipseDirectTrue.points(ellipseDirectTrueVertices); + float directDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(509.60609444351917f, 484.8233016998119f)); + pts.push_back(Point2f(508.55357451809846f, 498.61004779125176f)); + pts.push_back(Point2f(495.59325478416525f, 507.9238702677585f)); + pts.push_back(Point2f(455.32905012177747f, 517.7518674113691f)); + pts.push_back(Point2f(461.24821761238667f, 524.2115477440211f)); + pts.push_back(Point2f(438.8983455906825f, 528.424911702069f)); + pts.push_back(Point2f(425.9259699875303f, 532.5700430134499f)); + pts.push_back(Point2f(405.77496728300616f, 535.7295008444993f)); + pts.push_back(Point2f(384.31968113982475f, 536.3076260371831f)); + pts.push_back(Point2f(381.5356536818977f, 540.183355729414f)); + pts.push_back(Point2f(378.2530503455792f, 540.2871855284832f)); + pts.push_back(Point2f(357.7242088314752f, 543.473075733281f)); + pts.push_back(Point2f(339.27871831324853f, 541.2099003613087f)); + pts.push_back(Point2f(339.22481874867435f, 541.1105421426018f)); + pts.push_back(Point2f(331.50337377509396f, 539.7296050163102f)); + pts.push_back(Point2f(317.8306501537862f, 540.9077275195326f)); + pts.push_back(Point2f(304.9192648323086f, 541.3434792768918f)); + pts.push_back(Point2f(297.33855427908617f, 543.0590309600501f)); + pts.push_back(Point2f(288.95330515997694f, 543.8756702506837f)); + pts.push_back(Point2f(278.5850913122515f, 538.1343888329859f)); + pts.push_back(Point2f(266.05355938101724f, 538.4115695907074f)); + pts.push_back(Point2f(255.30186994366096f, 534.2459272411796f)); + pts.push_back(Point2f(238.52054973466758f, 537.5007401480628f)); + pts.push_back(Point2f(228.444463024996f, 533.8992361116678f)); + pts.push_back(Point2f(217.8111623149833f, 538.2269193558991f)); + pts.push_back(Point2f(209.43502138981037f, 532.8057062984569f)); + pts.push_back(Point2f(193.33570716763276f, 527.2038128630041f)); + pts.push_back(Point2f(172.66725340039625f, 526.4020881005537f)); + pts.push_back(Point2f(158.33654199771337f, 525.2093856704676f)); + pts.push_back(Point2f(148.65905485249067f, 521.0146762179431f)); + pts.push_back(Point2f(147.6615365176719f, 517.4315201992808f)); + pts.push_back(Point2f(122.43568509949394f, 514.2089723387337f)); + pts.push_back(Point2f(110.88482982039073f, 509.14004840857046f)); + pts.push_back(Point2f(107.10516681523065f, 502.49943180234266f)); + pts.push_back(Point2f(82.66611013934804f, 494.0581153893113f)); + pts.push_back(Point2f(63.573319848965966f, 485.6772487054385f)); + pts.push_back(Point2f(47.65729058071245f, 475.4468806518075f)); + pts.push_back(Point2f(19.96819458379347f, 463.98285210241943f)); + pts.push_back(Point2f(27.855803175234342f, 450.2298664426336f)); + pts.push_back(Point2f(12.832198085636549f, 435.6317753810441f)); + + bool directGoodQ; + float tol = 0.01f; + + RotatedRect ellipseDirectTrue = cv::RotatedRect(Point2f(264.354f, 457.336f),Size2f(493.728f, 162.9f), 5.36186f); + RotatedRect ellipseDirectTest = fitEllipseDirect(pts); + Point2f ellipseDirectTrueVertices[4]; + Point2f ellipseDirectTestVertices[4]; + ellipseDirectTest.points(ellipseDirectTestVertices); + ellipseDirectTrue.points(ellipseDirectTrueVertices); + float directDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(414.90156479295905f, 29.063453659930833f)); + pts.push_back(Point2f(393.79576036337977f, 58.59512774879134f)); + pts.push_back(Point2f(387.9100725249931f, 94.65067695657254f)); + pts.push_back(Point2f(351.6987114318621f, 124.6049267560123f)); + pts.push_back(Point2f(335.3270519942532f, 154.52182750730412f)); + pts.push_back(Point2f(329.2955843262556f, 179.38031343427303f)); + pts.push_back(Point2f(322.7316812937696f, 201.88774427737036f)); + pts.push_back(Point2f(301.48326350826585f, 217.63331351026562f)); + pts.push_back(Point2f(287.4603938315088f, 228.68790184154113f)); + pts.push_back(Point2f(273.36617750656023f, 234.48397257849905f)); + pts.push_back(Point2f(270.7787206270782f, 242.85279436204632f)); + pts.push_back(Point2f(268.6973828073692f, 246.10891460870312f)); + pts.push_back(Point2f(261.60715070464255f, 252.65744793902192f)); + pts.push_back(Point2f(262.9041824871923f, 257.1813047575656f)); + pts.push_back(Point2f(263.3210079177046f, 260.0532193246593f)); + pts.push_back(Point2f(248.49568488533242f, 264.56723557175013f)); + pts.push_back(Point2f(245.4134174127509f, 264.87259401292f)); + pts.push_back(Point2f(244.73208618171216f, 272.32307359830884f)); + pts.push_back(Point2f(232.82093196087555f, 272.0239734764616f)); + pts.push_back(Point2f(235.28539413113458f, 276.8668447478244f)); + pts.push_back(Point2f(231.9766571511147f, 277.71179872893083f)); + pts.push_back(Point2f(227.23880706209866f, 284.5588878789101f)); + pts.push_back(Point2f(222.53202223537826f, 282.2293154479012f)); + pts.push_back(Point2f(217.27525654729595f, 297.42961148365725f)); + pts.push_back(Point2f(212.19490057230672f, 294.5344078014253f)); + pts.push_back(Point2f(207.47417472945446f, 301.72230412668307f)); + pts.push_back(Point2f(202.11143229969164f, 298.8588627545512f)); + pts.push_back(Point2f(196.62967096845824f, 309.39738607353223f)); + pts.push_back(Point2f(190.37809841992106f, 318.3250479151242f)); + pts.push_back(Point2f(183.1296129732803f, 322.35242231955453f)); + pts.push_back(Point2f(171.58530535265993f, 330.4981441404153f)); + pts.push_back(Point2f(160.40092880652247f, 337.47275990208226f)); + pts.push_back(Point2f(149.44888762618092f, 343.42296086656717f)); + pts.push_back(Point2f(139.7923528305302f, 353.4821948045352f)); + pts.push_back(Point2f(121.08414969113318f, 359.7010225709457f)); + pts.push_back(Point2f(100.10629739219641f, 375.3155744055458f)); + pts.push_back(Point2f(78.15715630786733f, 389.0311284319413f)); + pts.push_back(Point2f(51.22820988075294f, 396.98646504159547f)); + pts.push_back(Point2f(30.71132492338431f, 402.85098740402844f)); + pts.push_back(Point2f(10.994737323179852f, 394.6764602972333f)); + + bool directGoodQ; + float tol = 0.01f; + + RotatedRect ellipseDirectTrue = cv::RotatedRect(Point2f(207.145f, 223.308f),Size2f(499.583f, 117.473f), -42.6851f); + RotatedRect ellipseDirectTest = fitEllipseDirect(pts); + Point2f ellipseDirectTrueVertices[4]; + Point2f ellipseDirectTestVertices[4]; + ellipseDirectTest.points(ellipseDirectTestVertices); + ellipseDirectTrue.points(ellipseDirectTrueVertices); + float directDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(ddpts; + pts.push_back(Point2f(386.7497806918209f, 119.55623710363142f)); + pts.push_back(Point2f(399.0712613744503f, 132.61095972401034f)); + pts.push_back(Point2f(400.3582576852657f, 146.71942033652573f)); + pts.push_back(Point2f(383.31046706707906f, 160.13631428164982f)); + pts.push_back(Point2f(387.1626582455823f, 173.82700569763574f)); + pts.push_back(Point2f(378.88843308401425f, 186.10333319745317f)); + pts.push_back(Point2f(367.55061701208f, 201.41492900400164f)); + pts.push_back(Point2f(360.3254967185148f, 209.03834085076022f)); + pts.push_back(Point2f(346.2645164278429f, 222.03214282040395f)); + pts.push_back(Point2f(342.3483403634167f, 230.58290419787073f)); + pts.push_back(Point2f(326.2900969991908f, 240.23679566682756f)); + pts.push_back(Point2f(324.5622396580625f, 249.56961396707823f)); + pts.push_back(Point2f(304.23417130914095f, 259.6693711280021f)); + pts.push_back(Point2f(295.54035697534675f, 270.82284542557704f)); + pts.push_back(Point2f(291.7403057147348f, 276.1536825048371f)); + pts.push_back(Point2f(269.19344116558665f, 287.1705579044651f)); + pts.push_back(Point2f(256.5350613899267f, 274.91264707500943f)); + pts.push_back(Point2f(245.93644351417183f, 286.12398028743064f)); + pts.push_back(Point2f(232.40892420943732f, 282.73986583867065f)); + pts.push_back(Point2f(216.17957969101082f, 293.22229708237705f)); + pts.push_back(Point2f(205.66843722622573f, 295.7032575625158f)); + pts.push_back(Point2f(192.219969335765f, 302.6968969534755f)); + pts.push_back(Point2f(178.37758801730416f, 295.56656776633287f)); + pts.push_back(Point2f(167.60089103756644f, 301.4629292267722f)); + pts.push_back(Point2f(157.44802813915317f, 298.90830855734504f)); + pts.push_back(Point2f(138.44311818820313f, 293.951927187897f)); + pts.push_back(Point2f(128.92747660038592f, 291.4122695492978f)); + pts.push_back(Point2f(119.75160909865994f, 282.5809454721714f)); + pts.push_back(Point2f(98.48443737042328f, 290.39938776333247f)); + pts.push_back(Point2f(88.05275635126131f, 280.11156058895745f)); + pts.push_back(Point2f(82.45799026448167f, 271.46668468419773f)); + pts.push_back(Point2f(68.04031962064084f, 267.8136468580707f)); + pts.push_back(Point2f(58.99967170878713f, 263.8859310392943f)); + pts.push_back(Point2f(41.256097220823484f, 260.6041605773932f)); + pts.push_back(Point2f(40.66198797608645f, 246.64973068177196f)); + pts.push_back(Point2f(31.085484380646008f, 239.28615601336074f)); + pts.push_back(Point2f(24.069417111444253f, 225.2228746297288f)); + pts.push_back(Point2f(22.10122953275156f, 212.75509683149195f)); + pts.push_back(Point2f(9.929991244497518f, 203.20662088477752f)); + pts.push_back(Point2f(0.0f, 190.04891498441148f)); + + bool directGoodQ; + float tol = 0.01f; + + RotatedRect ellipseDirectTrue = cv::RotatedRect(Point2f(199.463f, 150.997f),Size2f(390.341f, 286.01f), -12.9696f); + RotatedRect ellipseDirectTest = fitEllipseDirect(pts); + Point2f ellipseDirectTrueVertices[4]; + Point2f ellipseDirectTestVertices[4]; + ellipseDirectTest.points(ellipseDirectTestVertices); + ellipseDirectTrue.points(ellipseDirectTrueVertices); + float directDiff = 0.0f; + for (size_t i=0; i <=3; i++) { + Point2f diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[0]; + float d = diff.x * diff.x + diff.y * diff.y; + for (size_t j=1; i <=3; i++) { + diff = ellipseDirectTrueVertices[i] - ellipseDirectTestVertices[j]; + float dd = diff.x * diff.x + diff.y * diff.y; + if(dd min.x){origin.x = (int) min.x;}; + if(origin.y > min.y){origin.y = (int) min.y;}; + } else { + origin = cv::Point((int)min.x, (int)min.y); + corner = cv::Point((int)(max.x + 1.0), (int)(max.y + 1.0)); + } + + int c = (int)(scale*((corner.x + 1.0) - origin.x)); + if(cmaxDims){ + scale = scale * (double)maxDims/(double)c; + } + } + int r = (int)(scale*((corner.y + 1.0) - origin.y)); + if(rmaxDims){ + scale = scale * (double)maxDims/(double)r; + } + } + cols = (int)(scale*((corner.x + 1.0) - origin.x)); + rows = (int)(scale*((corner.y + 1.0) - origin.y)); + setupQ = true; + } + + void stretch(vector pts) + { // Stretch the canvas so all the points pts are on the canvas. + cv::Point2f min = pts[0]; + cv::Point2f max = pts[0]; + for(size_t i=1; i < pts.size(); i++){ + Point2f pnt = pts[i]; + if(max.x < pnt.x){max.x = pnt.x;}; + if(max.y < pnt.y){max.y = pnt.y;}; + if(min.x > pnt.x){min.x = pnt.x;}; + if(min.y > pnt.y){min.y = pnt.y;}; + }; + stretch(min, max); + } + + void stretch(cv::RotatedRect box) + { // Stretch the canvas so that the rectangle box is on the canvas. + cv::Point2f min = box.center; + cv::Point2f max = box.center; + cv::Point2f vtx[4]; + box.points(vtx); + for( int i = 0; i < 4; i++ ){ + cv::Point2f pnt = vtx[i]; + if(max.x < pnt.x){max.x = pnt.x;}; + if(max.y < pnt.y){max.y = pnt.y;}; + if(min.x > pnt.x){min.x = pnt.x;}; + if(min.y > pnt.y){min.y = pnt.y;}; + } + stretch(min, max); + } + + void drawEllipseWithBox(cv::RotatedRect box, cv::Scalar color, int lineThickness) + { + if(img.empty()){ + stretch(box); + img = cv::Mat::zeros(rows,cols,CV_8UC3); + } + + box.center = scale * cv::Point2f(box.center.x - origin.x, box.center.y - origin.y); + box.size.width = (float)(scale * box.size.width); + box.size.height = (float)(scale * box.size.height); + + ellipse(img, box, color, lineThickness, LINE_AA); + + Point2f vtx[4]; + box.points(vtx); + for( int j = 0; j < 4; j++ ){ + line(img, vtx[j], vtx[(j+1)%4], color, lineThickness, LINE_AA); + } + } + + void drawPoints(vector pts, cv::Scalar color) + { + if(img.empty()){ + stretch(pts); + img = cv::Mat::zeros(rows,cols,CV_8UC3); + } + for(size_t i=0; i < pts.size(); i++){ + Point2f pnt = scale * cv::Point2f(pts[i].x - origin.x, pts[i].y - origin.y); + img.at(int(pnt.y), int(pnt.x))[0] = (uchar)color[0]; + img.at(int(pnt.y), int(pnt.x))[1] = (uchar)color[1]; + img.at(int(pnt.y), int(pnt.x))[2] = (uchar)color[2]; + }; + } + + void drawLabels( std::vector text, std::vector colors) + { + if(img.empty()){ + img = cv::Mat::zeros(rows,cols,CV_8UC3); + } + int vPos = 0; + for (size_t i=0; i < text.size(); i++) { + cv::Scalar color = colors[i]; + std::string txt = text[i]; + Size textsize = getTextSize(txt, FONT_HERSHEY_COMPLEX, 1, 1, 0); + vPos += (int)(1.3 * textsize.height); + Point org((img.cols - textsize.width), vPos); + cv::putText(img, txt, org, FONT_HERSHEY_COMPLEX, 1, color, 1, LINE_8); + } + } + +}; + static void help() { cout << - "\nThis program is demonstration for ellipse fitting. The program finds\n" - "contours and approximate it by ellipses.\n" - "Call:\n" - "./fitellipse [image_name -- Default ../data/stuff.jpg]\n" << endl; + "\nThis program is demonstration for ellipse fitting. The program finds\n" + "contours and approximate it by ellipses. Three methods are used to find the \n" + "elliptical fits: fitEllipse, fitEllipseAMS and fitEllipseDirect.\n" + "Call:\n" + "./fitellipse [image_name -- Default ../data/stuff.jpg]\n" << endl; } int sliderPos = 70; Mat image; +bool fitEllipseQ, fitEllipseAMSQ, fitEllipseDirectQ; +cv::Scalar fitEllipseColor = Scalar(255, 0, 0); +cv::Scalar fitEllipseAMSColor = Scalar( 0,255, 0); +cv::Scalar fitEllipseDirectColor = Scalar( 0, 0,255); +cv::Scalar fitEllipseTrueColor = Scalar(255,255,255); + void processImage(int, void*); int main( int argc, char** argv ) { - cv::CommandLineParser parser(argc, argv, - "{help h||}{@image|../data/stuff.jpg|}" - ); + fitEllipseQ = true; + fitEllipseAMSQ = true; + fitEllipseDirectQ = true; + + cv::CommandLineParser parser(argc, argv,"{help h||}{@image|../data/ellipses.jpg|}"); if (parser.has("help")) { help(); @@ -56,10 +207,11 @@ int main( int argc, char** argv ) } imshow("source", image); - namedWindow("result", 1); + namedWindow("result", CV_WINDOW_NORMAL ); // Create toolbars. HighGUI use. createTrackbar( "threshold", "result", &sliderPos, 255, processImage ); + processImage(0, 0); // Wait for a key stroke; the same function arranges events processing @@ -71,13 +223,35 @@ int main( int argc, char** argv ) // draw it and approximate it by ellipses. void processImage(int /*h*/, void*) { + RotatedRect box, boxAMS, boxDirect; vector > contours; Mat bimage = image >= sliderPos; findContours(bimage, contours, RETR_LIST, CHAIN_APPROX_NONE); - Mat cimage = Mat::zeros(bimage.size(), CV_8UC3); + canvas paper; + paper.init(int(0.8*MIN(bimage.rows, bimage.cols)), int(1.2*MAX(bimage.rows, bimage.cols))); + paper.stretch(cv::Point2f(0.0f, 0.0f), cv::Point2f((float)(bimage.cols+2.0), (float)(bimage.rows+2.0))); + + std::vector text; + std::vector color; + + if (fitEllipseQ) { + text.push_back("OpenCV"); + color.push_back(fitEllipseColor); + } + if (fitEllipseAMSQ) { + text.push_back("AMS"); + color.push_back(fitEllipseAMSColor); + } + if (fitEllipseDirectQ) { + text.push_back("Direct"); + color.push_back(fitEllipseDirectColor); + } + paper.drawLabels(text, color); + int margin = 2; + vector< vector > points; for(size_t i = 0; i < contours.size(); i++) { size_t count = contours[i].size(); @@ -86,19 +260,51 @@ void processImage(int /*h*/, void*) Mat pointsf; Mat(contours[i]).convertTo(pointsf, CV_32F); - RotatedRect box = fitEllipse(pointsf); - if( MAX(box.size.width, box.size.height) > MIN(box.size.width, box.size.height)*30 ) + vectorpts; + for (int j = 0; j < pointsf.rows; j++) { + Point2f pnt = Point2f(pointsf.at(j,0), pointsf.at(j,1)); + if ((pnt.x > margin && pnt.y > margin && pnt.x < bimage.cols-margin && pnt.y < bimage.rows-margin)) { + if(j%20==0){ + pts.push_back(pnt); + } + } + } + points.push_back(pts); + } + + for(size_t i = 0; i < points.size(); i++) + { + vector pts = points[i]; + + if (pts.size()<=5) { continue; - drawContours(cimage, contours, (int)i, Scalar::all(255), 1, 8); + } + if (fitEllipseQ) { + box = fitEllipse(pts); + if( MAX(box.size.width, box.size.height) > MIN(box.size.width, box.size.height)*30 ){continue;}; + } + if (fitEllipseAMSQ) { + boxAMS = fitEllipseAMS(pts); + if( MAX(boxAMS.size.width, boxAMS.size.height) > MIN(boxAMS.size.width, boxAMS.size.height)*30 ){continue;}; + } + if (fitEllipseDirectQ) { + boxDirect = fitEllipseDirect(pts); + if( MAX(boxDirect.size.width, boxDirect.size.height) > MIN(boxDirect.size.width, boxDirect.size.height)*30 ){continue;}; + } - ellipse(cimage, box, Scalar(0,0,255), 1, LINE_AA); - ellipse(cimage, box.center, box.size*0.5f, box.angle, 0, 360, Scalar(0,255,255), 1, LINE_AA); - Point2f vtx[4]; - box.points(vtx); - for( int j = 0; j < 4; j++ ) - line(cimage, vtx[j], vtx[(j+1)%4], Scalar(0,255,0), 1, LINE_AA); + if (fitEllipseQ) { + paper.drawEllipseWithBox(box, fitEllipseColor, 3); + } + if (fitEllipseAMSQ) { + paper.drawEllipseWithBox(boxAMS, fitEllipseAMSColor, 2); + } + if (fitEllipseDirectQ) { + paper.drawEllipseWithBox(boxDirect, fitEllipseDirectColor, 1); + } + + paper.drawPoints(pts, cv::Scalar(255,255,255)); } - imshow("result", cimage); + imshow("result", paper.img); } diff --git a/samples/data/ellipses.jpg b/samples/data/ellipses.jpg new file mode 100644 index 0000000..def6f7b Binary files /dev/null and b/samples/data/ellipses.jpg differ