From: Kees Cook Date: Tue, 2 Aug 2016 21:04:51 +0000 (-0700) Subject: binfmt_elf: fix calculations for bss padding X-Git-Tag: v4.8-rc1~52^2~54 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=0036d1f7eb95bcc52977f15507f00dd07018e7e2;p=platform%2Fkernel%2Flinux-exynos.git binfmt_elf: fix calculations for bss padding A double-bug exists in the bss calculation code, where an overflow can happen in the "last_bss - elf_bss" calculation, but vm_brk internally aligns the argument, underflowing it, wrapping back around safe. We shouldn't depend on these bugs staying in sync, so this cleans up the bss padding handling to avoid the overflow. This moves the bss padzero() before the last_bss > elf_bss case, since the zero-filling of the ELF_PAGE should have nothing to do with the relationship of last_bss and elf_bss: any trailing portion should be zeroed, and a zero size is already handled by padzero(). Then it handles the math on elf_bss vs last_bss correctly. These need to both be ELF_PAGE aligned to get the comparison correct, since that's the expected granularity of the mappings. Since elf_bss already had alignment-based padding happen in padzero(), the "start" of the new vm_brk() should be moved forward as done in the original code. However, since the "end" of the vm_brk() area will already become PAGE_ALIGNed in vm_brk() then last_bss should get aligned here to avoid hiding it as a side-effect. Additionally makes a cosmetic change to the initial last_bss calculation so it's easier to read in comparison to the load_addr calculation above it (i.e. the only difference is p_filesz vs p_memsz). Link: http://lkml.kernel.org/r/1468014494-25291-2-git-send-email-keescook@chromium.org Signed-off-by: Kees Cook Reported-by: Hector Marco-Gisbert Cc: Ismael Ripoll Ripoll Cc: Alexander Viro Cc: "Kirill A. Shutemov" Cc: Oleg Nesterov Cc: Chen Gang Cc: Michal Hocko Cc: Konstantin Khlebnikov Cc: Andrea Arcangeli Cc: Andrey Ryabinin Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- diff --git a/fs/binfmt_elf.c b/fs/binfmt_elf.c index a7a28110dc80..7f6aff3f72eb 100644 --- a/fs/binfmt_elf.c +++ b/fs/binfmt_elf.c @@ -605,28 +605,30 @@ static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, * Do the same thing for the memory mapping - between * elf_bss and last_bss is the bss section. */ - k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; + k = load_addr + eppnt->p_vaddr + eppnt->p_memsz; if (k > last_bss) last_bss = k; } } + /* + * Now fill out the bss section: first pad the last page from + * the file up to the page boundary, and zero it from elf_bss + * up to the end of the page. + */ + if (padzero(elf_bss)) { + error = -EFAULT; + goto out; + } + /* + * Next, align both the file and mem bss up to the page size, + * since this is where elf_bss was just zeroed up to, and where + * last_bss will end after the vm_brk() below. + */ + elf_bss = ELF_PAGEALIGN(elf_bss); + last_bss = ELF_PAGEALIGN(last_bss); + /* Finally, if there is still more bss to allocate, do it. */ if (last_bss > elf_bss) { - /* - * Now fill out the bss section. First pad the last page up - * to the page boundary, and then perform a mmap to make sure - * that there are zero-mapped pages up to and including the - * last bss page. - */ - if (padzero(elf_bss)) { - error = -EFAULT; - goto out; - } - - /* What we have mapped so far */ - elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); - - /* Map the last of the bss segment */ error = vm_brk(elf_bss, last_bss - elf_bss); if (error) goto out;