return nullptr;
}
-// If one of the operands only has one non-zero bit, and if the other
-// operand has a known-zero bit in a more significant place than it (not
-// including the sign bit) the ripple may go up to and fill the zero, but
-// won't change the sign. For example, (X & ~4) + 1.
-// FIXME: Handle case where LHS has a zero before the 1 in the RHS, but also
-// has one after.
-static bool CheckRippleForAdd(APInt Op0KnownZero, APInt Op0KnownOne,
- APInt Op1KnownZero, APInt Op1KnownOne) {
- // Make sure that one of the operand has only one bit set to 1 and all other
- // bit set to 0.
- if ((~Op1KnownZero).countPopulation() == 1) {
- int BitWidth = Op0KnownZero.getBitWidth();
- // Ignore Sign Bit.
- Op0KnownZero.clearBit(BitWidth - 1);
- int Op1OnePosition = BitWidth - Op1KnownOne.countLeadingZeros() - 1;
- int Op0ZeroPosition = BitWidth - Op0KnownZero.countLeadingZeros() - 1;
- if ((Op0ZeroPosition != (BitWidth - 1)) &&
- (Op0ZeroPosition >= Op1OnePosition))
- return true;
- }
- return false;
-}
/// WillNotOverflowSignedAdd - Return true if we can prove that:
/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
/// This basically requires proving that the add in the original type would not
/// overflow to change the sign bit or have a carry out.
-/// TODO: Handle this for Vectors.
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
// There are different heuristics we can use for this. Here are some simple
// ones.
if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
return true;
- if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
- int BitWidth = IT->getBitWidth();
- APInt LHSKnownZero(BitWidth, 0, /*isSigned*/ true);
- APInt LHSKnownOne(BitWidth, 0, /*isSigned*/ true);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
+ // If one of the operands only has one non-zero bit, and if the other operand
+ // has a known-zero bit in a more significant place than it (not including the
+ // sign bit) the ripple may go up to and fill the zero, but won't change the
+ // sign. For example, (X & ~4) + 1.
+
+ // TODO: Implement.
- APInt RHSKnownZero(BitWidth, 0, /*isSigned*/ true);
- APInt RHSKnownOne(BitWidth, 0, /*isSigned*/ true);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
-
- // Addition of two 2's compliment numbers having opposite signs will never
- // overflow.
- if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
- (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
- return true;
-
- // Check if carry bit of addition will not cause overflow.
- if (CheckRippleForAdd(LHSKnownZero, LHSKnownOne, RHSKnownZero, RHSKnownOne))
- return true;
- if (CheckRippleForAdd(RHSKnownZero, RHSKnownOne, LHSKnownZero, LHSKnownOne))
- return true;
- }
return false;
}
+++ /dev/null
-; RUN: opt < %s -instcombine -S | FileCheck %s
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-; CHECK-LABEL: @ripple(
-; CHECK: add nsw i16 %tmp1, 1
-define i32 @ripple(i16 signext %x) {
-bb:
- %tmp = sext i16 %x to i32
- %tmp1 = and i32 %tmp, -5
- %tmp2 = trunc i32 %tmp1 to i16
- %tmp3 = sext i16 %tmp2 to i32
- %tmp4 = add i32 %tmp3, 1
- ret i32 %tmp4
-}
-
-; CHECK-LABEL: @ripplenot(
-; CHECK: add i32 %tmp3, 4
-define i32 @ripplenot(i16 signext %x) {
-bb:
- %tmp = sext i16 %x to i32
- %tmp1 = and i32 %tmp, -3
- %tmp2 = trunc i32 %tmp1 to i16
- %tmp3 = sext i16 %tmp2 to i32
- %tmp4 = add i32 %tmp3, 4
- ret i32 %tmp4
-}
-
-; CHECK-LABEL: @oppositesign(
-; CHECK: add nsw i16 %tmp1, 4
-define i32 @oppositesign(i16 signext %x) {
-bb:
- %tmp = sext i16 %x to i32
- %tmp1 = or i32 %tmp, 32768
- %tmp2 = trunc i32 %tmp1 to i16
- %tmp3 = sext i16 %tmp2 to i32
- %tmp4 = add i32 %tmp3, 4
- ret i32 %tmp4
-}
-
-; CHECK-LABEL: @ripplenot_var(
-; CHECK: add i32 %tmp6, %tmp7
-define i32 @ripplenot_var(i16 signext %x, i16 signext %y) {
-bb:
- %tmp = sext i16 %x to i32
- %tmp1 = and i32 %tmp, -5
- %tmp2 = trunc i32 %tmp1 to i16
- %tmp3 = sext i16 %y to i32
- %tmp4 = or i32 %tmp3, 2
- %tmp5 = trunc i32 %tmp4 to i16
- %tmp6 = sext i16 %tmp5 to i32
- %tmp7 = sext i16 %tmp2 to i32
- %tmp8 = add i32 %tmp6, %tmp7
- ret i32 %tmp8
-}