return new ICmpInst(I.getPredicate(), A, B);
}
+ // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
+
+ // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
+
+ // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
+
+ // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
+
// If we have an icmp le or icmp ge instruction, turn it into the
// appropriate icmp lt or icmp gt instruction. This allows us to rely on
// them being folded in the code below. The SimplifyICmpInst code has
%icmp = icmp eq i32 %xtrc, %old_val
ret i1 %icmp
}
+
+; CHECK-LABEL: @f1
+; CHECK-NEXT: %[[cmp:.*]] = icmp sge i64 %a, %b
+; CHECK-NEXT: ret i1 %[[cmp]]
+define i1 @f1(i64 %a, i64 %b) {
+ %t = sub nsw i64 %a, %b
+ %v = icmp sge i64 %t, 0
+ ret i1 %v
+}
+
+; CHECK-LABEL: @f2
+; CHECK-NEXT: %[[cmp:.*]] = icmp sgt i64 %a, %b
+; CHECK-NEXT: ret i1 %[[cmp]]
+define i1 @f2(i64 %a, i64 %b) {
+ %t = sub nsw i64 %a, %b
+ %v = icmp sgt i64 %t, 0
+ ret i1 %v
+}
+
+; CHECK-LABEL: @f3
+; CHECK-NEXT: %[[cmp:.*]] = icmp slt i64 %a, %b
+; CHECK-NEXT: ret i1 %[[cmp]]
+define i1 @f3(i64 %a, i64 %b) {
+ %t = sub nsw i64 %a, %b
+ %v = icmp slt i64 %t, 0
+ ret i1 %v
+}
+
+; CHECK-LABEL: @f4
+; CHECK-NEXT: %[[cmp:.*]] = icmp sle i64 %a, %b
+; CHECK-NEXT: ret i1 %[[cmp]]
+define i1 @f4(i64 %a, i64 %b) {
+ %t = sub nsw i64 %a, %b
+ %v = icmp sle i64 %t, 0
+ ret i1 %v
+}