--- /dev/null
+/* NEON implementation of sin, cos, exp and log
+
+ Inspired by Intel Approximate Math library, and based on the
+ corresponding algorithms of the cephes math library
+*/
+
+/* Copyright (C) 2011 Julien Pommier
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the authors be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ (this is the zlib license)
+*/
+
+/**
+ * @file neon_mathfun.hxx
+ * @date 15 Jan 2024
+ * @brief This is collection of sin, cos, exp, log function with NEON SIMD
+ * @see https://github.com/nnstreamer/nntrainer
+ * @author Julien Pommier
+ * @bug No known bugs except for NYI items
+ *
+ */
+
+#if defined(__ARM_NEON__) || defined(__ARM_NEON)
+
+typedef uint32x4_t v4su; // vector of 4 uint32
+typedef int32x4_t v4si; // vector of 4 uint32
+
+#define c_inv_mant_mask ~0x7f800000u
+#define c_cephes_SQRTHF 0.707106781186547524
+#define c_cephes_log_p0 7.0376836292E-2
+#define c_cephes_log_p1 -1.1514610310E-1
+#define c_cephes_log_p2 1.1676998740E-1
+#define c_cephes_log_p3 -1.2420140846E-1
+#define c_cephes_log_p4 +1.4249322787E-1
+#define c_cephes_log_p5 -1.6668057665E-1
+#define c_cephes_log_p6 +2.0000714765E-1
+#define c_cephes_log_p7 -2.4999993993E-1
+#define c_cephes_log_p8 +3.3333331174E-1
+#define c_cephes_log_q1 -2.12194440e-4
+#define c_cephes_log_q2 0.693359375
+
+/* natural logarithm computed for 4 simultaneous float
+ return NaN for x <= 0
+*/
+v4sf log_ps(v4sf x) {
+ v4sf one = vdupq_n_f32(1);
+
+ x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
+ v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
+
+ v4si ux = vreinterpretq_s32_f32(x);
+
+ v4si emm0 = vshrq_n_s32(ux, 23);
+
+ /* keep only the fractional part */
+ ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
+ ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
+ x = vreinterpretq_f32_s32(ux);
+
+ emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
+ v4sf e = vcvtq_f32_s32(emm0);
+
+ e = vaddq_f32(e, one);
+
+ /* part2:
+ if( x < SQRTHF ) {
+ e -= 1;
+ x = x + x - 1.0;
+ } else { x = x - 1.0; }
+ */
+ v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
+ v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
+ x = vsubq_f32(x, one);
+ e = vsubq_f32(
+ e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
+ x = vaddq_f32(x, tmp);
+
+ v4sf z = vmulq_f32(x, x);
+
+ v4sf y = vdupq_n_f32(c_cephes_log_p0);
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
+ y = vmulq_f32(y, x);
+
+ y = vmulq_f32(y, z);
+
+ tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
+ y = vaddq_f32(y, tmp);
+
+ tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
+ y = vsubq_f32(y, tmp);
+
+ tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
+ x = vaddq_f32(x, y);
+ x = vaddq_f32(x, tmp);
+ x = vreinterpretq_f32_u32(vorrq_u32(
+ vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
+ return x;
+}
+
+#define c_exp_hi 88.3762626647949f
+#define c_exp_lo -88.3762626647949f
+
+#define c_cephes_LOG2EF 1.44269504088896341
+#define c_cephes_exp_C1 0.693359375
+#define c_cephes_exp_C2 -2.12194440e-4
+
+#define c_cephes_exp_p0 1.9875691500E-4
+#define c_cephes_exp_p1 1.3981999507E-3
+#define c_cephes_exp_p2 8.3334519073E-3
+#define c_cephes_exp_p3 4.1665795894E-2
+#define c_cephes_exp_p4 1.6666665459E-1
+#define c_cephes_exp_p5 5.0000001201E-1
+
+/* exp() computed for 4 float at once */
+v4sf exp_ps(v4sf x) {
+ v4sf tmp, fx;
+
+ v4sf one = vdupq_n_f32(1);
+ x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
+ x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
+
+ /* express exp(x) as exp(g + n*log(2)) */
+ fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
+
+ /* perform a floorf */
+ tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
+
+ /* if greater, substract 1 */
+ v4su mask = vcgtq_f32(tmp, fx);
+ mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
+
+ fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
+
+ tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
+ v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
+ x = vsubq_f32(x, tmp);
+ x = vsubq_f32(x, z);
+
+ static const float cephes_exp_p[6] = {c_cephes_exp_p0, c_cephes_exp_p1,
+ c_cephes_exp_p2, c_cephes_exp_p3,
+ c_cephes_exp_p4, c_cephes_exp_p5};
+ v4sf y = vld1q_dup_f32(cephes_exp_p + 0);
+ v4sf c1 = vld1q_dup_f32(cephes_exp_p + 1);
+ v4sf c2 = vld1q_dup_f32(cephes_exp_p + 2);
+ v4sf c3 = vld1q_dup_f32(cephes_exp_p + 3);
+ v4sf c4 = vld1q_dup_f32(cephes_exp_p + 4);
+ v4sf c5 = vld1q_dup_f32(cephes_exp_p + 5);
+
+ y = vmulq_f32(y, x);
+ z = vmulq_f32(x, x);
+ y = vaddq_f32(y, c1);
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, c2);
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, c3);
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, c4);
+ y = vmulq_f32(y, x);
+ y = vaddq_f32(y, c5);
+
+ y = vmulq_f32(y, z);
+ y = vaddq_f32(y, x);
+ y = vaddq_f32(y, one);
+
+ /* build 2^n */
+ int32x4_t mm;
+ mm = vcvtq_s32_f32(fx);
+ mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
+ mm = vshlq_n_s32(mm, 23);
+ v4sf pow2n = vreinterpretq_f32_s32(mm);
+
+ y = vmulq_f32(y, pow2n);
+ return y;
+}
+
+#define c_minus_cephes_DP1 -0.78515625
+#define c_minus_cephes_DP2 -2.4187564849853515625e-4
+#define c_minus_cephes_DP3 -3.77489497744594108e-8
+#define c_sincof_p0 -1.9515295891E-4
+#define c_sincof_p1 8.3321608736E-3
+#define c_sincof_p2 -1.6666654611E-1
+#define c_coscof_p0 2.443315711809948E-005
+#define c_coscof_p1 -1.388731625493765E-003
+#define c_coscof_p2 4.166664568298827E-002
+#define c_cephes_FOPI 1.27323954473516 // 4 / M_PI
+
+/* evaluation of 4 sines & cosines at once.
+
+ The code is the exact rewriting of the cephes sinf function.
+ Precision is excellent as long as x < 8192 (I did not bother to
+ take into account the special handling they have for greater values
+ -- it does not return garbage for arguments over 8192, though, but
+ the extra precision is missing).
+
+ Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
+ surprising but correct result.
+
+ Note also that when you compute sin(x), cos(x) is available at
+ almost no extra price so both sin_ps and cos_ps make use of
+ sincos_ps..
+ */
+void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos) { // any x
+ v4sf xmm1, xmm2, xmm3, y;
+
+ v4su emm2;
+
+ v4su sign_mask_sin, sign_mask_cos;
+ sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
+ x = vabsq_f32(x);
+
+ /* scale by 4/Pi */
+ y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
+
+ /* store the integer part of y in mm0 */
+ emm2 = vcvtq_u32_f32(y);
+ /* j=(j+1) & (~1) (see the cephes sources) */
+ emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
+ emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
+ y = vcvtq_f32_u32(emm2);
+
+ /* get the polynom selection mask
+ there is one polynom for 0 <= x <= Pi/4
+ and another one for Pi/4<x<=Pi/2
+
+ Both branches will be computed.
+ */
+ v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
+
+ /* The magic pass: "Extended precision modular arithmetic"
+ x = ((x - y * DP1) - y * DP2) - y * DP3; */
+ xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
+ xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
+ xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
+ x = vaddq_f32(x, xmm1);
+ x = vaddq_f32(x, xmm2);
+ x = vaddq_f32(x, xmm3);
+
+ sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
+ sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
+
+ /* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
+ and the second polynom (Pi/4 <= x <= 0) in y2 */
+ v4sf z = vmulq_f32(x, x);
+ v4sf y1, y2;
+
+ y1 = vmulq_n_f32(z, c_coscof_p0);
+ y2 = vmulq_n_f32(z, c_sincof_p0);
+ y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
+ y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
+ y1 = vmulq_f32(y1, z);
+ y2 = vmulq_f32(y2, z);
+ y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
+ y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
+ y1 = vmulq_f32(y1, z);
+ y2 = vmulq_f32(y2, z);
+ y1 = vmulq_f32(y1, z);
+ y2 = vmulq_f32(y2, x);
+ y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
+ y2 = vaddq_f32(y2, x);
+ y1 = vaddq_f32(y1, vdupq_n_f32(1));
+
+ /* select the correct result from the two polynoms */
+ v4sf ys = vbslq_f32(poly_mask, y1, y2);
+ v4sf yc = vbslq_f32(poly_mask, y2, y1);
+ *ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
+ *ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
+}
+
+v4sf sin_ps(v4sf x) {
+ v4sf ysin, ycos;
+ sincos_ps(x, &ysin, &ycos);
+ return ysin;
+}
+
+v4sf cos_ps(v4sf x) {
+ v4sf ysin, ycos;
+ sincos_ps(x, &ysin, &ycos);
+ return ycos;
+}
+
+#endif
\ No newline at end of file
+++ /dev/null
-/**
- * @file neon_mathfunc.h
- * @date 08 Jan 2024
- * @brief This is collection of sin, cos, exp, log function with NEON SIMD
- * @see https://github.com/nnstreamer/nntrainer
- * @author Julien Pommier
- * @bug No known bugs except for NYI items
- *
- */
-
-/** NEON implementation of sin, cos, exp and log
-
- Inspired by Intel Approximate Math library, and based on the
-
- corresponding algorithms of the cephes math library
-*/
-
-/** Copyright (C) 2011 Julien Pommier
-
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the authors be held liable for any damages
- arising from the use of this software.
-
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
-
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
-
- (this is the zlib license)
-*/
-
-#ifndef __NEON_MATHFUNC_H_
-#define __NEON_MATHFUNC_H_
-#ifdef __cplusplus
-
-#include <arm_neon.h>
-
-typedef float32x4_t v4sf; // vector of 4 float
-typedef uint32x4_t v4su; // vector of 4 uint32
-typedef int32x4_t v4si; // vector of 4 uint32
-
-/**
- * @def c_inv_mant_mask extract the mantissa of a float by performing a
- * bitwise negation on the binary representation of 0x7f800000.
- * @def c_cephes_SQRTHF value of sqrt(0.5).
- * @def c_cephes_log_p0 coefficients used in logarithm calculations
- * @def c_cephes_log_p1 coefficients used in logarithm calculations
- * @def c_cephes_log_p2 coefficients used in logarithm calculations
- * @def c_cephes_log_p3 coefficients used in logarithm calculations
- * @def c_cephes_log_p4 coefficients used in logarithm calculations
- * @def c_cephes_log_p5 coefficients used in logarithm calculations
- * @def c_cephes_log_p6 coefficients used in logarithm calculations
- * @def c_cephes_log_p7 coefficients used in logarithm calculations
- * @def c_cephes_log_p8 coefficients used in logarithm calculations
- * @def c_cephes_log_q1 constant used in logarithm calculations.
- * @def c_cephes_log_q2 natural logarithm of 2.
- */
-#define c_inv_mant_mask ~0x7f800000u
-#define c_cephes_SQRTHF 0.707106781186547524
-#define c_cephes_log_p0 7.0376836292E-2
-#define c_cephes_log_p1 -1.1514610310E-1
-#define c_cephes_log_p2 1.1676998740E-1
-#define c_cephes_log_p3 -1.2420140846E-1
-#define c_cephes_log_p4 +1.4249322787E-1
-#define c_cephes_log_p5 -1.6668057665E-1
-#define c_cephes_log_p6 +2.0000714765E-1
-#define c_cephes_log_p7 -2.4999993993E-1
-#define c_cephes_log_p8 +3.3333331174E-1
-#define c_cephes_log_q1 -2.12194440e-4
-#define c_cephes_log_q2 0.693359375
-
-/** natural logarithm computed for 4 simultaneous float
- return NaN for x <= 0
-*/
-/**
- * @brief log function with neon x = log(x)
- * @param[in] x register variable (float32x4_t)
- */
-v4sf log_ps(v4sf x) {
- v4sf one = vdupq_n_f32(1);
-
- x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
- v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
-
- v4si ux = vreinterpretq_s32_f32(x);
-
- v4si emm0 = vshrq_n_s32(ux, 23);
-
- /* keep only the fractional part */
- ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
- ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
- x = vreinterpretq_f32_s32(ux);
-
- emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
- v4sf e = vcvtq_f32_s32(emm0);
-
- e = vaddq_f32(e, one);
-
- /** part2:
- if( x < SQRTHF ) {
- e -= 1;
- x = x + x - 1.0;
- } else { x = x - 1.0; }
- */
- v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
- v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
- x = vsubq_f32(x, one);
- e = vsubq_f32(
- e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
- x = vaddq_f32(x, tmp);
-
- v4sf z = vmulq_f32(x, x);
-
- v4sf y = vdupq_n_f32(c_cephes_log_p0);
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
- y = vmulq_f32(y, x);
-
- y = vmulq_f32(y, z);
-
- tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
- y = vaddq_f32(y, tmp);
-
- tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
- y = vsubq_f32(y, tmp);
-
- tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
- x = vaddq_f32(x, y);
- x = vaddq_f32(x, tmp);
- x = vreinterpretq_f32_u32(vorrq_u32(
- vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
- return x;
-}
-/**
- * @def c_exp_hi constant used in exponent calculations
- * @def c_exp_lo constant used in exponent calculations
- * @def c_cephes_LOG2EF base-e logarithm of 2
- * @def c_cephes_exp_C1 constant used in exponent calculations
- * @def c_cephes_exp_C2 constant used in exponent calculations
- * @def c_cephes_exp_p0 coefficient used in exponent calculations
- * @def c_cephes_exp_p1 coefficient used in exponent calculations
- * @def c_cephes_exp_p2 coefficient used in exponent calculations
- * @def c_cephes_exp_p3 coefficient used in exponent calculations
- * @def c_cephes_exp_p4 coefficient used in exponent calculations
- * @def c_cephes_exp_p5 coefficient used in exponent calculations
- */
-#define c_exp_hi 88.3762626647949f
-#define c_exp_lo -88.3762626647949f
-#define c_cephes_LOG2EF 1.44269504088896341
-#define c_cephes_exp_C1 0.693359375
-#define c_cephes_exp_C2 -2.12194440e-4
-#define c_cephes_exp_p0 1.9875691500E-4
-#define c_cephes_exp_p1 1.3981999507E-3
-#define c_cephes_exp_p2 8.3334519073E-3
-#define c_cephes_exp_p3 4.1665795894E-2
-#define c_cephes_exp_p4 1.6666665459E-1
-#define c_cephes_exp_p5 5.0000001201E-1
-
-/* exp() computed for 4 float at once */
-/**
- * @brief exp function with neon x = exp(x)
- * @param[in] x register variable (float32x4_t)
- */
-v4sf exp_ps(v4sf x) {
- v4sf tmp, fx;
-
- v4sf one = vdupq_n_f32(1);
- x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
- x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
-
- /* express exp(x) as exp(g + n*log(2)) */
- fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
-
- /* perform a floorf */
- tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
-
- /* if greater, substract 1 */
- v4su mask = vcgtq_f32(tmp, fx);
- mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
-
- fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
-
- tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
- v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
- x = vsubq_f32(x, tmp);
- x = vsubq_f32(x, z);
-
- static const float cephes_exp_p[6] = {c_cephes_exp_p0, c_cephes_exp_p1,
- c_cephes_exp_p2, c_cephes_exp_p3,
- c_cephes_exp_p4, c_cephes_exp_p5};
- v4sf y = vld1q_dup_f32(cephes_exp_p + 0);
- v4sf c1 = vld1q_dup_f32(cephes_exp_p + 1);
- v4sf c2 = vld1q_dup_f32(cephes_exp_p + 2);
- v4sf c3 = vld1q_dup_f32(cephes_exp_p + 3);
- v4sf c4 = vld1q_dup_f32(cephes_exp_p + 4);
- v4sf c5 = vld1q_dup_f32(cephes_exp_p + 5);
-
- y = vmulq_f32(y, x);
- z = vmulq_f32(x, x);
- y = vaddq_f32(y, c1);
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, c2);
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, c3);
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, c4);
- y = vmulq_f32(y, x);
- y = vaddq_f32(y, c5);
-
- y = vmulq_f32(y, z);
- y = vaddq_f32(y, x);
- y = vaddq_f32(y, one);
-
- /* build 2^n */
- int32x4_t mm;
- mm = vcvtq_s32_f32(fx);
- mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
- mm = vshlq_n_s32(mm, 23);
- v4sf pow2n = vreinterpretq_f32_s32(mm);
-
- y = vmulq_f32(y, pow2n);
- return y;
-}
-
-/**
- * @def c_minus_cephes_DP1 constant used in sine and cosine calculations
- * @def c_minus_cephes_DP2 constant used in sine and cosine calculations
- * @def c_minus_cephes_DP3 constant used in sine and cosine calculations
- * @def c_sincof_p0 coefficient used in sine calculations
- * @def c_sincof_p1 coefficient used in sine calculations
- * @def c_sincof_p2 coefficient used in sine calculations
- * @def c_coscof_p0 coefficient used in cosine calculations
- * @def c_coscof_p1 coefficient used in cosine calculations
- * @def c_coscof_p2 coefficient used in cosine calculations
- * @def c_cephes_FOPI approximation of 4 / pi
- */
-#define c_minus_cephes_DP1 -0.78515625
-#define c_minus_cephes_DP2 -2.4187564849853515625e-4
-#define c_minus_cephes_DP3 -3.77489497744594108e-8
-#define c_sincof_p0 -1.9515295891E-4
-#define c_sincof_p1 8.3321608736E-3
-#define c_sincof_p2 -1.6666654611E-1
-#define c_coscof_p0 2.443315711809948E-005
-#define c_coscof_p1 -1.388731625493765E-003
-#define c_coscof_p2 4.166664568298827E-002
-#define c_cephes_FOPI 1.27323954473516 // 4 / M_PI
-
-/** evaluation of 4 sines & cosines at once.
-
- The code is the exact rewriting of the cephes sinf function.
- Precision is excellent as long as x < 8192 (I did not bother to
- take into account the special handling they have for greater values
- -- it does not return garbage for arguments over 8192, though, but
- the extra precision is missing).
-
- Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
- surprising but correct result.
-
- Note also that when you compute sin(x), cos(x) is available at
- almost no extra price so both sin_ps and cos_ps make use of
- sincos_ps..
- */
-/**
- * @brief sincos_ps function with neon x = sin(x) or cos(x)
- * @param[in] x register variable (float32x4_t)
- */
-void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos) { // any x
- v4sf xmm1, xmm2, xmm3, y;
-
- v4su emm2;
-
- v4su sign_mask_sin, sign_mask_cos;
- sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
- x = vabsq_f32(x);
-
- /* scale by 4/Pi */
- y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
-
- /* store the integer part of y in mm0 */
- emm2 = vcvtq_u32_f32(y);
- /* j=(j+1) & (~1) (see the cephes sources) */
- emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
- emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
- y = vcvtq_f32_u32(emm2);
-
- /** get the polynom selection mask
- there is one polynom for 0 <= x <= Pi/4
- and another one for Pi/4<x<=Pi/2
-
- Both branches will be computed.
- */
- v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
-
- /** The magic pass: "Extended precision modular arithmetic"
- x = ((x - y * DP1) - y * DP2) - y * DP3; */
- xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
- xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
- xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
- x = vaddq_f32(x, xmm1);
- x = vaddq_f32(x, xmm2);
- x = vaddq_f32(x, xmm3);
-
- sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
- sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
-
- /** Evaluate the first polynom (0 <= x <= Pi/4) in y1,
- and the second polynom (Pi/4 <= x <= 0) in y2 */
- v4sf z = vmulq_f32(x, x);
- v4sf y1, y2;
-
- y1 = vmulq_n_f32(z, c_coscof_p0);
- y2 = vmulq_n_f32(z, c_sincof_p0);
- y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
- y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
- y1 = vmulq_f32(y1, z);
- y2 = vmulq_f32(y2, z);
- y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
- y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
- y1 = vmulq_f32(y1, z);
- y2 = vmulq_f32(y2, z);
- y1 = vmulq_f32(y1, z);
- y2 = vmulq_f32(y2, x);
- y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
- y2 = vaddq_f32(y2, x);
- y1 = vaddq_f32(y1, vdupq_n_f32(1));
-
- /* select the correct result from the two polynoms */
- v4sf ys = vbslq_f32(poly_mask, y1, y2);
- v4sf yc = vbslq_f32(poly_mask, y2, y1);
- *ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
- *ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
-}
-
-/**
- * @brief sin_ps function with neon x = sin(x)
- * @param[in] x register variable (float32x4_t)
- */
-v4sf sin_ps(v4sf x) {
- v4sf ysin, ycos;
- sincos_ps(x, &ysin, &ycos);
- return ysin;
-}
-
-/**
- * @brief cos_ps function with neon x = cos(x)
- * @param[in] x register variable (float32x4_t)
- */
-v4sf cos_ps(v4sf x) {
- v4sf ysin, ycos;
- sincos_ps(x, &ysin, &ycos);
- return ycos;
-}
-
-#endif
-#endif