/// Struct that holds a reference to a particular GUID in a global value
/// summary.
struct ValueInfo {
- PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 2, int>
- RefAndFlags;
+ PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 1, bool>
+ RefAndFlag;
ValueInfo() = default;
ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
- RefAndFlags.setPointer(R);
- RefAndFlags.setInt(HaveGVs);
+ RefAndFlag.setPointer(R);
+ RefAndFlag.setInt(HaveGVs);
}
operator bool() const { return getRef(); }
: getRef()->second.U.Name;
}
- bool haveGVs() const { return RefAndFlags.getInt() & 0x1; }
- bool isReadOnly() const { return RefAndFlags.getInt() & 0x2; }
- void setReadOnly() { RefAndFlags.setInt(RefAndFlags.getInt() | 0x2); }
+ bool haveGVs() const { return RefAndFlag.getInt(); }
const GlobalValueSummaryMapTy::value_type *getRef() const {
- return RefAndFlags.getPointer();
+ return RefAndFlag.getPointer();
}
bool isDSOLocal() const;
std::move(TypeTestAssumeConstVCalls),
std::move(TypeCheckedLoadConstVCalls)});
}
- // Gets the number of immutable refs in RefEdgeList
- unsigned immutableRefCount() const;
/// Check if this is a function summary.
static bool classof(const GlobalValueSummary *GVS) {
/// Global variable summary information to aid decisions and
/// implementation of importing.
///
-/// Global variable summary has extra flag, telling if it is
-/// modified during the program run or not. This affects ThinLTO
-/// internalization
+/// Currently this doesn't add anything to the base \p GlobalValueSummary,
+/// but is a placeholder as additional info may be added to the summary
+/// for variables.
class GlobalVarSummary : public GlobalValueSummary {
-public:
- struct GVarFlags {
- GVarFlags(bool ReadOnly = false) : ReadOnly(ReadOnly) {}
-
- unsigned ReadOnly : 1;
- } VarFlags;
- GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
- std::vector<ValueInfo> Refs)
- : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
- VarFlags(VarFlags) {}
+public:
+ GlobalVarSummary(GVFlags Flags, std::vector<ValueInfo> Refs)
+ : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)) {}
/// Check if this is a global variable summary.
static bool classof(const GlobalValueSummary *GVS) {
return GVS->getSummaryKind() == GlobalVarKind;
}
-
- GVarFlags varflags() const { return VarFlags; }
- void setReadOnly(bool RO) { VarFlags.ReadOnly = RO; }
- bool isReadOnly() const { return VarFlags.ReadOnly; }
};
struct TypeTestResolution {
/// Print out strongly connected components for debugging.
void dumpSCCs(raw_ostream &OS);
-
- /// Analyze index and detect unmodified globals
- void propagateConstants(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
};
/// GraphTraits definition to build SCC for the index
}
};
-static inline bool canImportGlobalVar(GlobalValueSummary *S) {
- assert(isa<GlobalVarSummary>(S->getBaseObject()));
-
- // We don't import GV with references, because it can result
- // in promotion of local variables in the source module.
- return !GlobalValue::isInterposableLinkage(S->linkage()) &&
- !S->notEligibleToImport() && S->refs().empty();
-}
} // end namespace llvm
#endif // LLVM_IR_MODULESUMMARYINDEX_H
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing);
-/// Compute dead symbols and run constant propagation in combined index
-/// after that.
-void computeDeadSymbolsWithConstProp(
- ModuleSummaryIndex &Index,
- const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
- function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing,
- bool ImportEnabled);
-
/// Converts value \p GV to declaration, or replaces with a declaration if
/// it is an alias. Returns true if converted, false if replaced.
bool convertToDeclaration(GlobalValue &GV);
bool renameModuleForThinLTO(
Module &M, const ModuleSummaryIndex &Index,
SetVector<GlobalValue *> *GlobalsToImport = nullptr);
+
} // End llvm namespace
#endif
}
}
-static bool isNonVolatileLoad(const Instruction *I) {
- if (const auto *LI = dyn_cast<LoadInst>(I))
- return !LI->isVolatile();
-
- return false;
-}
-
-static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
- const Function &F, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI, DominatorTree &DT,
- bool HasLocalsInUsedOrAsm,
- DenseSet<GlobalValue::GUID> &CantBePromoted,
- bool IsThinLTO) {
+static void computeFunctionSummary(
+ ModuleSummaryIndex &Index, const Module &M, const Function &F,
+ BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
+ bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted) {
// Summary not currently supported for anonymous functions, they should
// have been named.
assert(F.hasName());
// Add personality function, prefix data and prologue data to function's ref
// list.
findRefEdges(Index, &F, RefEdges, Visited);
- std::vector<const Instruction *> NonVolatileLoads;
bool HasInlineAsmMaybeReferencingInternal = false;
for (const BasicBlock &BB : F)
if (isa<DbgInfoIntrinsic>(I))
continue;
++NumInsts;
- if (isNonVolatileLoad(&I)) {
- // Postpone processing of non-volatile load instructions
- // See comments below
- Visited.insert(&I);
- NonVolatileLoads.push_back(&I);
- continue;
- }
findRefEdges(Index, &I, RefEdges, Visited);
auto CS = ImmutableCallSite(&I);
if (!CS)
}
}
- // By now we processed all instructions in a function, except
- // non-volatile loads. All new refs we add in a loop below
- // are obviously constant. All constant refs are grouped in the
- // end of RefEdges vector, so we can use a single integer value
- // to identify them.
- unsigned RefCnt = RefEdges.size();
- for (const Instruction *I : NonVolatileLoads) {
- Visited.erase(I);
- findRefEdges(Index, I, RefEdges, Visited);
- }
- std::vector<ValueInfo> Refs = RefEdges.takeVector();
- // Regular LTO module doesn't participate in ThinLTO import,
- // so no reference from it can be readonly, since this would
- // require importing variable as local copy
- if (IsThinLTO)
- for (; RefCnt < Refs.size(); ++RefCnt)
- Refs[RefCnt].setReadOnly();
-
// Explicit add hot edges to enforce importing for designated GUIDs for
// sample PGO, to enable the same inlines as the profiled optimized binary.
for (auto &I : F.getImportGUIDs())
// Don't try to import functions with noinline attribute.
F.getAttributes().hasFnAttribute(Attribute::NoInline)};
auto FuncSummary = llvm::make_unique<FunctionSummary>(
- Flags, NumInsts, FunFlags, std::move(Refs), CallGraphEdges.takeVector(),
- TypeTests.takeVector(), TypeTestAssumeVCalls.takeVector(),
- TypeCheckedLoadVCalls.takeVector(),
+ Flags, NumInsts, FunFlags, RefEdges.takeVector(),
+ CallGraphEdges.takeVector(), TypeTests.takeVector(),
+ TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
TypeTestAssumeConstVCalls.takeVector(),
TypeCheckedLoadConstVCalls.takeVector());
if (NonRenamableLocal)
bool NonRenamableLocal = isNonRenamableLocal(V);
GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
/* Live = */ false, V.isDSOLocal());
-
- // Don't mark variables we won't be able to internalize as read-only.
- GlobalVarSummary::GVarFlags VarFlags(
- !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
- !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass());
- auto GVarSummary = llvm::make_unique<GlobalVarSummary>(Flags, VarFlags,
- RefEdges.takeVector());
+ auto GVarSummary =
+ llvm::make_unique<GlobalVarSummary>(Flags, RefEdges.takeVector());
if (NonRenamableLocal)
CantBePromoted.insert(V.getGUID());
if (HasBlockAddress)
Index.addGlobalValueSummary(*GV, std::move(Summary));
} else {
std::unique_ptr<GlobalVarSummary> Summary =
- llvm::make_unique<GlobalVarSummary>(
- GVFlags, GlobalVarSummary::GVarFlags(),
- ArrayRef<ValueInfo>{});
+ llvm::make_unique<GlobalVarSummary>(GVFlags,
+ ArrayRef<ValueInfo>{});
Index.addGlobalValueSummary(*GV, std::move(Summary));
}
});
}
- bool IsThinLTO = true;
- if (auto *MD =
- mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
- IsThinLTO = MD->getZExtValue();
-
// Compute summaries for all functions defined in module, and save in the
// index.
for (auto &F : M) {
computeFunctionSummary(Index, M, F, BFI, PSI, DT,
!LocalsUsed.empty() || HasLocalInlineAsmSymbol,
- CantBePromoted, IsThinLTO);
+ CantBePromoted);
}
// Compute summaries for all variables defined in module, and save in the
setLiveRoot(Index, "llvm.global_dtors");
setLiveRoot(Index, "llvm.global.annotations");
+ bool IsThinLTO = true;
+ if (auto *MD =
+ mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
+ IsThinLTO = MD->getZExtValue();
+
for (auto &GlobalList : Index) {
// Ignore entries for references that are undefined in the current module.
if (GlobalList.second.SummaryList.empty())
if (ParseToken(lltok::rparen, "expected ')' here"))
return true;
- auto GS = llvm::make_unique<GlobalVarSummary>(
- GVFlags, GlobalVarSummary::GVarFlags(), std::move(Refs));
+ auto GS = llvm::make_unique<GlobalVarSummary>(GVFlags, std::move(Refs));
GS->setModulePath(ModulePath);
return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
}
-// Decode the flags for GlobalVariable in the summary
-static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
- return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
-}
-
static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
switch (Val) {
default: // Map unknown visibilities to default.
parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
}
-static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
- // Read-only refs are in the end of the refs list.
- for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
- Refs[RefNo].setReadOnly();
-}
-
// Eagerly parse the entire summary block. This populates the GlobalValueSummary
// objects in the index.
Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
}
const uint64_t Version = Record[0];
const bool IsOldProfileFormat = Version == 1;
- if (Version < 1 || Version > 5)
+ if (Version < 1 || Version > 4)
return error("Invalid summary version " + Twine(Version) +
- ", 1, 2, 3, 4 or 5 expected");
+ ", 1, 2, 3 or 4 expected");
Record.clear();
// Keep around the last seen summary to be used when we see an optional
unsigned InstCount = Record[2];
uint64_t RawFunFlags = 0;
unsigned NumRefs = Record[3];
- unsigned NumImmutableRefs = 0;
int RefListStartIndex = 4;
if (Version >= 4) {
RawFunFlags = Record[3];
NumRefs = Record[4];
RefListStartIndex = 5;
- if (Version >= 5) {
- NumImmutableRefs = Record[5];
- RefListStartIndex = 6;
- }
}
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
IsOldProfileFormat, HasProfile, HasRelBF);
- setImmutableRefs(Refs, NumImmutableRefs);
auto FS = llvm::make_unique<FunctionSummary>(
Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
std::move(Calls), std::move(PendingTypeTests),
TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
break;
}
- // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
+ // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
- unsigned RefArrayStart = 2;
- GlobalVarSummary::GVarFlags GVF;
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
- if (Version >= 5) {
- GVF = getDecodedGVarFlags(Record[2]);
- RefArrayStart = 3;
- }
std::vector<ValueInfo> Refs =
- makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
- auto FS =
- llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
+ makeRefList(ArrayRef<uint64_t>(Record).slice(2));
+ auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
FS->setModulePath(getThisModule()->first());
auto GUID = getValueInfoFromValueId(ValueID);
FS->setOriginalName(GUID.second);
unsigned InstCount = Record[3];
uint64_t RawFunFlags = 0;
unsigned NumRefs = Record[4];
- unsigned NumImmutableRefs = 0;
int RefListStartIndex = 5;
if (Version >= 4) {
RawFunFlags = Record[4];
NumRefs = Record[5];
RefListStartIndex = 6;
- if (Version >= 5) {
- NumImmutableRefs = Record[6];
- RefListStartIndex = 7;
- }
}
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
IsOldProfileFormat, HasProfile, false);
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
- setImmutableRefs(Refs, NumImmutableRefs);
auto FS = llvm::make_unique<FunctionSummary>(
Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
std::move(Edges), std::move(PendingTypeTests),
unsigned ValueID = Record[0];
uint64_t ModuleId = Record[1];
uint64_t RawFlags = Record[2];
- unsigned RefArrayStart = 3;
- GlobalVarSummary::GVarFlags GVF;
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
- if (Version >= 5) {
- GVF = getDecodedGVarFlags(Record[3]);
- RefArrayStart = 4;
- }
std::vector<ValueInfo> Refs =
- makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
- auto FS =
- llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
+ makeRefList(ArrayRef<uint64_t>(Record).slice(3));
+ auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
LastSeenSummary = FS.get();
FS->setModulePath(ModuleIdMap[ModuleId]);
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
return RawFlags;
}
-static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
- uint64_t RawFlags = Flags.ReadOnly;
- return RawFlags;
-}
-
static unsigned getEncodedVisibility(const GlobalValue &GV) {
switch (GV.getVisibility()) {
case GlobalValue::DefaultVisibility: return 0;
NameVals.push_back(FS->instCount());
NameVals.push_back(getEncodedFFlags(FS->fflags()));
NameVals.push_back(FS->refs().size());
- NameVals.push_back(FS->immutableRefCount());
for (auto &RI : FS->refs())
NameVals.push_back(VE.getValueID(RI.getValue()));
NameVals.push_back(VE.getValueID(&V));
GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
- NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
unsigned SizeBeforeRefs = NameVals.size();
for (auto &RI : VS->refs())
// Current version for the summary.
// This is bumped whenever we introduce changes in the way some record are
// interpreted, like flags for instance.
-static const uint64_t INDEX_VERSION = 5;
+static const uint64_t INDEX_VERSION = 4;
/// Emit the per-module summary section alongside the rest of
/// the module's bitcode.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
// numrefs x valueid, n x (valueid, hotness)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
// numrefs x valueid, n x (valueid [, rel_block_freq])
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
// numrefs x valueid, n x (valueid)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
// numrefs x valueid, n x (valueid, hotness)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
NameVals.push_back(*ValueId);
NameVals.push_back(Index.getModuleId(VS->modulePath()));
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
- NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
for (auto &RI : VS->refs()) {
auto RefValueId = getValueId(RI.getGUID());
if (!RefValueId)
NameVals.push_back(FS->instCount());
NameVals.push_back(getEncodedFFlags(FS->fflags()));
// Fill in below
- NameVals.push_back(0); // numrefs
- NameVals.push_back(0); // immutablerefcnt
+ NameVals.push_back(0);
- unsigned Count = 0, ImmutableRefCnt = 0;
+ unsigned Count = 0;
for (auto &RI : FS->refs()) {
auto RefValueId = getValueId(RI.getGUID());
if (!RefValueId)
continue;
NameVals.push_back(*RefValueId);
- if (RI.isReadOnly())
- ImmutableRefCnt++;
Count++;
}
NameVals[5] = Count;
- NameVals[6] = ImmutableRefCnt;
bool HasProfileData = false;
for (auto &EI : FS->calls()) {
});
}
-// Gets the number of immutable refs in RefEdgeList
-unsigned FunctionSummary::immutableRefCount() const {
- // Here we take advantage of having all readonly references
- // located in the end of the RefEdgeList.
- auto Refs = refs();
- unsigned ImmutableRefCnt = 0;
- for (int I = Refs.size() - 1; I >= 0 && Refs[I].isReadOnly(); --I)
- ImmutableRefCnt++;
- return ImmutableRefCnt;
-}
-
// Collect for the given module the list of function it defines
// (GUID -> Summary).
void ModuleSummaryIndex::collectDefinedFunctionsForModule(
return false;
}
-static void propagateConstantsToRefs(GlobalValueSummary *S) {
- // If reference is not readonly then referenced summary is not
- // readonly either. Note that:
- // - All references from GlobalVarSummary are conservatively considered as
- // not readonly. Tracking them properly requires more complex analysis
- // then we have now.
- //
- // - AliasSummary objects have no refs at all so this function is a no-op
- // for them.
- for (auto &VI : S->refs()) {
- if (VI.isReadOnly()) {
- // We only mark refs as readonly when computing function summaries on
- // analysis phase.
- assert(isa<FunctionSummary>(S));
- continue;
- }
- for (auto &Ref : VI.getSummaryList())
- // If references to alias is not readonly then aliasee is not readonly
- if (auto *GVS = dyn_cast<GlobalVarSummary>(Ref->getBaseObject()))
- GVS->setReadOnly(false);
- }
-}
-
-// Do the constant propagation in combined index.
-// The goal of constant propagation is internalization of readonly
-// variables. To determine which variables are readonly and which
-// are not we take following steps:
-// - During analysis we speculatively assign readonly attribute to
-// all variables which can be internalized. When computing function
-// summary we also assign readonly attribute to a reference if
-// function doesn't modify referenced variable.
-//
-// - After computing dead symbols in combined index we do the constant
-// propagation. During this step we clear readonly attribute from
-// all variables which:
-// a. are dead, preserved or can't be imported
-// b. referenced by any global variable initializer
-// c. referenced by a function and reference is not readonly
-//
-// Internalization itself happens in the backend after import is finished
-// See internalizeImmutableGVs.
-void ModuleSummaryIndex::propagateConstants(
- const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
- for (auto &P : *this)
- for (auto &S : P.second.SummaryList) {
- if (!isGlobalValueLive(S.get()))
- // We don't examine references from dead objects
- continue;
-
- // Global variable can't be marked read only if it is not eligible
- // to import since we need to ensure that all external references
- // get a local (imported) copy. It also can't be marked read only
- // if it or any alias (since alias points to the same memory) are
- // preserved or notEligibleToImport, since either of those means
- // there could be writes that are not visible (because preserved
- // means it could have external to DSO writes, and notEligibleToImport
- // means it could have writes via inline assembly leading it to be
- // in the @llvm.*used).
- if (auto *GVS = dyn_cast<GlobalVarSummary>(S->getBaseObject()))
- // Here we intentionally pass S.get() not GVS, because S could be
- // an alias.
- if (!canImportGlobalVar(S.get()) || GUIDPreservedSymbols.count(P.first))
- GVS->setReadOnly(false);
- propagateConstantsToRefs(S.get());
- }
-}
-
// TODO: write a graphviz dumper for SCCs (see ModuleSummaryIndex::exportToDot)
// then delete this function and update its tests
LLVM_DUMP_METHOD
struct Attributes {
void add(const Twine &Name, const Twine &Value,
const Twine &Comment = Twine());
- void addComment(const Twine &Comment);
std::string getAsString() const;
std::vector<std::string> Attrs;
A += Value.str();
A += "\"";
Attrs.push_back(A);
- addComment(Comment);
-}
-
-void Attributes::addComment(const Twine &Comment) {
if (!Comment.isTriviallyEmpty()) {
if (Comments.empty())
Comments = " // ";
OS << "\"]; // defined externally\n";
}
-static bool hasReadOnlyFlag(const GlobalValueSummary *S) {
- if (auto *GVS = dyn_cast<GlobalVarSummary>(S))
- return GVS->isReadOnly();
- return false;
-}
-
void ModuleSummaryIndex::exportToDot(raw_ostream &OS) const {
std::vector<Edge> CrossModuleEdges;
DenseMap<GlobalValue::GUID, std::vector<uint64_t>> NodeMap;
};
auto DrawEdge = [&](const char *Pfx, uint64_t SrcMod, GlobalValue::GUID SrcId,
- uint64_t DstMod, GlobalValue::GUID DstId,
- int TypeOrHotness) {
- // 0 - alias
- // 1 - reference
- // 2 - constant reference
- // Other value: (hotness - 3).
- TypeOrHotness += 3;
+ uint64_t DstMod, GlobalValue::GUID DstId, int TypeOrHotness) {
+ // 0 corresponds to alias edge, 1 to ref edge, 2 to call with unknown
+ // hotness, ...
+ TypeOrHotness += 2;
static const char *EdgeAttrs[] = {
" [style=dotted]; // alias",
" [style=dashed]; // ref",
- " [style=dashed,color=forestgreen]; // const-ref",
" // call (hotness : Unknown)",
" [color=blue]; // call (hotness : Cold)",
" // call (hotness : None)",
A.add("shape", "box");
} else {
A.add("shape", "Mrecord", "variable");
- if (Flags.Live && hasReadOnlyFlag(SummaryIt.second))
- A.addComment("immutable");
}
auto VI = getValueInfo(SummaryIt.first);
for (auto &SummaryIt : GVSMap) {
auto *GVS = SummaryIt.second;
for (auto &R : GVS->refs())
- Draw(SummaryIt.first, R.getGUID(), R.isReadOnly() ? -1 : -2);
+ Draw(SummaryIt.first, R.getGUID(), -1);
if (auto *AS = dyn_cast_or_null<AliasSummary>(SummaryIt.second)) {
GlobalValue::GUID AliaseeId;
AliaseeId = AliaseeOrigId;
}
- Draw(SummaryIt.first, AliaseeId, -3);
+ Draw(SummaryIt.first, AliaseeId, -2);
continue;
}
AddUnsigned(VI.isDSOLocal());
AddUsedCfiGlobal(VI.getGUID());
}
- if (auto *GVS = dyn_cast<GlobalVarSummary>(GS))
- AddUnsigned(GVS->isReadOnly());
if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
for (auto &TT : FS->type_tests())
UsedTypeIds.insert(TT);
return PrevailingType::Unknown;
return It->second;
};
- computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
- isPrevailing, Conf.OptLevel > 0);
+ computeDeadSymbols(ThinLTO.CombinedIndex, GUIDPreservedSymbols, isPrevailing);
// Setup output file to emit statistics.
std::unique_ptr<ToolOutputFile> StatsFile = nullptr;
auto isPrevailing = [&](GlobalValue::GUID G) {
return PrevailingType::Unknown;
};
- computeDeadSymbolsWithConstProp(Index, GUIDPreservedSymbols, isPrevailing,
- /* ImportEnabled = */ true);
+ computeDeadSymbols(Index, GUIDPreservedSymbols, isPrevailing);
}
/**
ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
+ // We import global variables only temporarily in order for instcombine
+ // and globalopt to perform constant folding and static constructor
+ // evaluation. After that elim-avail-extern will covert imported globals
+ // back to declarations, so we don't need debug info for them.
+ ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
// Imported entities only need to be mapped in if they have local
// scope, as those might correspond to an imported entity inside a
LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n");
for (auto &RefSummary : VI.getSummaryList())
- if (isa<GlobalVarSummary>(RefSummary.get()) &&
- canImportGlobalVar(RefSummary.get())) {
+ if (RefSummary->getSummaryKind() == GlobalValueSummary::GlobalVarKind &&
+ !RefSummary->notEligibleToImport() &&
+ !GlobalValue::isInterposableLinkage(RefSummary->linkage()) &&
+ RefSummary->refs().empty()) {
auto ILI = ImportList[RefSummary->modulePath()].insert(VI.getGUID());
// Only update stat if we haven't already imported this variable.
if (ILI.second)
NumLiveSymbols += LiveSymbols;
}
-// Compute dead symbols and propagate constants in combined index.
-void llvm::computeDeadSymbolsWithConstProp(
- ModuleSummaryIndex &Index,
- const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
- function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing,
- bool ImportEnabled) {
- computeDeadSymbols(Index, GUIDPreservedSymbols, isPrevailing);
- if (ImportEnabled) {
- Index.propagateConstants(GUIDPreservedSymbols);
- } else {
- // If import is disabled we should drop read-only attribute
- // from all summaries to prevent internalization.
- for (auto &P : Index)
- for (auto &S : P.second.SummaryList)
- if (auto *GVS = dyn_cast<GlobalVarSummary>(S.get()))
- GVS->setReadOnly(false);
- }
-}
-
/// Compute the set of summaries needed for a ThinLTO backend compilation of
/// \p ModulePath.
void llvm::gatherImportedSummariesForModule(
return NewFn;
}
-// Internalize values that we marked with specific attribute
-// in processGlobalForThinLTO.
-static void internalizeImmutableGVs(Module &M) {
- for (auto &GV : M.globals()) {
- // Skip GVs which have been converted to declarations
- // by dropDeadSymbols.
- if (GV.isDeclaration())
- continue;
- if (auto *GVar = dyn_cast<GlobalVariable>(&GV))
- if (GVar->hasAttribute("thinlto-internalize")) {
- GVar->setLinkage(GlobalValue::InternalLinkage);
- GVar->setVisibility(GlobalValue::DefaultVisibility);
- }
- }
-}
-
// Automatically import functions in Module \p DestModule based on the summaries
// index.
Expected<bool> FunctionImporter::importFunctions(
NumImportedModules++;
}
- internalizeImmutableGVs(DestModule);
-
NumImportedFunctions += (ImportedCount - ImportedGVCount);
NumImportedGlobalVars += ImportedGVCount;
if (SummaryFile.empty())
report_fatal_error("error: -function-import requires -summary-file\n");
Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr =
- getModuleSummaryIndexForFile(SummaryFile);
+ getModuleSummaryIndexForFile(SummaryFile);
if (!IndexPtrOrErr) {
logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(),
"Error loading file '" + SummaryFile + "': ");
// Check the summaries to see if the symbol gets resolved to a known local
// definition.
- ValueInfo VI;
if (GV.hasName()) {
- VI = ImportIndex.getValueInfo(GV.getGUID());
+ ValueInfo VI = ImportIndex.getValueInfo(GV.getGUID());
if (VI && VI.isDSOLocal()) {
GV.setDSOLocal(true);
if (GV.hasDLLImportStorageClass())
}
}
- // Mark read-only variables which can be imported with specific attribute.
- // We can't internalize them now because IRMover will fail to link variable
- // definitions to their external declarations during ThinLTO import. We'll
- // internalize read-only variables later, after import is finished.
- // See internalizeImmutableGVs.
- //
- // If global value dead stripping is not enabled in summary then
- // propagateConstants hasn't been run (may be because we're using
- // distriuted import. We can't internalize GV in such case.
- if (!GV.isDeclaration() && VI && ImportIndex.withGlobalValueDeadStripping()) {
- const auto &SL = VI.getSummaryList();
- auto *GVS = SL.empty() ? nullptr : dyn_cast<GlobalVarSummary>(SL[0].get());
- if (GVS && GVS->isReadOnly())
- cast<GlobalVariable>(&GV)->addAttribute("thinlto-internalize");
- }
-
bool DoPromote = false;
if (GV.hasLocalLinkage() &&
((DoPromote = shouldPromoteLocalToGlobal(&GV)) || isPerformingImport())) {
// Remove functions imported as available externally defs from comdats,
// as this is a declaration for the linker, and will be dropped eventually.
// It is illegal for comdats to contain declarations.
- auto *GO = dyn_cast<GlobalObject>(&GV);
+ auto *GO = dyn_cast_or_null<GlobalObject>(&GV);
if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) {
// The IRMover should not have placed any imported declarations in
// a comdat, so the only declaration that should be in a comdat
; RUN: opt -module-summary %s -o - | llvm-bcanalyzer -dump | FileCheck %s
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
-; CHECK: <VERSION op0=5/>
+; CHECK: <VERSION op0=4/>
; CHECK-NEXT: <VERSION
; See if the call to func is registered.
; The value id 1 matches the second FUNCTION record above.
-; CHECK-NEXT: <PERMODULE {{.*}} op6=1/>
+; CHECK-NEXT: <PERMODULE {{.*}} op5=1/>
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
; COMBINED-NEXT: <VALUE_GUID op0=[[ALIASID:[0-9]+]] op1=-5751648690987223394/>
; COMBINED-NEXT: <VALUE_GUID
; COMBINED-NEXT: <VALUE_GUID op0=[[ALIASEEID:[0-9]+]] op1=-1039159065113703048/>
-; COMBINED-NEXT: <COMBINED {{.*}} op7=[[ALIASID]]/>
+; COMBINED-NEXT: <COMBINED {{.*}} op6=[[ALIASID]]/>
; COMBINED-NEXT: <COMBINED {{.*}}
; COMBINED-NEXT: <COMBINED_ALIAS {{.*}} op3=[[ALIASEEID]]
; COMBINED-NEXT: </GLOBALVAL_SUMMARY_BLOCK
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
; CHECK-NEXT: <VERSION
-; CHECK-NEXT: <PERMODULE {{.*}} op4=0 op5=0 op6=[[ALIASID:[0-9]+]]/>
+; CHECK-NEXT: <PERMODULE {{.*}} op4=0 op5=[[ALIASID:[0-9]+]]/>
; CHECK-NEXT: <PERMODULE {{.*}} op0=[[ALIASEEID:[0-9]+]]
; CHECK-NEXT: <ALIAS {{.*}} op0=[[ALIASID]] {{.*}} op2=[[ALIASEEID]]/>
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
; CHECK-NEXT: <VERSION
; "op7" is a call to "callee" function.
-; CHECK-NEXT: <PERMODULE {{.*}} op8=3 op9=[[ALIASID:[0-9]+]]/>
+; CHECK-NEXT: <PERMODULE {{.*}} op7=3 op8=[[ALIASID:[0-9]+]]/>
; "another_caller" has only references but no calls.
-; CHECK-NEXT: <PERMODULE {{.*}} op4=3 {{.*}} op8={{[0-9]+}}/>
+; CHECK-NEXT: <PERMODULE {{.*}} op4=3 {{.*}} op7={{[0-9]+}}/>
; CHECK-NEXT: <PERMODULE {{.*}} op0=[[ALIASEEID:[0-9]+]]
; CHECK-NEXT: <ALIAS {{.*}} op0=[[ALIASID]] {{.*}} op2=[[ALIASEEID]]/>
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
; CHECK-NEXT: <VERSION
; See if the call to func is registered, using the expected hotness type.
-; CHECK-NEXT: <PERMODULE_PROFILE {{.*}} op6=1 op7=2/>
+; CHECK-NEXT: <PERMODULE_PROFILE {{.*}} op5=1 op6=2/>
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
; CHECK-NEXT: blob data = 'mainfunc{{.*}}'
; COMBINED-NEXT: <COMBINED
; See if the call to func is registered, using the expected hotness type.
; op6=2 which is hotnessType::None.
-; COMBINED-NEXT: <COMBINED_PROFILE {{.*}} op7=[[FUNCID]] op8=2/>
+; COMBINED-NEXT: <COMBINED_PROFILE {{.*}} op6=[[FUNCID]] op7=2/>
; COMBINED-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; ModuleID = 'thinlto-function-summary-callgraph.ll'
; CHECK-NEXT: <VERSION
; CHECK-NEXT: <VALUE_GUID op0=25 op1=123/>
; op4=hot1 op6=cold op8=hot2 op10=hot4 op12=none1 op14=hot3 op16=none2 op18=none3 op20=123
-; CHECK-NEXT: <PERMODULE_PROFILE {{.*}} op6=1 op7=3 op8=5 op9=1 op10=2 op11=3 op12=4 op13=1 op14=6 op15=2 op16=3 op17=3 op18=7 op19=2 op20=8 op21=2 op22=25 op23=4/>
+; CHECK-NEXT: <PERMODULE_PROFILE {{.*}} op5=1 op6=3 op7=5 op8=1 op9=2 op10=3 op11=4 op12=1 op13=6 op14=2 op15=3 op16=3 op17=7 op18=2 op19=8 op20=2 op21=25 op22=4/>
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
; COMBINED-NEXT: <COMBINED abbrevid=
; COMBINED-NEXT: <COMBINED abbrevid=
; COMBINED-NEXT: <COMBINED abbrevid=
-; COMBINED-NEXT: <COMBINED_PROFILE {{.*}} op7=[[HOT1:.*]] op8=3 op9=[[COLD:.*]] op10=1 op11=[[HOT2:.*]] op12=3 op13=[[NONE1:.*]] op14=2 op15=[[HOT3:.*]] op16=3 op17=[[NONE2:.*]] op18=2 op19=[[NONE3:.*]] op20=2/>
+; COMBINED-NEXT: <COMBINED_PROFILE {{.*}} op6=[[HOT1:.*]] op7=3 op8=[[COLD:.*]] op9=1 op10=[[HOT2:.*]] op11=3 op12=[[NONE1:.*]] op13=2 op14=[[HOT3:.*]] op15=3 op16=[[NONE2:.*]] op17=2 op18=[[NONE3:.*]] op19=2/>
; COMBINED_NEXT: <COMBINED abbrevid=
; COMBINED_NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
; CHECK-NEXT: <VERSION
; See if the call to func is registered.
-; CHECK-NEXT: <PERMODULE_RELBF {{.*}} op4=1 {{.*}} op8=256
+; CHECK-NEXT: <PERMODULE_RELBF {{.*}} op4=1 {{.*}} op7=256
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
; CHECK-NEXT: blob data = 'undefinedglobmainfunc{{.*}}'
; CHECK-NEXT: <VERSION
; CHECK-NEXT: <VALUE_GUID op0=26 op1=123/>
; op4=none1 op6=hot1 op8=cold1 op10=none2 op12=hot2 op14=cold2 op16=none3 op18=hot3 op20=cold3 op22=123
-; CHECK-NEXT: <PERMODULE_PROFILE {{.*}} op6=7 op7=0 op8=1 op9=3 op10=4 op11=1 op12=8 op13=0 op14=2 op15=3 op16=5 op17=1 op18=9 op19=0 op20=3 op21=3 op22=6 op23=1 op24=26 op25=4/>
+; CHECK-NEXT: <PERMODULE_PROFILE {{.*}} op5=7 op6=0 op7=1 op8=3 op9=4 op10=1 op11=8 op12=0 op13=2 op14=3 op15=5 op16=1 op17=9 op18=0 op19=3 op20=3 op21=6 op22=1 op23=26 op24=4/>
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
; COMBINED-NEXT: <COMBINED abbrevid=
; COMBINED-NEXT: <COMBINED abbrevid=
; COMBINED-NEXT: <COMBINED abbrevid=
-; COMBINED-NEXT: <COMBINED_PROFILE {{.*}} op7=[[NONE1:.*]] op8=0 op9=[[HOT1:.*]] op10=3 op11=[[COLD1:.*]] op12=1 op13=[[NONE2:.*]] op14=0 op15=[[HOT2:.*]] op16=3 op17=[[COLD2:.*]] op18=1 op19=[[NONE3:.*]] op20=0 op21=[[HOT3:.*]] op22=3 op23=[[COLD3:.*]] op24=1/>
+; COMBINED-NEXT: <COMBINED_PROFILE {{.*}} op6=[[NONE1:.*]] op7=0 op8=[[HOT1:.*]] op9=3 op10=[[COLD1:.*]] op11=1 op12=[[NONE2:.*]] op13=0 op14=[[HOT2:.*]] op15=3 op16=[[COLD2:.*]] op17=1 op18=[[NONE3:.*]] op19=0 op20=[[HOT3:.*]] op21=3 op22=[[COLD3:.*]] op23=1/>
; COMBINED_NEXT: <COMBINED abbrevid=
; COMBINED_NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK-NEXT: <FUNCTION op0=17 op1=4
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
; CHECK-NEXT: <VERSION
-; See if the call to func is registered
+; See if the call to func is registered.
; CHECK-NEXT: <PERMODULE {{.*}} op4=1
; CHECK-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
; COMBINED-NEXT: <VALUE_GUID
; COMBINED-NEXT: <COMBINED
; See if the call to func is registered.
-; COMBINED-NEXT: <COMBINED {{.*}} op7=[[FUNCID]]/>
+; COMBINED-NEXT: <COMBINED {{.*}} op6=[[FUNCID]]/>
; COMBINED-NEXT: </GLOBALVAL_SUMMARY_BLOCK>
; ModuleID = 'thinlto-function-summary-callgraph.ll'
; CHECK: <GLOBALVAL_SUMMARY_BLOCK
; Function main contains call to func, as well as address reference to func:
; op0=main op4=func op5=func
-; CHECK-DAG: <PERMODULE {{.*}} op0=11 op1=0 {{.*}} op4=1 op5=0 op6=2 op7=2/>
+; CHECK-DAG: <PERMODULE {{.*}} op0=11 op1=0 {{.*}} op4=1 op5=2 op6=2/>
; Function W contains a call to func3 as well as a reference to globalvar:
; op0=W op4=globalvar op5=func3
-; CHECK-DAG: <PERMODULE {{.*}} op0=6 op1=5 {{.*}} op4=1 op5=0 op6=1 op7=5/>
+; CHECK-DAG: <PERMODULE {{.*}} op0=6 op1=5 {{.*}} op4=1 op5=1 op6=5/>
; Function X contains call to foo, as well as address reference to foo
; which is in the same instruction as the call:
; op0=X op4=foo op5=foo
-; CHECK-DAG: <PERMODULE {{.*}} op0=7 op1=1 {{.*}} op4=1 op5=0 op6=4 op7=4/>
+; CHECK-DAG: <PERMODULE {{.*}} op0=7 op1=1 {{.*}} op4=1 op5=4 op6=4/>
; Function Y contains call to func2, and ensures we don't incorrectly add
; a reference to it when reached while earlier analyzing the phi using its
; return value:
; op0=Y op4=func2
-; CHECK-DAG: <PERMODULE {{.*}} op0=8 op1=72 {{.*}} op4=0 op5=0 op6=3/>
+; CHECK-DAG: <PERMODULE {{.*}} op0=8 op1=72 {{.*}} op4=0 op5=3/>
; Function Z contains call to func2, and ensures we don't incorrectly add
; a reference to it when reached while analyzing subsequent use of its return
; value:
; op0=Z op4=func2
-; CHECK-DAG: <PERMODULE {{.*}} op0=9 op1=3 {{.*}} op4=0 op5=0 op6=3/>
+; CHECK-DAG: <PERMODULE {{.*}} op0=9 op1=3 {{.*}} op4=0 op5=3/>
; Variable bar initialization contains address reference to func:
; op0=bar op2=func
-; CHECK-DAG: <PERMODULE_GLOBALVAR_INIT_REFS {{.*}} op0=0 op1=0 op2=1 op3=2/>
+; CHECK-DAG: <PERMODULE_GLOBALVAR_INIT_REFS {{.*}} op0=0 op1=0 op2=2/>
; CHECK: </GLOBALVAL_SUMMARY_BLOCK>
; CHECK: <STRTAB_BLOCK
+++ /dev/null
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g = global i32 42, align 4
-@g.alias = weak alias i32, i32* @g
+++ /dev/null
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-$comdat.any = comdat any
-@g = global i32 42, comdat($comdat.any)
+++ /dev/null
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g = global i32 42, align 4
+++ /dev/null
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g = external global i32
-
-define i32 @foo() {
- %v = load i32, i32* @g
- ret i32 %v
-}
-
-!0 = !{i32 1, !"ThinLTO", i32 0}
-!llvm.module.flags = !{ !0 }
+++ /dev/null
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@b = global i32* @a, align 8
-@a = global i32 42, align 4
+++ /dev/null
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g1 = common global i32 0, align 4
-@g2 = global i32 42, align 4
-@g3 = available_externally global i32 42, align 4
-
-define i32 @foo() {
- %v1 = load i32, i32* @g1
- %v2 = load i32, i32* @g2
- %v3 = load i32, i32* @g3
- %s1 = add i32 %v1, %v2
- %s2 = add i32 %s1, %v3
- ret i32 %s2
-}
+++ /dev/null
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-pc-linux-gnu"
-
-@gBar = local_unnamed_addr global i32 2, align 4, !dbg !0
-@gFoo = internal unnamed_addr global i32 1, align 4, !dbg !6
-
-; Function Attrs: norecurse nounwind readonly
-define i32 @foo() local_unnamed_addr #0 !dbg !14 {
- %1 = load i32, i32* @gFoo, align 4, !dbg !17
- ret i32 %1, !dbg !18
-}
-
-; Function Attrs: norecurse nounwind readonly
-define i32 @bar() local_unnamed_addr #0 !dbg !19 {
- %1 = load i32, i32* @gBar, align 4, !dbg !20
- ret i32 %1, !dbg !21
-}
-
-define void @baz() local_unnamed_addr !dbg !22 {
- %1 = tail call i32 @rand(), !dbg !25
- store i32 %1, i32* @gFoo, align 4, !dbg !26
- %2 = tail call i32 @rand(), !dbg !27
- store i32 %2, i32* @gBar, align 4, !dbg !28
- ret void, !dbg !29
-}
-
-declare i32 @rand() local_unnamed_addr
-
-attributes #0 = { norecurse nounwind readonly }
-
-!llvm.dbg.cu = !{!2}
-!llvm.module.flags = !{!9, !10, !11, !12}
-!llvm.ident = !{!13}
-
-!0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
-!1 = distinct !DIGlobalVariable(name: "gBar", scope: !2, file: !3, line: 4, type: !8, isLocal: false, isDefinition: true)
-!2 = distinct !DICompileUnit(language: DW_LANG_C99, file: !3, producer: "clang version 7.0.0 (trunk 332246)", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !4, globals: !5)
-!3 = !DIFile(filename: "foo.c", directory: "/data/work/lto/roref/test")
-!4 = !{}
-!5 = !{!0, !6}
-!6 = !DIGlobalVariableExpression(var: !7, expr: !DIExpression())
-!7 = distinct !DIGlobalVariable(name: "gFoo", scope: !2, file: !3, line: 3, type: !8, isLocal: true, isDefinition: true)
-!8 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
-!9 = !{i32 2, !"Dwarf Version", i32 4}
-!10 = !{i32 2, !"Debug Info Version", i32 3}
-!11 = !{i32 1, !"wchar_size", i32 4}
-!12 = !{i32 7, !"PIC Level", i32 2}
-!13 = !{!"clang version 7.0.0 (trunk 332246)"}
-!14 = distinct !DISubprogram(name: "foo", scope: !3, file: !3, line: 6, type: !15, isLocal: false, isDefinition: true, scopeLine: 6, isOptimized: true, unit: !2, retainedNodes: !4)
-!15 = !DISubroutineType(types: !16)
-!16 = !{!8}
-!17 = !DILocation(line: 7, column: 10, scope: !14)
-!18 = !DILocation(line: 7, column: 3, scope: !14)
-!19 = distinct !DISubprogram(name: "bar", scope: !3, file: !3, line: 10, type: !15, isLocal: false, isDefinition: true, scopeLine: 10, isOptimized: true, unit: !2, retainedNodes: !4)
-!20 = !DILocation(line: 11, column: 10, scope: !19)
-!21 = !DILocation(line: 11, column: 3, scope: !19)
-!22 = distinct !DISubprogram(name: "baz", scope: !3, file: !3, line: 14, type: !23, isLocal: false, isDefinition: true, scopeLine: 14, isOptimized: true, unit: !2, retainedNodes: !4)
-!23 = !DISubroutineType(types: !24)
-!24 = !{null}
-!25 = !DILocation(line: 15, column: 10, scope: !22)
-!26 = !DILocation(line: 15, column: 8, scope: !22)
-!27 = !DILocation(line: 16, column: 10, scope: !22)
-!28 = !DILocation(line: 16, column: 8, scope: !22)
-!29 = !DILocation(line: 17, column: 1, scope: !22)
; STRUCTURE-DAG: subgraph cluster_1
; STRUCTURE: // Cross-module edges:
; STRUCTURE-DAG: M0_{{[0-9]+}} -> M1_{{[0-9]+}} // call
-; STRUCTURE-DAG: M0_{{[0-9]+}} -> M1_{{[0-9]+}} [{{.*}}]; // const-ref
+; STRUCTURE-DAG: M0_{{[0-9]+}} -> M1_{{[0-9]+}} [{{.*}}]; // ref
; STRUCTURE-NEXT: }
; CLUSTER0: // Module: {{.*}}1.bc
; CLUSTER1: // Module: {{.*}}2.bc
; CLUSTER1-NEXT: subgraph cluster_1 {
-; CLUSTER1-DAG: M1_[[A:[0-9]+]] [{{.*}}A|extern{{.*}}]; // variable, immutable
+; CLUSTER1-DAG: M1_[[A:[0-9]+]] [{{.*}}A|extern{{.*}}]; // variable
; CLUSTER1-DAG: M1_[[FOO:[0-9]+]] [{{.*}}foo|extern{{.*}} ffl: 00001{{.*}}]; // function
-; CLUSTER1-DAG: M1_[[B:[0-9]+]] [{{.*}}B|extern{{.*}}]; // variable, immutable
+; CLUSTER1-DAG: M1_[[B:[0-9]+]] [{{.*}}B|extern{{.*}}]; // variable
; CLUSTER1-DAG: M1_[[BAR:[0-9]+]] [{{.*}}bar|extern{{.*}}]; // function, dead
; CLUSTER1-NEXT: // Edges:
-; CLUSTER1-DAG: M1_[[FOO]] -> M1_[[B]] [{{.*}}]; // const-ref
-; CLUSTER1-DAG: M1_[[FOO]] -> M1_[[A]] [{{.*}}]; // const-ref
+; CLUSTER1-DAG: M1_[[FOO]] -> M1_[[B]] [{{.*}}]; // ref
+; CLUSTER1-DAG: M1_[[FOO]] -> M1_[[A]] [{{.*}}]; // ref
; CLUSTER1-DAG: }
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
; RUN: opt -module-summary %p/Inputs/globals-import-cf-baz.ll -o %t2.bc
; RUN: llvm-lto -thinlto-action=thinlink %t1.bc %t2.bc -o %t3.index.bc
-; RUN: llvm-lto -thinlto-action=import -exported-symbol=main %t1.bc -thinlto-index=%t3.index.bc
+; RUN: llvm-lto -thinlto-action=import %t1.bc %t2.bc -thinlto-index=%t3.index.bc
; RUN: llvm-dis %t1.bc.thinlto.imported.bc -o - | FileCheck --check-prefix=IMPORT %s
; RUN: llvm-lto -thinlto-action=optimize %t1.bc.thinlto.imported.bc -o %t1.bc.thinlto.opt.bc
; RUN: llvm-dis %t1.bc.thinlto.opt.bc -o - | FileCheck --check-prefix=OPTIMIZE %s
-; IMPORT: @baz = internal local_unnamed_addr constant i32 10
+; IMPORT: @baz = available_externally local_unnamed_addr constant i32 10
; OPTIMIZE: define i32 @main()
; OPTIMIZE-NEXT: ret i32 10
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-define-g.ll -o %t2.bc
-; RUN: llvm-lto2 run -O0 -save-temps %t2.bc -r=%t2.bc,g,pl %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,g, -o %t3
-; RUN: llvm-dis %t3.1.3.import.bc -o - | FileCheck %s
-
-; With -O0 import is disabled so we must not internalize
-; read-only globals
-; CHECK: @g = dso_local global i32 42
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g = external global i32
-
-define i32 @main() {
- %v = load i32, i32* @g
- ret i32 %v
-}
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-alias.ll -o %t2.bc
-; RUN: llvm-lto2 run %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,ret_ptr,pl -r=%t1.bc,g.alias,l -r=%t1.bc,g,l \
-; RUN: %t2.bc -r=%t2.bc,g,pl -r=%t2.bc,g.alias,pl -save-temps -o %t3
-; RUN: llvm-dis %t3.1.3.import.bc -o - | FileCheck %s --check-prefix=IMPORT
-; RUN: llvm-dis %t3.1.5.precodegen.bc -o - | FileCheck %s --check-prefix=CODEGEN
-
-; When ret_ptr is preserved we return pointer to alias, so we can't internalize aliasee
-; RUN: llvm-lto2 run %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,ret_ptr,plx -r=%t1.bc,g.alias,l -r=%t1.bc,g,l \
-; RUN: %t2.bc -r=%t2.bc,g,pl -r=%t2.bc,g.alias,pl -save-temps -o %t4
-; RUN: llvm-dis %t4.1.3.import.bc -o - | FileCheck %s --check-prefix=PRESERVED
-
-; When g.alias is preserved we can't internalize aliasee either
-; RUN: llvm-lto2 run %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,ret_ptr,pl -r=%t1.bc,g.alias,l -r=%t1.bc,g,l \
-; RUN: %t2.bc -r=%t2.bc,g,pl -r=%t2.bc,g.alias,plx -save-temps -o %t5
-; RUN: llvm-dis %t5.1.3.import.bc -o - | FileCheck %s --check-prefix=PRESERVED
-
-; We currently don't support importing aliases
-; IMPORT: @g.alias = external dso_local global i32
-; IMPORT-NEXT: @g = internal global i32 42, align 4 #0
-; IMPORT: attributes #0 = { "thinlto-internalize" }
-
-; CODEGEN: define dso_local i32 @main
-; CODEGEN-NEXT: ret i32 42
-
-; PRESERVED: @g.alias = external dso_local global i32
-; PRESERVED-NEXT: @g = available_externally dso_local global i32 42, align 4
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g.alias = external global i32
-@g = external global i32
-
-define i32 @main() {
- %v = load i32, i32* @g
- ret i32 %v
-}
-
-define i32* @ret_ptr() {
- ret i32* @g.alias
-}
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-comdat.ll -o %t2.bc
-; RUN: llvm-lto2 run -save-temps %t2.bc -r=%t2.bc,g,pl %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,g, -o %t3
-; RUN: llvm-dis %t3.2.3.import.bc -o - | FileCheck %s
-
-; Comdats are not internalized even if they are read only.
-; CHECK: @g = available_externally dso_local global i32 42
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g = external global i32
-
-define i32 @main() {
- %v = load i32, i32* @g
- ret i32 %v
-}
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-define-g.ll -o %t2.bc
-; RUN: llvm-lto2 run -save-temps %t2.bc -r=%t2.bc,g,pl \
-; RUN: %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,foo,pl -r=%t1.bc,g, -o %t3
-; RUN: llvm-dis %t3.2.3.import.bc -o - | FileCheck %s
-
-; Dead globals are converted to declarations by ThinLTO in dropDeadSymbols
-; If we try to internalize such we'll get a broken module.
-; CHECK: @g = external dso_local global i32
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g = external global i32
-
-; We need at least one live symbol to enable dead stripping
-; Otherwise ModuleSummaryIndex::isGlobalValueLive will always
-; return true.
-define i32 @main() {
- ret i32 42
-}
-
-define i32 @foo() {
- %v = load i32, i32* @g
- ret i32 %v
-}
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-define-g.ll -o %t2.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-full-lto.ll -o %t3.bc
-; RUN: llvm-lto2 run -save-temps %t2.bc -r=%t2.bc,g,pl \
-; RUN: %t1.bc -r=%t1.bc,foo,l -r=%t1.bc,main,plx -r=%t1.bc,g, \
-; RUN: %t3.bc -r=%t3.bc,foo,pl -r=%t3.bc,g, -o %t4
-; RUN: llvm-dis %t4.2.3.import.bc -o - | FileCheck %s
-
-; All references from functions in full LTO module are not constant.
-; We cannot internalize @g
-; CHECK: @g = available_externally dso_local global i32 42
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-declare i32 @foo()
-@g = external global i32
-
-define i32 @main() {
- %v = call i32 @foo()
- %v2 = load i32, i32* @g
- %v3 = add i32 %v, %v2
- ret i32 %v3
-}
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-gvref.ll -o %t2.bc
-; RUN: llvm-lto2 run -save-temps %t2.bc -r=%t2.bc,b,pl -r=%t2.bc,a,pl \
-; RUN: %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,a, -r=%t1.bc,b, -o %t3
-; RUN: llvm-dis %t3.1.3.import.bc -o - | FileCheck %s --check-prefix=SRC
-; RUN: llvm-dis %t3.2.3.import.bc -o - | FileCheck %s --check-prefix=DEST
-
-; No variable in the source module should have been internalized
-; SRC: @b = dso_local global i32* @a
-; SRC-NEXT: @a = dso_local global i32 42
-
-; We can't internalize globals referenced by other live globals
-; DEST: @b = external dso_local global i32*
-; DEST-NEXT: @a = available_externally dso_local global i32 42, align 4
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@a = external global i32
-@b = external global i32*
-
-define i32 @main() {
- %p = load i32*, i32** @b, align 8
- store i32 33, i32* %p, align 4
- %v = load i32, i32* @a, align 4
- ret i32 %v
-}
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-define-g.ll -o %t2.bc
-; RUN: llvm-lto2 run -save-temps %t2.bc -r=%t2.bc,g,pl %t1.bc -r=%t1.bc,main,plx -r=%t1.bc,g, -o %t3
-; RUN: llvm-dis %t3.2.3.import.bc -o - | FileCheck %s
-
-; The 'store' instruction in @main should prevent internalization
-; even when there is 'load' instruction before it.
-; CHECK: @g = available_externally dso_local global i32 42
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-@g = external global i32
-
-define i32 @main() {
- %v = load i32, i32* @g
- %q = add i32 %v, 1
- store i32 %q, i32* @g
-
- ret i32 %v
-}
+++ /dev/null
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop-linkage.ll -o %t2.bc
-; RUN: llvm-lto2 run -save-temps %t2.bc -r=%t2.bc,foo,pl -r=%t2.bc,g1,pl -r=%t2.bc,g2,pl -r=%t2.bc,g3, \
-; RUN: %t1.bc -r=%t1.bc,foo, -r=%t1.bc,main,plx -r=%t1.bc,g2, -o %t3
-; RUN: llvm-dis %t3.2.3.import.bc -o - | FileCheck %s
-
-; Check that we never internalize anything with:
-; - appending linkage
-; - common linkage
-; - available_externally linkage
-; - reference from @llvm.used
-; CHECK: @llvm.used = appending global [1 x i32*] [i32* @g2]
-; CHECK-NEXT: @g1 = external dso_local global i32, align 4
-; CHECK-NEXT: @g2 = available_externally dso_local global i32 42, align 4
-; CHECK-NEXT: @g3 = available_externally global i32 42, align 4
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-unknown-linux-gnu"
-
-declare i32 @foo()
-@g2 = external global i32
-@llvm.used = appending global [1 x i32*] [i32* @g2]
-
-define i32 @main() {
- %v = call i32 @foo()
- ret i32 %v
-}
+++ /dev/null
-; Check constant propagation in thinlto combined summary. This allows us to do 2 things:
-; 1. Internalize global definition which is not used externally if all accesses to it are read-only
-; 2. Make a local copy of internal definition if all accesses to it are readonly. This allows constant
-; folding it during optimziation phase.
-
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop.ll -o %t2.bc
-; RUN: llvm-lto -thinlto-action=thinlink -o %t3.index.bc %t1.bc %t2.bc
-; RUN: llvm-lto -thinlto-action=import -exported-symbol=main %t1.bc -thinlto-index=%t3.index.bc -o %t1.imported.bc
-; RUN: llvm-dis %t1.imported.bc -o - | FileCheck %s --check-prefix=IMPORT
-; RUN: llvm-lto -thinlto-action=optimize %t1.imported.bc -o - | llvm-dis - -o - | FileCheck %s --check-prefix=OPTIMIZE
-
-; Check that we don't internalize gBar when it is exported
-; RUN: llvm-lto -thinlto-action=import -exported-symbol main -exported-symbol gBar %t1.bc -thinlto-index=%t3.index.bc -o %t1.imported2.bc
-; RUN: llvm-dis %t1.imported2.bc -o - | FileCheck %s --check-prefix=IMPORT2
-
-; IMPORT: @gFoo.llvm.0 = internal unnamed_addr global i32 1, align 4, !dbg !0
-; IMPORT-NEXT: @gBar = internal local_unnamed_addr global i32 2, align 4, !dbg !5
-; IMPORT: !DICompileUnit({{.*}}, globals: !{{[0-9]+}})
-
-; OPTIMIZE: define i32 @main
-; OPTIMIZE-NEXT: ret i32 3
-
-; IMPORT2: @gBar = available_externally local_unnamed_addr global i32 2, align 4, !dbg !5
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-pc-linux-gnu"
-
-@gBar = external global i32
-
-define i32 @main() local_unnamed_addr {
- %call = tail call i32 bitcast (i32 (...)* @foo to i32 ()*)()
- %call1 = tail call i32 bitcast (i32 (...)* @bar to i32 ()*)()
- %add = add nsw i32 %call1, %call
- ret i32 %add
-}
-
-declare i32 @foo(...) local_unnamed_addr
-
-declare i32 @bar(...) local_unnamed_addr
+++ /dev/null
-; Check constant propagation in thinlto combined summary. This allows us to do 2 things:
-; 1. Internalize global definition which is not used externally if all accesses to it are read-only
-; 2. Make a local copy of internal definition if all accesses to it are readonly. This allows constant
-; folding it during optimziation phase.
-; RUN: opt -module-summary %s -o %t1.bc
-; RUN: opt -module-summary %p/Inputs/index-const-prop.ll -o %t2.bc
-; RUN: llvm-lto2 run %t1.bc %t2.bc -save-temps \
-; RUN: -r=%t2.bc,foo,pl \
-; RUN: -r=%t2.bc,bar,pl \
-; RUN: -r=%t2.bc,baz,pl \
-; RUN: -r=%t2.bc,rand, \
-; RUN: -r=%t2.bc,gBar,pl \
-; RUN: -r=%t1.bc,main,plx \
-; RUN: -r=%t1.bc,foo, \
-; RUN: -r=%t1.bc,bar, \
-; RUN: -r=%t1.bc,gBar, \
-; RUN: -o %t3
-; RUN: llvm-dis %t3.1.3.import.bc -o - | FileCheck %s --check-prefix=IMPORT
-; RUN: llvm-dis %t3.1.5.precodegen.bc -o - | FileCheck %s --check-prefix=CODEGEN
-
-; Now check that we won't internalize global (gBar) if it's externally referenced
-; RUN: llvm-lto2 run %t1.bc %t2.bc -save-temps \
-; RUN: -r=%t2.bc,foo,pl \
-; RUN: -r=%t2.bc,bar,pl \
-; RUN: -r=%t2.bc,baz,pl \
-; RUN: -r=%t2.bc,rand, \
-; RUN: -r=%t2.bc,gBar,plx \
-; RUN: -r=%t1.bc,main,plx \
-; RUN: -r=%t1.bc,foo, \
-; RUN: -r=%t1.bc,bar, \
-; RUN: -r=%t1.bc,gBar, \
-; RUN: -o %t3
-; RUN: llvm-dis %t3.1.3.import.bc -o - | FileCheck %s --check-prefix=IMPORT2
-
-; IMPORT: @gFoo.llvm.0 = internal unnamed_addr global i32 1, align 4
-; IMPORT-NEXT: @gBar = internal local_unnamed_addr global i32 2, align 4
-; IMPORT: !DICompileUnit({{.*}}, globals: !{{[0-9]+}})
-
-; CODEGEN: i32 @main()
-; CODEGEN-NEXT: ret i32 3
-
-; IMPORT2: @gBar = available_externally dso_local local_unnamed_addr global i32 2, align 4
-
-target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-pc-linux-gnu"
-
-; We should be able to link external definition of gBar to its declaration
-@gBar = external global i32
-
-define i32 @main() local_unnamed_addr {
- %call = tail call i32 bitcast (i32 (...)* @foo to i32 ()*)()
- %call1 = tail call i32 bitcast (i32 (...)* @bar to i32 ()*)()
- %add = add nsw i32 %call1, %call
- ret i32 %add
-}
-
-declare i32 @foo(...) local_unnamed_addr
-
-declare i32 @bar(...) local_unnamed_addr