[model]
-batch_size = 16
+batch_size = 2
continue_train = false
epochs = 2
loss = cross
type = NeuralNetwork
[optimizer]
-beta1 = 0.002
-beta2 = 0.001
-decay_rate = 0.960000
-decay_steps = 1000
-epsilon = 1e-07
learning_rate = 0.000100
-type = adam
+type = sgd
[train_set]
buffer_size = 100
type = file
[inputlayer]
-input_shape = 16:1:1:62720
-name = inputlayer
-normalization = true
-standardization = false
-trainable = true
+input_shape = 1:1:1024
type = input
[fc1]
bias_initializer = zeros
input_layers = inputlayer
-name = fc1
trainable = true
type = fully_connected
+activation=softmax
unit = 10
-weight_initializer = xavier_uniform
-weight_regularizer = l2norm
-weight_regularizer_constant = 0.005000
-
-[cross_softmax1]
-input_layers = fc1
-name = cross_softmax1
-trainable = true
-type = cross_softmax
-
test(function () {
var model = tizen.ml.trainer.createModel();
var layer = tizen.ml.trainer.createLayer("LAYER_INPUT");
- layer.setProperty("input_shape", "1:1:62720");
+ layer.setProperty("input_shape", "1:1:1024");
assert_equals(layer.type, "LAYER_INPUT", "layer setProperty should work properly");
}, document.title);
test(function () {
var model = tizen.ml.trainer.createModel();
var layer = tizen.ml.trainer.createLayer("LAYER_INPUT")
- layer.setProperty("input_shape", "1:1:62720")
+ layer.setProperty("input_shape", "1:1:1024")
layer.setProperty("normalization", "true")
layer.setProperty("name", "inputlayer")
model.addLayer(layer)
model.load(modelFile, "FORMAT_INI");
var compileOpts = {
- loss: "cross", batch_size: "16"
+ loss: "cross", batch_size: "2"
}
model.compile(compileOpts);
}, document.title);
Model.load(modelFile, "FORMAT_INI");
var compileOpts = {
- loss: "cross", batch_size: "16"
+ loss: "cross", batch_size: "2"
}
Model.compile(compileOpts);
model.load(modelFile, "FORMAT_INI");
var compileOpts = {
- loss: "cross", batch_size: "16"
+ loss: "cross", batch_size: "2"
}
model.compile(compileOpts);
check_method_exists(model, "run");
Model.load(modelFile, "FORMAT_INI");
var compileOpts = {
- loss: "cross", batch_size: "16"
+ loss: "cross", batch_size: "2"
}
Model.compile(compileOpts);
successCallback = t.step_func(function () {
Model.load(modelFile, "FORMAT_INI");
var compileOpts = {
- loss: "cross", batch_size: "16"
+ loss: "cross", batch_size: "2"
}
Model.compile(compileOpts);
runOpts = {epochs: "2", save_path: outputFile};
Model.load(modelFile, "FORMAT_INI");
var compileOpts = {
- loss: "cross", batch_size: "16"
+ loss: "cross", batch_size: "2"
}
Model.compile(compileOpts);
successCallback = {