mm/hmm/test: add selftests for HMM
authorRalph Campbell <rcampbell@nvidia.com>
Wed, 22 Apr 2020 19:50:27 +0000 (12:50 -0700)
committerJason Gunthorpe <jgg@mellanox.com>
Tue, 19 May 2020 19:48:31 +0000 (16:48 -0300)
Add some basic stand alone self tests for HMM.
The test program and shell scripts use the test_hmm.ko driver to exercise
HMM functionality in the kernel.

Link: https://lore.kernel.org/r/20200422195028.3684-3-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
tools/testing/selftests/vm/.gitignore
tools/testing/selftests/vm/Makefile
tools/testing/selftests/vm/config
tools/testing/selftests/vm/hmm-tests.c [new file with mode: 0644]
tools/testing/selftests/vm/run_vmtests
tools/testing/selftests/vm/test_hmm.sh [new file with mode: 0755]

index 0edb6d900e8d0b3023d64dc13199bac30b5e22d4..f25208eca5ffb5a776db3cb5b1ec34d70cbddad6 100644 (file)
@@ -16,3 +16,4 @@ gup_benchmark
 va_128TBswitch
 map_fixed_noreplace
 write_to_hugetlbfs
+hmm-tests
index 6998877f707e84df504a605ea6251ff307f130c1..c6eb5305a0f6c7e67b5914359ff5e812c7346cda 100644 (file)
@@ -7,6 +7,7 @@ CFLAGS = -Wall -I ../../../../usr/include $(EXTRA_CFLAGS)
 LDLIBS = -lrt
 TEST_GEN_FILES = compaction_test
 TEST_GEN_FILES += gup_benchmark
+TEST_GEN_FILES += hmm-tests
 TEST_GEN_FILES += hugepage-mmap
 TEST_GEN_FILES += hugepage-shm
 TEST_GEN_FILES += map_hugetlb
@@ -33,6 +34,8 @@ TEST_FILES := test_vmalloc.sh
 KSFT_KHDR_INSTALL := 1
 include ../lib.mk
 
+$(OUTPUT)/hmm-tests: LDLIBS += -lhugetlbfs -lpthread
+
 $(OUTPUT)/userfaultfd: LDLIBS += -lpthread
 
 $(OUTPUT)/mlock-random-test: LDLIBS += -lcap
index 93b90a9b1eebf2c884214b4513c8d802c94672a0..3ba674b64fa9fabbd1ec7632ffe392f4c3a025df 100644 (file)
@@ -1,3 +1,5 @@
 CONFIG_SYSVIPC=y
 CONFIG_USERFAULTFD=y
 CONFIG_TEST_VMALLOC=m
+CONFIG_DEVICE_PRIVATE=y
+CONFIG_TEST_HMM=m
diff --git a/tools/testing/selftests/vm/hmm-tests.c b/tools/testing/selftests/vm/hmm-tests.c
new file mode 100644 (file)
index 0000000..79db226
--- /dev/null
@@ -0,0 +1,1359 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * HMM stands for Heterogeneous Memory Management, it is a helper layer inside
+ * the linux kernel to help device drivers mirror a process address space in
+ * the device. This allows the device to use the same address space which
+ * makes communication and data exchange a lot easier.
+ *
+ * This framework's sole purpose is to exercise various code paths inside
+ * the kernel to make sure that HMM performs as expected and to flush out any
+ * bugs.
+ */
+
+#include "../kselftest_harness.h"
+
+#include <errno.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <unistd.h>
+#include <strings.h>
+#include <time.h>
+#include <pthread.h>
+#include <hugetlbfs.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/mman.h>
+#include <sys/ioctl.h>
+
+/*
+ * This is a private UAPI to the kernel test module so it isn't exported
+ * in the usual include/uapi/... directory.
+ */
+#include "../../../../lib/test_hmm_uapi.h"
+
+struct hmm_buffer {
+       void            *ptr;
+       void            *mirror;
+       unsigned long   size;
+       int             fd;
+       uint64_t        cpages;
+       uint64_t        faults;
+};
+
+#define TWOMEG         (1 << 21)
+#define HMM_BUFFER_SIZE (1024 << 12)
+#define HMM_PATH_MAX    64
+#define NTIMES         256
+
+#define ALIGN(x, a) (((x) + (a - 1)) & (~((a) - 1)))
+
+FIXTURE(hmm)
+{
+       int             fd;
+       unsigned int    page_size;
+       unsigned int    page_shift;
+};
+
+FIXTURE(hmm2)
+{
+       int             fd0;
+       int             fd1;
+       unsigned int    page_size;
+       unsigned int    page_shift;
+};
+
+static int hmm_open(int unit)
+{
+       char pathname[HMM_PATH_MAX];
+       int fd;
+
+       snprintf(pathname, sizeof(pathname), "/dev/hmm_dmirror%d", unit);
+       fd = open(pathname, O_RDWR, 0);
+       if (fd < 0)
+               fprintf(stderr, "could not open hmm dmirror driver (%s)\n",
+                       pathname);
+       return fd;
+}
+
+FIXTURE_SETUP(hmm)
+{
+       self->page_size = sysconf(_SC_PAGE_SIZE);
+       self->page_shift = ffs(self->page_size) - 1;
+
+       self->fd = hmm_open(0);
+       ASSERT_GE(self->fd, 0);
+}
+
+FIXTURE_SETUP(hmm2)
+{
+       self->page_size = sysconf(_SC_PAGE_SIZE);
+       self->page_shift = ffs(self->page_size) - 1;
+
+       self->fd0 = hmm_open(0);
+       ASSERT_GE(self->fd0, 0);
+       self->fd1 = hmm_open(1);
+       ASSERT_GE(self->fd1, 0);
+}
+
+FIXTURE_TEARDOWN(hmm)
+{
+       int ret = close(self->fd);
+
+       ASSERT_EQ(ret, 0);
+       self->fd = -1;
+}
+
+FIXTURE_TEARDOWN(hmm2)
+{
+       int ret = close(self->fd0);
+
+       ASSERT_EQ(ret, 0);
+       self->fd0 = -1;
+
+       ret = close(self->fd1);
+       ASSERT_EQ(ret, 0);
+       self->fd1 = -1;
+}
+
+static int hmm_dmirror_cmd(int fd,
+                          unsigned long request,
+                          struct hmm_buffer *buffer,
+                          unsigned long npages)
+{
+       struct hmm_dmirror_cmd cmd;
+       int ret;
+
+       /* Simulate a device reading system memory. */
+       cmd.addr = (__u64)buffer->ptr;
+       cmd.ptr = (__u64)buffer->mirror;
+       cmd.npages = npages;
+
+       for (;;) {
+               ret = ioctl(fd, request, &cmd);
+               if (ret == 0)
+                       break;
+               if (errno == EINTR)
+                       continue;
+               return -errno;
+       }
+       buffer->cpages = cmd.cpages;
+       buffer->faults = cmd.faults;
+
+       return 0;
+}
+
+static void hmm_buffer_free(struct hmm_buffer *buffer)
+{
+       if (buffer == NULL)
+               return;
+
+       if (buffer->ptr)
+               munmap(buffer->ptr, buffer->size);
+       free(buffer->mirror);
+       free(buffer);
+}
+
+/*
+ * Create a temporary file that will be deleted on close.
+ */
+static int hmm_create_file(unsigned long size)
+{
+       char path[HMM_PATH_MAX];
+       int fd;
+
+       strcpy(path, "/tmp");
+       fd = open(path, O_TMPFILE | O_EXCL | O_RDWR, 0600);
+       if (fd >= 0) {
+               int r;
+
+               do {
+                       r = ftruncate(fd, size);
+               } while (r == -1 && errno == EINTR);
+               if (!r)
+                       return fd;
+               close(fd);
+       }
+       return -1;
+}
+
+/*
+ * Return a random unsigned number.
+ */
+static unsigned int hmm_random(void)
+{
+       static int fd = -1;
+       unsigned int r;
+
+       if (fd < 0) {
+               fd = open("/dev/urandom", O_RDONLY);
+               if (fd < 0) {
+                       fprintf(stderr, "%s:%d failed to open /dev/urandom\n",
+                                       __FILE__, __LINE__);
+                       return ~0U;
+               }
+       }
+       read(fd, &r, sizeof(r));
+       return r;
+}
+
+static void hmm_nanosleep(unsigned int n)
+{
+       struct timespec t;
+
+       t.tv_sec = 0;
+       t.tv_nsec = n;
+       nanosleep(&t, NULL);
+}
+
+/*
+ * Simple NULL test of device open/close.
+ */
+TEST_F(hmm, open_close)
+{
+}
+
+/*
+ * Read private anonymous memory.
+ */
+TEST_F(hmm, anon_read)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+       int val;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /*
+        * Initialize buffer in system memory but leave the first two pages
+        * zero (pte_none and pfn_zero).
+        */
+       i = 2 * self->page_size / sizeof(*ptr);
+       for (ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Set buffer permission to read-only. */
+       ret = mprotect(buffer->ptr, size, PROT_READ);
+       ASSERT_EQ(ret, 0);
+
+       /* Populate the CPU page table with a special zero page. */
+       val = *(int *)(buffer->ptr + self->page_size);
+       ASSERT_EQ(val, 0);
+
+       /* Simulate a device reading system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device read. */
+       ptr = buffer->mirror;
+       for (i = 0; i < 2 * self->page_size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], 0);
+       for (; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Read private anonymous memory which has been protected with
+ * mprotect() PROT_NONE.
+ */
+TEST_F(hmm, anon_read_prot)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize buffer in system memory. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Initialize mirror buffer so we can verify it isn't written. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = -i;
+
+       /* Protect buffer from reading. */
+       ret = mprotect(buffer->ptr, size, PROT_NONE);
+       ASSERT_EQ(ret, 0);
+
+       /* Simulate a device reading system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+       ASSERT_EQ(ret, -EFAULT);
+
+       /* Allow CPU to read the buffer so we can check it. */
+       ret = mprotect(buffer->ptr, size, PROT_READ);
+       ASSERT_EQ(ret, 0);
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       /* Check what the device read. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], -i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory.
+ */
+TEST_F(hmm, anon_write)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize data that the device will write to buffer->ptr. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory which has been protected with
+ * mprotect() PROT_READ.
+ */
+TEST_F(hmm, anon_write_prot)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Simulate a device reading a zero page of memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, 1);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, 1);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Initialize data that the device will write to buffer->ptr. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, -EPERM);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], 0);
+
+       /* Now allow writing and see that the zero page is replaced. */
+       ret = mprotect(buffer->ptr, size, PROT_WRITE | PROT_READ);
+       ASSERT_EQ(ret, 0);
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Check that a device writing an anonymous private mapping
+ * will copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       pid_t pid;
+       int child_fd;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize buffer->ptr so we can tell if it is written. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Initialize data that the device will write to buffer->ptr. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = -i;
+
+       pid = fork();
+       if (pid == -1)
+               ASSERT_EQ(pid, 0);
+       if (pid != 0) {
+               waitpid(pid, &ret, 0);
+               ASSERT_EQ(WIFEXITED(ret), 1);
+
+               /* Check that the parent's buffer did not change. */
+               for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+                       ASSERT_EQ(ptr[i], i);
+               return;
+       }
+
+       /* Check that we see the parent's values. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], -i);
+
+       /* The child process needs its own mirror to its own mm. */
+       child_fd = hmm_open(0);
+       ASSERT_GE(child_fd, 0);
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], -i);
+
+       close(child_fd);
+       exit(0);
+}
+
+/*
+ * Check that a device writing an anonymous shared mapping
+ * will not copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child_shared)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       pid_t pid;
+       int child_fd;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_SHARED | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize buffer->ptr so we can tell if it is written. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Initialize data that the device will write to buffer->ptr. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = -i;
+
+       pid = fork();
+       if (pid == -1)
+               ASSERT_EQ(pid, 0);
+       if (pid != 0) {
+               waitpid(pid, &ret, 0);
+               ASSERT_EQ(WIFEXITED(ret), 1);
+
+               /* Check that the parent's buffer did change. */
+               for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+                       ASSERT_EQ(ptr[i], -i);
+               return;
+       }
+
+       /* Check that we see the parent's values. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], -i);
+
+       /* The child process needs its own mirror to its own mm. */
+       child_fd = hmm_open(0);
+       ASSERT_GE(child_fd, 0);
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], -i);
+
+       close(child_fd);
+       exit(0);
+}
+
+/*
+ * Write private anonymous huge page.
+ */
+TEST_F(hmm, anon_write_huge)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       void *old_ptr;
+       void *map;
+       int *ptr;
+       int ret;
+
+       size = 2 * TWOMEG;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       size = TWOMEG;
+       npages = size >> self->page_shift;
+       map = (void *)ALIGN((uintptr_t)buffer->ptr, size);
+       ret = madvise(map, size, MADV_HUGEPAGE);
+       ASSERT_EQ(ret, 0);
+       old_ptr = buffer->ptr;
+       buffer->ptr = map;
+
+       /* Initialize data that the device will write to buffer->ptr. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       buffer->ptr = old_ptr;
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Write huge TLBFS page.
+ */
+TEST_F(hmm, anon_write_hugetlbfs)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+       long pagesizes[4];
+       int n, idx;
+
+       /* Skip test if we can't allocate a hugetlbfs page. */
+
+       n = gethugepagesizes(pagesizes, 4);
+       if (n <= 0)
+               return;
+       for (idx = 0; --n > 0; ) {
+               if (pagesizes[n] < pagesizes[idx])
+                       idx = n;
+       }
+       size = ALIGN(TWOMEG, pagesizes[idx]);
+       npages = size >> self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->ptr = get_hugepage_region(size, GHR_STRICT);
+       if (buffer->ptr == NULL) {
+               free(buffer);
+               return;
+       }
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       /* Initialize data that the device will write to buffer->ptr. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       free_hugepage_region(buffer->ptr);
+       buffer->ptr = NULL;
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Read mmap'ed file memory.
+ */
+TEST_F(hmm, file_read)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+       int fd;
+       ssize_t len;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       fd = hmm_create_file(size);
+       ASSERT_GE(fd, 0);
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = fd;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       /* Write initial contents of the file. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+       len = pwrite(fd, buffer->mirror, size, 0);
+       ASSERT_EQ(len, size);
+       memset(buffer->mirror, 0, size);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ,
+                          MAP_SHARED,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Simulate a device reading system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device read. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Write mmap'ed file memory.
+ */
+TEST_F(hmm, file_write)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+       int fd;
+       ssize_t len;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       fd = hmm_create_file(size);
+       ASSERT_GE(fd, 0);
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = fd;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_SHARED,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize data that the device will write to buffer->ptr. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Simulate a device writing system memory. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device wrote. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       /* Check that the device also wrote the file. */
+       len = pread(fd, buffer->mirror, size, 0);
+       ASSERT_EQ(len, size);
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory.
+ */
+TEST_F(hmm, migrate)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize buffer in system memory. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Migrate memory to device. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+
+       /* Check what the device read. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory and fault it back to system
+ * memory.
+ */
+TEST_F(hmm, migrate_fault)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize buffer in system memory. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Migrate memory to device. */
+       ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+
+       /* Check what the device read. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       /* Fault pages back to system memory and check them. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Try to migrate various memory types to device private memory.
+ */
+TEST_F(hmm2, migrate_mixed)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       int *ptr;
+       unsigned char *p;
+       int ret;
+       int val;
+
+       npages = 6;
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(size);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       /* Reserve a range of addresses. */
+       buffer->ptr = mmap(NULL, size,
+                          PROT_NONE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+       p = buffer->ptr;
+
+       /* Migrating a protected area should be an error. */
+       ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, npages);
+       ASSERT_EQ(ret, -EINVAL);
+
+       /* Punch a hole after the first page address. */
+       ret = munmap(buffer->ptr + self->page_size, self->page_size);
+       ASSERT_EQ(ret, 0);
+
+       /* We expect an error if the vma doesn't cover the range. */
+       ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 3);
+       ASSERT_EQ(ret, -EINVAL);
+
+       /* Page 2 will be a read-only zero page. */
+       ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+                               PROT_READ);
+       ASSERT_EQ(ret, 0);
+       ptr = (int *)(buffer->ptr + 2 * self->page_size);
+       val = *ptr + 3;
+       ASSERT_EQ(val, 3);
+
+       /* Page 3 will be read-only. */
+       ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+                               PROT_READ | PROT_WRITE);
+       ASSERT_EQ(ret, 0);
+       ptr = (int *)(buffer->ptr + 3 * self->page_size);
+       *ptr = val;
+       ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+                               PROT_READ);
+       ASSERT_EQ(ret, 0);
+
+       /* Page 4-5 will be read-write. */
+       ret = mprotect(buffer->ptr + 4 * self->page_size, 2 * self->page_size,
+                               PROT_READ | PROT_WRITE);
+       ASSERT_EQ(ret, 0);
+       ptr = (int *)(buffer->ptr + 4 * self->page_size);
+       *ptr = val;
+       ptr = (int *)(buffer->ptr + 5 * self->page_size);
+       *ptr = val;
+
+       /* Now try to migrate pages 2-5 to device 1. */
+       buffer->ptr = p + 2 * self->page_size;
+       ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 4);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, 4);
+
+       /* Page 5 won't be migrated to device 0 because it's on device 1. */
+       buffer->ptr = p + 5 * self->page_size;
+       ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_MIGRATE, buffer, 1);
+       ASSERT_EQ(ret, -ENOENT);
+       buffer->ptr = p;
+
+       buffer->ptr = p;
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory and fault it back to system
+ * memory multiple times.
+ */
+TEST_F(hmm, migrate_multiple)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       unsigned long c;
+       int *ptr;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       for (c = 0; c < NTIMES; c++) {
+               buffer = malloc(sizeof(*buffer));
+               ASSERT_NE(buffer, NULL);
+
+               buffer->fd = -1;
+               buffer->size = size;
+               buffer->mirror = malloc(size);
+               ASSERT_NE(buffer->mirror, NULL);
+
+               buffer->ptr = mmap(NULL, size,
+                                  PROT_READ | PROT_WRITE,
+                                  MAP_PRIVATE | MAP_ANONYMOUS,
+                                  buffer->fd, 0);
+               ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+               /* Initialize buffer in system memory. */
+               for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+                       ptr[i] = i;
+
+               /* Migrate memory to device. */
+               ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer,
+                                     npages);
+               ASSERT_EQ(ret, 0);
+               ASSERT_EQ(buffer->cpages, npages);
+
+               /* Check what the device read. */
+               for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+                       ASSERT_EQ(ptr[i], i);
+
+               /* Fault pages back to system memory and check them. */
+               for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+                       ASSERT_EQ(ptr[i], i);
+
+               hmm_buffer_free(buffer);
+       }
+}
+
+/*
+ * Read anonymous memory multiple times.
+ */
+TEST_F(hmm, anon_read_multiple)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       unsigned long c;
+       int *ptr;
+       int ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       for (c = 0; c < NTIMES; c++) {
+               buffer = malloc(sizeof(*buffer));
+               ASSERT_NE(buffer, NULL);
+
+               buffer->fd = -1;
+               buffer->size = size;
+               buffer->mirror = malloc(size);
+               ASSERT_NE(buffer->mirror, NULL);
+
+               buffer->ptr = mmap(NULL, size,
+                                  PROT_READ | PROT_WRITE,
+                                  MAP_PRIVATE | MAP_ANONYMOUS,
+                                  buffer->fd, 0);
+               ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+               /* Initialize buffer in system memory. */
+               for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+                       ptr[i] = i + c;
+
+               /* Simulate a device reading system memory. */
+               ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+                                     npages);
+               ASSERT_EQ(ret, 0);
+               ASSERT_EQ(buffer->cpages, npages);
+               ASSERT_EQ(buffer->faults, 1);
+
+               /* Check what the device read. */
+               for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+                       ASSERT_EQ(ptr[i], i + c);
+
+               hmm_buffer_free(buffer);
+       }
+}
+
+void *unmap_buffer(void *p)
+{
+       struct hmm_buffer *buffer = p;
+
+       /* Delay for a bit and then unmap buffer while it is being read. */
+       hmm_nanosleep(hmm_random() % 32000);
+       munmap(buffer->ptr + buffer->size / 2, buffer->size / 2);
+       buffer->ptr = NULL;
+
+       return NULL;
+}
+
+/*
+ * Try reading anonymous memory while it is being unmapped.
+ */
+TEST_F(hmm, anon_teardown)
+{
+       unsigned long npages;
+       unsigned long size;
+       unsigned long c;
+       void *ret;
+
+       npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+       ASSERT_NE(npages, 0);
+       size = npages << self->page_shift;
+
+       for (c = 0; c < NTIMES; ++c) {
+               pthread_t thread;
+               struct hmm_buffer *buffer;
+               unsigned long i;
+               int *ptr;
+               int rc;
+
+               buffer = malloc(sizeof(*buffer));
+               ASSERT_NE(buffer, NULL);
+
+               buffer->fd = -1;
+               buffer->size = size;
+               buffer->mirror = malloc(size);
+               ASSERT_NE(buffer->mirror, NULL);
+
+               buffer->ptr = mmap(NULL, size,
+                                  PROT_READ | PROT_WRITE,
+                                  MAP_PRIVATE | MAP_ANONYMOUS,
+                                  buffer->fd, 0);
+               ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+               /* Initialize buffer in system memory. */
+               for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+                       ptr[i] = i + c;
+
+               rc = pthread_create(&thread, NULL, unmap_buffer, buffer);
+               ASSERT_EQ(rc, 0);
+
+               /* Simulate a device reading system memory. */
+               rc = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+                                    npages);
+               if (rc == 0) {
+                       ASSERT_EQ(buffer->cpages, npages);
+                       ASSERT_EQ(buffer->faults, 1);
+
+                       /* Check what the device read. */
+                       for (i = 0, ptr = buffer->mirror;
+                            i < size / sizeof(*ptr);
+                            ++i)
+                               ASSERT_EQ(ptr[i], i + c);
+               }
+
+               pthread_join(thread, &ret);
+               hmm_buffer_free(buffer);
+       }
+}
+
+/*
+ * Test memory snapshot without faulting in pages accessed by the device.
+ */
+TEST_F(hmm2, snapshot)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       int *ptr;
+       unsigned char *p;
+       unsigned char *m;
+       int ret;
+       int val;
+
+       npages = 7;
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(npages);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       /* Reserve a range of addresses. */
+       buffer->ptr = mmap(NULL, size,
+                          PROT_NONE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+       p = buffer->ptr;
+
+       /* Punch a hole after the first page address. */
+       ret = munmap(buffer->ptr + self->page_size, self->page_size);
+       ASSERT_EQ(ret, 0);
+
+       /* Page 2 will be read-only zero page. */
+       ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+                               PROT_READ);
+       ASSERT_EQ(ret, 0);
+       ptr = (int *)(buffer->ptr + 2 * self->page_size);
+       val = *ptr + 3;
+       ASSERT_EQ(val, 3);
+
+       /* Page 3 will be read-only. */
+       ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+                               PROT_READ | PROT_WRITE);
+       ASSERT_EQ(ret, 0);
+       ptr = (int *)(buffer->ptr + 3 * self->page_size);
+       *ptr = val;
+       ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+                               PROT_READ);
+       ASSERT_EQ(ret, 0);
+
+       /* Page 4-6 will be read-write. */
+       ret = mprotect(buffer->ptr + 4 * self->page_size, 3 * self->page_size,
+                               PROT_READ | PROT_WRITE);
+       ASSERT_EQ(ret, 0);
+       ptr = (int *)(buffer->ptr + 4 * self->page_size);
+       *ptr = val;
+
+       /* Page 5 will be migrated to device 0. */
+       buffer->ptr = p + 5 * self->page_size;
+       ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_MIGRATE, buffer, 1);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, 1);
+
+       /* Page 6 will be migrated to device 1. */
+       buffer->ptr = p + 6 * self->page_size;
+       ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 1);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, 1);
+
+       /* Simulate a device snapshotting CPU pagetables. */
+       buffer->ptr = p;
+       ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+
+       /* Check what the device saw. */
+       m = buffer->mirror;
+       ASSERT_EQ(m[0], HMM_DMIRROR_PROT_ERROR);
+       ASSERT_EQ(m[1], HMM_DMIRROR_PROT_ERROR);
+       ASSERT_EQ(m[2], HMM_DMIRROR_PROT_ZERO | HMM_DMIRROR_PROT_READ);
+       ASSERT_EQ(m[3], HMM_DMIRROR_PROT_READ);
+       ASSERT_EQ(m[4], HMM_DMIRROR_PROT_WRITE);
+       ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL |
+                       HMM_DMIRROR_PROT_WRITE);
+       ASSERT_EQ(m[6], HMM_DMIRROR_PROT_NONE);
+
+       hmm_buffer_free(buffer);
+}
+
+/*
+ * Test two devices reading the same memory (double mapped).
+ */
+TEST_F(hmm2, double_map)
+{
+       struct hmm_buffer *buffer;
+       unsigned long npages;
+       unsigned long size;
+       unsigned long i;
+       int *ptr;
+       int ret;
+
+       npages = 6;
+       size = npages << self->page_shift;
+
+       buffer = malloc(sizeof(*buffer));
+       ASSERT_NE(buffer, NULL);
+
+       buffer->fd = -1;
+       buffer->size = size;
+       buffer->mirror = malloc(npages);
+       ASSERT_NE(buffer->mirror, NULL);
+
+       /* Reserve a range of addresses. */
+       buffer->ptr = mmap(NULL, size,
+                          PROT_READ | PROT_WRITE,
+                          MAP_PRIVATE | MAP_ANONYMOUS,
+                          buffer->fd, 0);
+       ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+       /* Initialize buffer in system memory. */
+       for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+               ptr[i] = i;
+
+       /* Make region read-only. */
+       ret = mprotect(buffer->ptr, size, PROT_READ);
+       ASSERT_EQ(ret, 0);
+
+       /* Simulate device 0 reading system memory. */
+       ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device read. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       /* Simulate device 1 reading system memory. */
+       ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_READ, buffer, npages);
+       ASSERT_EQ(ret, 0);
+       ASSERT_EQ(buffer->cpages, npages);
+       ASSERT_EQ(buffer->faults, 1);
+
+       /* Check what the device read. */
+       for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+               ASSERT_EQ(ptr[i], i);
+
+       /* Punch a hole after the first page address. */
+       ret = munmap(buffer->ptr + self->page_size, self->page_size);
+       ASSERT_EQ(ret, 0);
+
+       hmm_buffer_free(buffer);
+}
+
+TEST_HARNESS_MAIN
index 76ca5e7a3951acb9d65bf446b7432f8bc02918b5..a3f4f30f0a2e873a2b6692f4b17420eae688247c 100755 (executable)
@@ -307,4 +307,20 @@ else
        echo "[FAIL]"
        exitcode=1
 fi
+
+echo "running HMM smoke test"
+echo "------------------------------------"
+./test_hmm.sh smoke
+ret_val=$?
+
+if [ $ret_val -eq 0 ]; then
+       echo "[PASS]"
+elif [ $ret_val -eq $ksft_skip ]; then
+       echo "[SKIP]"
+       exitcode=$ksft_skip
+else
+       echo "[FAIL]"
+       exitcode=1
+fi
+
 exit $exitcode
diff --git a/tools/testing/selftests/vm/test_hmm.sh b/tools/testing/selftests/vm/test_hmm.sh
new file mode 100755 (executable)
index 0000000..0647b52
--- /dev/null
@@ -0,0 +1,97 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+#
+# Copyright (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com>
+#
+# This is a test script for the kernel test driver to analyse vmalloc
+# allocator. Therefore it is just a kernel module loader. You can specify
+# and pass different parameters in order to:
+#     a) analyse performance of vmalloc allocations;
+#     b) stressing and stability check of vmalloc subsystem.
+
+TEST_NAME="test_hmm"
+DRIVER="test_hmm"
+
+# 1 if fails
+exitcode=1
+
+# Kselftest framework requirement - SKIP code is 4.
+ksft_skip=4
+
+check_test_requirements()
+{
+       uid=$(id -u)
+       if [ $uid -ne 0 ]; then
+               echo "$0: Must be run as root"
+               exit $ksft_skip
+       fi
+
+       if ! which modprobe > /dev/null 2>&1; then
+               echo "$0: You need modprobe installed"
+               exit $ksft_skip
+       fi
+
+       if ! modinfo $DRIVER > /dev/null 2>&1; then
+               echo "$0: You must have the following enabled in your kernel:"
+               echo "CONFIG_TEST_HMM=m"
+               exit $ksft_skip
+       fi
+}
+
+load_driver()
+{
+       modprobe $DRIVER > /dev/null 2>&1
+       if [ $? == 0 ]; then
+               major=$(awk "\$2==\"HMM_DMIRROR\" {print \$1}" /proc/devices)
+               mknod /dev/hmm_dmirror0 c $major 0
+               mknod /dev/hmm_dmirror1 c $major 1
+       fi
+}
+
+unload_driver()
+{
+       modprobe -r $DRIVER > /dev/null 2>&1
+       rm -f /dev/hmm_dmirror?
+}
+
+run_smoke()
+{
+       echo "Running smoke test. Note, this test provides basic coverage."
+
+       load_driver
+       $(dirname "${BASH_SOURCE[0]}")/hmm-tests
+       unload_driver
+}
+
+usage()
+{
+       echo -n "Usage: $0"
+       echo
+       echo "Example usage:"
+       echo
+       echo "# Shows help message"
+       echo "./${TEST_NAME}.sh"
+       echo
+       echo "# Smoke testing"
+       echo "./${TEST_NAME}.sh smoke"
+       echo
+       exit 0
+}
+
+function run_test()
+{
+       if [ $# -eq 0 ]; then
+               usage
+       else
+               if [ "$1" = "smoke" ]; then
+                       run_smoke
+               else
+                       usage
+               fi
+       fi
+}
+
+check_test_requirements
+run_test $@
+
+exit 0