--- /dev/null
+//===-- Reduction.cpp -- generate reduction intrinsics runtime calls- -----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "flang/Optimizer/Builder/Runtime/Reduction.h"
+#include "flang/Lower/Todo.h"
+#include "flang/Optimizer/Builder/BoxValue.h"
+#include "flang/Optimizer/Builder/Character.h"
+#include "flang/Optimizer/Builder/FIRBuilder.h"
+#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
+#include "flang/Runtime/reduction.h"
+#include "mlir/Dialect/StandardOps/IR/Ops.h"
+
+using namespace Fortran::runtime;
+
+/// Placeholder for real*10 version of Maxval Intrinsic
+struct ForcedMaxvalReal10 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MaxvalReal10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF80(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for real*16 version of Maxval Intrinsic
+struct ForcedMaxvalReal16 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MaxvalReal16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF128(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for integer*16 version of Maxval Intrinsic
+struct ForcedMaxvalInteger16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(MaxvalInteger16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::IntegerType::get(ctx, 128);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for real*10 version of Minval Intrinsic
+struct ForcedMinvalReal10 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MinvalReal10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF80(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for real*16 version of Minval Intrinsic
+struct ForcedMinvalReal16 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MinvalReal16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF128(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for integer*16 version of Minval Intrinsic
+struct ForcedMinvalInteger16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(MinvalInteger16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::IntegerType::get(ctx, 128);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for real*10 version of Product Intrinsic
+struct ForcedProductReal10 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(ProductReal10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF80(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for real*16 version of Product Intrinsic
+struct ForcedProductReal16 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(ProductReal16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF128(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for integer*16 version of Product Intrinsic
+struct ForcedProductInteger16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(ProductInteger16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::IntegerType::get(ctx, 128);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for complex(10) version of Product Intrinsic
+struct ForcedProductComplex10 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(CppProductComplex10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ auto resTy = fir::ReferenceType::get(ty);
+ return mlir::FunctionType::get(
+ ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
+ };
+ }
+};
+
+/// Placeholder for complex(16) version of Product Intrinsic
+struct ForcedProductComplex16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(CppProductComplex16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ auto resTy = fir::ReferenceType::get(ty);
+ return mlir::FunctionType::get(
+ ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
+ };
+ }
+};
+
+/// Placeholder for real*10 version of DotProduct Intrinsic
+struct ForcedDotProductReal10 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(DotProductReal10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF80(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, boxTy, strTy, intTy}, {ty});
+ };
+ }
+};
+
+/// Placeholder for real*16 version of DotProduct Intrinsic
+struct ForcedDotProductReal16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(DotProductReal16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF128(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, boxTy, strTy, intTy}, {ty});
+ };
+ }
+};
+
+/// Placeholder for complex(10) version of DotProduct Intrinsic
+struct ForcedDotProductComplex10 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(CppDotProductComplex10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ auto resTy = fir::ReferenceType::get(ty);
+ return mlir::FunctionType::get(ctx, {resTy, boxTy, boxTy, strTy, intTy},
+ {});
+ };
+ }
+};
+
+/// Placeholder for complex(16) version of DotProduct Intrinsic
+struct ForcedDotProductComplex16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(CppDotProductComplex16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ auto resTy = fir::ReferenceType::get(ty);
+ return mlir::FunctionType::get(ctx, {resTy, boxTy, boxTy, strTy, intTy},
+ {});
+ };
+ }
+};
+
+/// Placeholder for integer*16 version of DotProduct Intrinsic
+struct ForcedDotProductInteger16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(DotProductInteger16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::IntegerType::get(ctx, 128);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, boxTy, strTy, intTy}, {ty});
+ };
+ }
+};
+
+/// Placeholder for real*10 version of Sum Intrinsic
+struct ForcedSumReal10 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(SumReal10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF80(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for real*16 version of Sum Intrinsic
+struct ForcedSumReal16 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(SumReal16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::FloatType::getF128(ctx);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for integer*16 version of Sum Intrinsic
+struct ForcedSumInteger16 {
+ static constexpr const char *name = ExpandAndQuoteKey(RTNAME(SumInteger16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::IntegerType::get(ctx, 128);
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
+ {ty});
+ };
+ }
+};
+
+/// Placeholder for complex(10) version of Sum Intrinsic
+struct ForcedSumComplex10 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(CppSumComplex10));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ auto resTy = fir::ReferenceType::get(ty);
+ return mlir::FunctionType::get(
+ ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
+ };
+ }
+};
+
+/// Placeholder for complex(16) version of Sum Intrinsic
+struct ForcedSumComplex16 {
+ static constexpr const char *name =
+ ExpandAndQuoteKey(RTNAME(CppSumComplex16));
+ static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
+ return [](mlir::MLIRContext *ctx) {
+ auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
+ auto boxTy =
+ fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
+ auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
+ auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
+ auto resTy = fir::ReferenceType::get(ty);
+ return mlir::FunctionType::get(
+ ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
+ };
+ }
+};
+
+/// Generate call to specialized runtime function that takes a mask and
+/// dim argument. The All, Any, and Count intrinsics use this pattern.
+template <typename FN>
+mlir::Value genSpecial2Args(FN func, fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value maskBox,
+ mlir::Value dim) {
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
+ auto args = fir::runtime::createArguments(builder, loc, fTy, maskBox,
+ sourceFile, sourceLine, dim);
+ return builder.create<fir::CallOp>(loc, func, args).getResult(0);
+}
+
+/// Generate calls to reduction intrinsics such as All and Any.
+/// These are the descriptor based implementations that take two
+/// arguments (mask, dim).
+template <typename FN>
+static void genReduction2Args(FN func, fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value resultBox,
+ mlir::Value maskBox, mlir::Value dim) {
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, resultBox, maskBox, dim, sourceFile, sourceLine);
+ builder.create<fir::CallOp>(loc, func, args);
+}
+
+/// Generate calls to reduction intrinsics such as Maxval and Minval.
+/// These take arguments such as (array, dim, mask).
+template <typename FN>
+static void genReduction3Args(FN func, fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value resultBox,
+ mlir::Value arrayBox, mlir::Value dim,
+ mlir::Value maskBox) {
+
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
+ auto args =
+ fir::runtime::createArguments(builder, loc, fTy, resultBox, arrayBox, dim,
+ sourceFile, sourceLine, maskBox);
+ builder.create<fir::CallOp>(loc, func, args);
+}
+
+/// Generate calls to reduction intrinsics such as Maxloc and Minloc.
+/// These take arguments such as (array, mask, kind, back).
+template <typename FN>
+static void genReduction4Args(FN func, fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value resultBox,
+ mlir::Value arrayBox, mlir::Value maskBox,
+ mlir::Value kind, mlir::Value back) {
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
+ auto args = fir::runtime::createArguments(builder, loc, fTy, resultBox,
+ arrayBox, kind, sourceFile,
+ sourceLine, maskBox, back);
+ builder.create<fir::CallOp>(loc, func, args);
+}
+
+/// Generate calls to reduction intrinsics such as Maxloc and Minloc.
+/// These take arguments such as (array, dim, mask, kind, back).
+template <typename FN>
+static void
+genReduction5Args(FN func, fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox, mlir::Value dim,
+ mlir::Value maskBox, mlir::Value kind, mlir::Value back) {
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(5));
+ auto args = fir::runtime::createArguments(builder, loc, fTy, resultBox,
+ arrayBox, kind, dim, sourceFile,
+ sourceLine, maskBox, back);
+ builder.create<fir::CallOp>(loc, func, args);
+}
+
+/// Generate call to `all` runtime routine.
+/// This calls the descriptor based runtime call implementation of the `all`
+/// intrinsic.
+void fir::runtime::genAllDescriptor(fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value resultBox,
+ mlir::Value maskBox, mlir::Value dim) {
+ auto allFunc = fir::runtime::getRuntimeFunc<mkRTKey(AllDim)>(loc, builder);
+ genReduction2Args(allFunc, builder, loc, resultBox, maskBox, dim);
+}
+
+/// Generate call to `any` runtime routine.
+/// This calls the descriptor based runtime call implementation of the `any`
+/// intrinsic.
+void fir::runtime::genAnyDescriptor(fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value resultBox,
+ mlir::Value maskBox, mlir::Value dim) {
+ auto anyFunc = fir::runtime::getRuntimeFunc<mkRTKey(AnyDim)>(loc, builder);
+ genReduction2Args(anyFunc, builder, loc, resultBox, maskBox, dim);
+}
+
+/// Generate call to `all` intrinsic runtime routine. This routine is
+/// specialized for mask arguments with rank == 1.
+mlir::Value fir::runtime::genAll(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value maskBox, mlir::Value dim) {
+ auto allFunc = fir::runtime::getRuntimeFunc<mkRTKey(All)>(loc, builder);
+ return genSpecial2Args(allFunc, builder, loc, maskBox, dim);
+}
+
+/// Generate call to `any` intrinsic runtime routine. This routine is
+/// specialized for mask arguments with rank == 1.
+mlir::Value fir::runtime::genAny(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value maskBox, mlir::Value dim) {
+ auto anyFunc = fir::runtime::getRuntimeFunc<mkRTKey(Any)>(loc, builder);
+ return genSpecial2Args(anyFunc, builder, loc, maskBox, dim);
+}
+
+/// Generate call to `count` runtime routine. This routine is a specialized
+/// version when mask is a rank one array or the dim argument is not
+/// specified by the user.
+mlir::Value fir::runtime::genCount(fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value maskBox,
+ mlir::Value dim) {
+ auto countFunc = fir::runtime::getRuntimeFunc<mkRTKey(Count)>(loc, builder);
+ return genSpecial2Args(countFunc, builder, loc, maskBox, dim);
+}
+
+/// Generate call to general CountDim runtime routine. This routine has a
+/// descriptor result.
+void fir::runtime::genCountDim(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value maskBox,
+ mlir::Value dim, mlir::Value kind) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(CountDim)>(loc, builder);
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(5));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, resultBox, maskBox, dim, kind, sourceFile, sourceLine);
+ builder.create<fir::CallOp>(loc, func, args);
+}
+
+/// Generate call to `maxloc` intrinsic runtime routine. This is the version
+/// that does not take a dim argument.
+void fir::runtime::genMaxloc(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value maskBox, mlir::Value kind,
+ mlir::Value back) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(Maxloc)>(loc, builder);
+ genReduction4Args(func, builder, loc, resultBox, arrayBox, maskBox, kind,
+ back);
+}
+
+/// Generate call to `maxloc` intrinsic runtime routine. This is the version
+/// that takes a dim argument.
+void fir::runtime::genMaxlocDim(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value dim, mlir::Value maskBox,
+ mlir::Value kind, mlir::Value back) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(MaxlocDim)>(loc, builder);
+ genReduction5Args(func, builder, loc, resultBox, arrayBox, dim, maskBox, kind,
+ back);
+}
+
+/// Generate call to `maxval` intrinsic runtime routine. This is the version
+/// that does not take a dim argument.
+mlir::Value fir::runtime::genMaxval(fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value arrayBox,
+ mlir::Value maskBox) {
+ mlir::FuncOp func;
+ auto ty = arrayBox.getType();
+ auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
+ auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
+ auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
+
+ if (eleTy.isF32())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalReal4)>(loc, builder);
+ else if (eleTy.isF64())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalReal8)>(loc, builder);
+ else if (eleTy.isF80())
+ func = fir::runtime::getRuntimeFunc<ForcedMaxvalReal10>(loc, builder);
+ else if (eleTy.isF128())
+ func = fir::runtime::getRuntimeFunc<ForcedMaxvalReal16>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(1)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalInteger1)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(2)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalInteger2)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(4)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalInteger4)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(8)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalInteger8)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(16)))
+ func = fir::runtime::getRuntimeFunc<ForcedMaxvalInteger16>(loc, builder);
+ else
+ fir::emitFatalError(loc, "invalid type in Maxval lowering");
+
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
+
+ return builder.create<fir::CallOp>(loc, func, args).getResult(0);
+}
+
+/// Generate call to `maxval` intrinsic runtime routine. This is the version
+/// that handles any rank array with the dim argument specified.
+void fir::runtime::genMaxvalDim(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value dim, mlir::Value maskBox) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalDim)>(loc, builder);
+ genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
+}
+
+/// Generate call to `maxval` intrinsic runtime routine. This is the version
+/// that handles character arrays of rank 1 and without a DIM argument.
+void fir::runtime::genMaxvalChar(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value maskBox) {
+ auto func =
+ fir::runtime::getRuntimeFunc<mkRTKey(MaxvalCharacter)>(loc, builder);
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, resultBox, arrayBox, sourceFile, sourceLine, maskBox);
+ builder.create<fir::CallOp>(loc, func, args);
+}
+
+/// Generate call to `minloc` intrinsic runtime routine. This is the version
+/// that does not take a dim argument.
+void fir::runtime::genMinloc(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value maskBox, mlir::Value kind,
+ mlir::Value back) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(Minloc)>(loc, builder);
+ genReduction4Args(func, builder, loc, resultBox, arrayBox, maskBox, kind,
+ back);
+}
+
+/// Generate call to `minloc` intrinsic runtime routine. This is the version
+/// that takes a dim argument.
+void fir::runtime::genMinlocDim(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value dim, mlir::Value maskBox,
+ mlir::Value kind, mlir::Value back) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(MinlocDim)>(loc, builder);
+ genReduction5Args(func, builder, loc, resultBox, arrayBox, dim, maskBox, kind,
+ back);
+}
+
+/// Generate call to `minval` intrinsic runtime routine. This is the version
+/// that handles any rank array with the dim argument specified.
+void fir::runtime::genMinvalDim(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value dim, mlir::Value maskBox) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalDim)>(loc, builder);
+ genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
+}
+
+/// Generate call to `minval` intrinsic runtime routine. This is the version
+/// that handles character arrays of rank 1 and without a DIM argument.
+void fir::runtime::genMinvalChar(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value maskBox) {
+ auto func =
+ fir::runtime::getRuntimeFunc<mkRTKey(MinvalCharacter)>(loc, builder);
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, resultBox, arrayBox, sourceFile, sourceLine, maskBox);
+ builder.create<fir::CallOp>(loc, func, args);
+}
+
+/// Generate call to `minval` intrinsic runtime routine. This is the version
+/// that does not take a dim argument.
+mlir::Value fir::runtime::genMinval(fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value arrayBox,
+ mlir::Value maskBox) {
+ mlir::FuncOp func;
+ auto ty = arrayBox.getType();
+ auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
+ auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
+ auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
+
+ if (eleTy.isF32())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalReal4)>(loc, builder);
+ else if (eleTy.isF64())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalReal8)>(loc, builder);
+ else if (eleTy.isF80())
+ func = fir::runtime::getRuntimeFunc<ForcedMinvalReal10>(loc, builder);
+ else if (eleTy.isF128())
+ func = fir::runtime::getRuntimeFunc<ForcedMinvalReal16>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(1)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalInteger1)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(2)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalInteger2)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(4)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalInteger4)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(8)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalInteger8)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(16)))
+ func = fir::runtime::getRuntimeFunc<ForcedMinvalInteger16>(loc, builder);
+ else
+ fir::emitFatalError(loc, "invalid type in Minval lowering");
+
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
+
+ return builder.create<fir::CallOp>(loc, func, args).getResult(0);
+}
+
+/// Generate call to `product` intrinsic runtime routine. This is the version
+/// that handles any rank array with the dim argument specified.
+void fir::runtime::genProductDim(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value dim, mlir::Value maskBox) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(ProductDim)>(loc, builder);
+ genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
+}
+
+/// Generate call to `product` intrinsic runtime routine. This is the version
+/// that does not take a dim argument.
+mlir::Value fir::runtime::genProduct(fir::FirOpBuilder &builder,
+ mlir::Location loc, mlir::Value arrayBox,
+ mlir::Value maskBox,
+ mlir::Value resultBox) {
+ mlir::FuncOp func;
+ auto ty = arrayBox.getType();
+ auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
+ auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
+ auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
+
+ if (eleTy.isF32())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(ProductReal4)>(loc, builder);
+ else if (eleTy.isF64())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(ProductReal8)>(loc, builder);
+ else if (eleTy.isF80())
+ func = fir::runtime::getRuntimeFunc<ForcedProductReal10>(loc, builder);
+ else if (eleTy.isF128())
+ func = fir::runtime::getRuntimeFunc<ForcedProductReal16>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(1)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(ProductInteger1)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(2)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(ProductInteger2)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(4)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(ProductInteger4)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(8)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(ProductInteger8)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(16)))
+ func = fir::runtime::getRuntimeFunc<ForcedProductInteger16>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 4))
+ func =
+ fir::runtime::getRuntimeFunc<mkRTKey(CppProductComplex4)>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 8))
+ func =
+ fir::runtime::getRuntimeFunc<mkRTKey(CppProductComplex8)>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 10))
+ func = fir::runtime::getRuntimeFunc<ForcedProductComplex10>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 16))
+ func = fir::runtime::getRuntimeFunc<ForcedProductComplex16>(loc, builder);
+ else
+ fir::emitFatalError(loc, "invalid type in Product lowering");
+
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ if (fir::isa_complex(eleTy)) {
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
+ auto args =
+ fir::runtime::createArguments(builder, loc, fTy, resultBox, arrayBox,
+ sourceFile, sourceLine, dim, maskBox);
+ builder.create<fir::CallOp>(loc, func, args);
+ return resultBox;
+ }
+
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
+
+ return builder.create<fir::CallOp>(loc, func, args).getResult(0);
+}
+
+/// Generate call to `dot_product` intrinsic runtime routine.
+mlir::Value fir::runtime::genDotProduct(fir::FirOpBuilder &builder,
+ mlir::Location loc,
+ mlir::Value vectorABox,
+ mlir::Value vectorBBox,
+ mlir::Value resultBox) {
+ mlir::FuncOp func;
+ auto ty = vectorABox.getType();
+ auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
+ auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
+
+ if (eleTy.isF32())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(DotProductReal4)>(loc, builder);
+ else if (eleTy.isF64())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(DotProductReal8)>(loc, builder);
+ else if (eleTy.isF80())
+ func = fir::runtime::getRuntimeFunc<ForcedDotProductReal10>(loc, builder);
+ else if (eleTy.isF128())
+ func = fir::runtime::getRuntimeFunc<ForcedDotProductReal16>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 4))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(CppDotProductComplex4)>(
+ loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 8))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(CppDotProductComplex8)>(
+ loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 10))
+ func =
+ fir::runtime::getRuntimeFunc<ForcedDotProductComplex10>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 16))
+ func =
+ fir::runtime::getRuntimeFunc<ForcedDotProductComplex16>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(1)))
+ func =
+ fir::runtime::getRuntimeFunc<mkRTKey(DotProductInteger1)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(2)))
+ func =
+ fir::runtime::getRuntimeFunc<mkRTKey(DotProductInteger2)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(4)))
+ func =
+ fir::runtime::getRuntimeFunc<mkRTKey(DotProductInteger4)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(8)))
+ func =
+ fir::runtime::getRuntimeFunc<mkRTKey(DotProductInteger8)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(16)))
+ func =
+ fir::runtime::getRuntimeFunc<ForcedDotProductInteger16>(loc, builder);
+ else if (eleTy.isa<fir::LogicalType>())
+ func =
+ fir::runtime::getRuntimeFunc<mkRTKey(DotProductLogical)>(loc, builder);
+ else
+ fir::emitFatalError(loc, "invalid type in DotProduct lowering");
+
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+
+ if (fir::isa_complex(eleTy)) {
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
+ auto args =
+ fir::runtime::createArguments(builder, loc, fTy, resultBox, vectorABox,
+ vectorBBox, sourceFile, sourceLine);
+ builder.create<fir::CallOp>(loc, func, args);
+ return resultBox;
+ }
+
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
+ auto args = fir::runtime::createArguments(builder, loc, fTy, vectorABox,
+ vectorBBox, sourceFile, sourceLine);
+ return builder.create<fir::CallOp>(loc, func, args).getResult(0);
+}
+/// Generate call to Sum intrinsic runtime routine. This is the version
+/// that handles any rank array with the dim argument specified.
+void fir::runtime::genSumDim(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value resultBox, mlir::Value arrayBox,
+ mlir::Value dim, mlir::Value maskBox) {
+ auto func = fir::runtime::getRuntimeFunc<mkRTKey(SumDim)>(loc, builder);
+ genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
+}
+
+/// Generate call to `sum` intrinsic runtime routine. This is the version
+/// that does not take a dim argument.
+mlir::Value fir::runtime::genSum(fir::FirOpBuilder &builder, mlir::Location loc,
+ mlir::Value arrayBox, mlir::Value maskBox,
+ mlir::Value resultBox) {
+ mlir::FuncOp func;
+ auto ty = arrayBox.getType();
+ auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
+ auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
+ auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
+
+ if (eleTy.isF32())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(SumReal4)>(loc, builder);
+ else if (eleTy.isF64())
+ func = fir::runtime::getRuntimeFunc<mkRTKey(SumReal8)>(loc, builder);
+ else if (eleTy.isF80())
+ func = fir::runtime::getRuntimeFunc<ForcedSumReal10>(loc, builder);
+ else if (eleTy.isF128())
+ func = fir::runtime::getRuntimeFunc<ForcedSumReal16>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(1)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(SumInteger1)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(2)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(SumInteger2)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(4)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(SumInteger4)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(8)))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(SumInteger8)>(loc, builder);
+ else if (eleTy ==
+ builder.getIntegerType(builder.getKindMap().getIntegerBitsize(16)))
+ func = fir::runtime::getRuntimeFunc<ForcedSumInteger16>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 4))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(CppSumComplex4)>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 8))
+ func = fir::runtime::getRuntimeFunc<mkRTKey(CppSumComplex8)>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 10))
+ func = fir::runtime::getRuntimeFunc<ForcedSumComplex10>(loc, builder);
+ else if (eleTy == fir::ComplexType::get(builder.getContext(), 16))
+ func = fir::runtime::getRuntimeFunc<ForcedSumComplex16>(loc, builder);
+ else
+ fir::emitFatalError(loc, "invalid type in Sum lowering");
+
+ auto fTy = func.getType();
+ auto sourceFile = fir::factory::locationToFilename(builder, loc);
+ if (fir::isa_complex(eleTy)) {
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
+ auto args =
+ fir::runtime::createArguments(builder, loc, fTy, resultBox, arrayBox,
+ sourceFile, sourceLine, dim, maskBox);
+ builder.create<fir::CallOp>(loc, func, args);
+ return resultBox;
+ }
+
+ auto sourceLine =
+ fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
+ auto args = fir::runtime::createArguments(
+ builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
+
+ return builder.create<fir::CallOp>(loc, func, args).getResult(0);
+}
--- /dev/null
+//===- ReductionTest.cpp -- Reduction runtime builder unit tests ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "flang/Optimizer/Builder/Runtime/Reduction.h"
+#include "RuntimeCallTestBase.h"
+#include "gtest/gtest.h"
+
+TEST_F(RuntimeCallTest, genAllTest) {
+ mlir::Location loc = firBuilder->getUnknownLoc();
+ mlir::Value undef = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value dim = firBuilder->createIntegerConstant(loc, i32Ty, 1);
+ mlir::Value all = fir::runtime::genAll(*firBuilder, loc, undef, dim);
+ checkCallOp(all.getDefiningOp(), "_FortranAAll", 2);
+}
+
+TEST_F(RuntimeCallTest, genAllDescriptorTest) {
+ mlir::Location loc = firBuilder->getUnknownLoc();
+ mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value mask = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value dim = firBuilder->createIntegerConstant(loc, i32Ty, 1);
+ fir::runtime::genAllDescriptor(*firBuilder, loc, result, mask, dim);
+ checkCallOpFromResultBox(result, "_FortranAAllDim", 3);
+}
+
+TEST_F(RuntimeCallTest, genAnyTest) {
+ mlir::Location loc = firBuilder->getUnknownLoc();
+ mlir::Value undef = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value dim = firBuilder->createIntegerConstant(loc, i32Ty, 1);
+ mlir::Value any = fir::runtime::genAny(*firBuilder, loc, undef, dim);
+ checkCallOp(any.getDefiningOp(), "_FortranAAny", 2);
+}
+
+TEST_F(RuntimeCallTest, genAnyDescriptorTest) {
+ mlir::Location loc = firBuilder->getUnknownLoc();
+ mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value mask = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value dim = firBuilder->createIntegerConstant(loc, i32Ty, 1);
+ fir::runtime::genAnyDescriptor(*firBuilder, loc, result, mask, dim);
+ checkCallOpFromResultBox(result, "_FortranAAnyDim", 3);
+}
+
+TEST_F(RuntimeCallTest, genCountTest) {
+ mlir::Location loc = firBuilder->getUnknownLoc();
+ mlir::Value undef = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value dim = firBuilder->createIntegerConstant(loc, i32Ty, 1);
+ mlir::Value count = fir::runtime::genCount(*firBuilder, loc, undef, dim);
+ checkCallOp(count.getDefiningOp(), "_FortranACount", 2);
+}
+
+TEST_F(RuntimeCallTest, genCountDimTest) {
+ mlir::Location loc = firBuilder->getUnknownLoc();
+ mlir::Value result = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value mask = firBuilder->create<fir::UndefOp>(loc, seqTy10);
+ mlir::Value dim = firBuilder->createIntegerConstant(loc, i32Ty, 1);
+ mlir::Value kind = firBuilder->createIntegerConstant(loc, i32Ty, 1);
+ fir::runtime::genCountDim(*firBuilder, loc, result, mask, dim, kind);
+ checkCallOpFromResultBox(result, "_FortranACountDim", 4);
+}
+
+void testGenMaxVal(
+ fir::FirOpBuilder &builder, mlir::Type eleTy, llvm::StringRef fctName) {
+ mlir::Location loc = builder.getUnknownLoc();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), eleTy);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value undef = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value max = fir::runtime::genMaxval(builder, loc, undef, mask);
+ checkCallOp(max.getDefiningOp(), fctName, 3);
+}
+
+TEST_F(RuntimeCallTest, genMaxValTest) {
+ testGenMaxVal(*firBuilder, f32Ty, "_FortranAMaxvalReal4");
+ testGenMaxVal(*firBuilder, f64Ty, "_FortranAMaxvalReal8");
+ testGenMaxVal(*firBuilder, f80Ty, "_FortranAMaxvalReal10");
+ testGenMaxVal(*firBuilder, f128Ty, "_FortranAMaxvalReal16");
+
+ testGenMaxVal(*firBuilder, i8Ty, "_FortranAMaxvalInteger1");
+ testGenMaxVal(*firBuilder, i16Ty, "_FortranAMaxvalInteger2");
+ testGenMaxVal(*firBuilder, i32Ty, "_FortranAMaxvalInteger4");
+ testGenMaxVal(*firBuilder, i64Ty, "_FortranAMaxvalInteger8");
+ testGenMaxVal(*firBuilder, i128Ty, "_FortranAMaxvalInteger16");
+}
+
+void testGenMinVal(
+ fir::FirOpBuilder &builder, mlir::Type eleTy, llvm::StringRef fctName) {
+ mlir::Location loc = builder.getUnknownLoc();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), eleTy);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value undef = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value min = fir::runtime::genMinval(builder, loc, undef, mask);
+ checkCallOp(min.getDefiningOp(), fctName, 3);
+}
+
+TEST_F(RuntimeCallTest, genMinValTest) {
+ testGenMinVal(*firBuilder, f32Ty, "_FortranAMinvalReal4");
+ testGenMinVal(*firBuilder, f64Ty, "_FortranAMinvalReal8");
+ testGenMinVal(*firBuilder, f80Ty, "_FortranAMinvalReal10");
+ testGenMinVal(*firBuilder, f128Ty, "_FortranAMinvalReal16");
+
+ testGenMinVal(*firBuilder, i8Ty, "_FortranAMinvalInteger1");
+ testGenMinVal(*firBuilder, i16Ty, "_FortranAMinvalInteger2");
+ testGenMinVal(*firBuilder, i32Ty, "_FortranAMinvalInteger4");
+ testGenMinVal(*firBuilder, i64Ty, "_FortranAMinvalInteger8");
+ testGenMinVal(*firBuilder, i128Ty, "_FortranAMinvalInteger16");
+}
+
+void testGenSum(
+ fir::FirOpBuilder &builder, mlir::Type eleTy, llvm::StringRef fctName) {
+ mlir::Location loc = builder.getUnknownLoc();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), eleTy);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value undef = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value sum = fir::runtime::genSum(builder, loc, undef, mask, result);
+ if (fir::isa_complex(eleTy))
+ checkCallOpFromResultBox(result, fctName, 4);
+ else
+ checkCallOp(sum.getDefiningOp(), fctName, 3);
+}
+
+TEST_F(RuntimeCallTest, genSumTest) {
+ testGenSum(*firBuilder, f32Ty, "_FortranASumReal4");
+ testGenSum(*firBuilder, f64Ty, "_FortranASumReal8");
+ testGenSum(*firBuilder, f80Ty, "_FortranASumReal10");
+ testGenSum(*firBuilder, f128Ty, "_FortranASumReal16");
+ testGenSum(*firBuilder, i8Ty, "_FortranASumInteger1");
+ testGenSum(*firBuilder, i16Ty, "_FortranASumInteger2");
+ testGenSum(*firBuilder, i32Ty, "_FortranASumInteger4");
+ testGenSum(*firBuilder, i64Ty, "_FortranASumInteger8");
+ testGenSum(*firBuilder, i128Ty, "_FortranASumInteger16");
+ testGenSum(*firBuilder, c4Ty, "_FortranACppSumComplex4");
+ testGenSum(*firBuilder, c8Ty, "_FortranACppSumComplex8");
+ testGenSum(*firBuilder, c10Ty, "_FortranACppSumComplex10");
+ testGenSum(*firBuilder, c16Ty, "_FortranACppSumComplex16");
+}
+
+void testGenProduct(
+ fir::FirOpBuilder &builder, mlir::Type eleTy, llvm::StringRef fctName) {
+ mlir::Location loc = builder.getUnknownLoc();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), eleTy);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value undef = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value prod =
+ fir::runtime::genProduct(builder, loc, undef, mask, result);
+ if (fir::isa_complex(eleTy))
+ checkCallOpFromResultBox(result, fctName, 4);
+ else
+ checkCallOp(prod.getDefiningOp(), fctName, 3);
+}
+
+TEST_F(RuntimeCallTest, genProduct) {
+ testGenProduct(*firBuilder, f32Ty, "_FortranAProductReal4");
+ testGenProduct(*firBuilder, f64Ty, "_FortranAProductReal8");
+ testGenProduct(*firBuilder, f80Ty, "_FortranAProductReal10");
+ testGenProduct(*firBuilder, f128Ty, "_FortranAProductReal16");
+ testGenProduct(*firBuilder, i8Ty, "_FortranAProductInteger1");
+ testGenProduct(*firBuilder, i16Ty, "_FortranAProductInteger2");
+ testGenProduct(*firBuilder, i32Ty, "_FortranAProductInteger4");
+ testGenProduct(*firBuilder, i64Ty, "_FortranAProductInteger8");
+ testGenProduct(*firBuilder, i128Ty, "_FortranAProductInteger16");
+ testGenProduct(*firBuilder, c4Ty, "_FortranACppProductComplex4");
+ testGenProduct(*firBuilder, c8Ty, "_FortranACppProductComplex8");
+ testGenProduct(*firBuilder, c10Ty, "_FortranACppProductComplex10");
+ testGenProduct(*firBuilder, c16Ty, "_FortranACppProductComplex16");
+}
+
+void testGenDotProduct(
+ fir::FirOpBuilder &builder, mlir::Type eleTy, llvm::StringRef fctName) {
+ mlir::Location loc = builder.getUnknownLoc();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), eleTy);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value a = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value b = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value prod = fir::runtime::genDotProduct(builder, loc, a, b, result);
+ if (fir::isa_complex(eleTy))
+ checkCallOpFromResultBox(result, fctName, 3);
+ else
+ checkCallOp(prod.getDefiningOp(), fctName, 2);
+}
+
+TEST_F(RuntimeCallTest, genDotProduct) {
+ testGenDotProduct(*firBuilder, f32Ty, "_FortranADotProductReal4");
+ testGenDotProduct(*firBuilder, f64Ty, "_FortranADotProductReal8");
+ testGenDotProduct(*firBuilder, f80Ty, "_FortranADotProductReal10");
+ testGenDotProduct(*firBuilder, f128Ty, "_FortranADotProductReal16");
+ testGenDotProduct(*firBuilder, i8Ty, "_FortranADotProductInteger1");
+ testGenDotProduct(*firBuilder, i16Ty, "_FortranADotProductInteger2");
+ testGenDotProduct(*firBuilder, i32Ty, "_FortranADotProductInteger4");
+ testGenDotProduct(*firBuilder, i64Ty, "_FortranADotProductInteger8");
+ testGenDotProduct(*firBuilder, i128Ty, "_FortranADotProductInteger16");
+ testGenDotProduct(*firBuilder, c4Ty, "_FortranACppDotProductComplex4");
+ testGenDotProduct(*firBuilder, c8Ty, "_FortranACppDotProductComplex8");
+ testGenDotProduct(*firBuilder, c10Ty, "_FortranACppDotProductComplex10");
+ testGenDotProduct(*firBuilder, c16Ty, "_FortranACppDotProductComplex16");
+}
+
+void checkGenMxxloc(fir::FirOpBuilder &builder,
+ void (*genFct)(fir::FirOpBuilder &, Location, mlir::Value, mlir::Value,
+ mlir::Value, mlir::Value, mlir::Value),
+ llvm::StringRef fctName, unsigned nbArgs) {
+ mlir::Location loc = builder.getUnknownLoc();
+ mlir::Type i32Ty = builder.getI32Type();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value a = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value kind = builder.createIntegerConstant(loc, i32Ty, 1);
+ mlir::Value back = builder.createIntegerConstant(loc, i32Ty, 1);
+ genFct(builder, loc, result, a, mask, kind, back);
+ checkCallOpFromResultBox(result, fctName, nbArgs);
+}
+
+TEST_F(RuntimeCallTest, genMaxlocTest) {
+ checkGenMxxloc(*firBuilder, fir::runtime::genMaxloc, "_FortranAMaxloc", 5);
+}
+
+TEST_F(RuntimeCallTest, genMinlocTest) {
+ checkGenMxxloc(*firBuilder, fir::runtime::genMinloc, "_FortranAMinloc", 5);
+}
+
+void checkGenMxxlocDim(fir::FirOpBuilder &builder,
+ void (*genFct)(fir::FirOpBuilder &, Location, mlir::Value, mlir::Value,
+ mlir::Value, mlir::Value, mlir::Value, mlir::Value),
+ llvm::StringRef fctName, unsigned nbArgs) {
+ mlir::Location loc = builder.getUnknownLoc();
+ auto i32Ty = builder.getI32Type();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value a = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value kind = builder.createIntegerConstant(loc, i32Ty, 1);
+ mlir::Value dim = builder.createIntegerConstant(loc, i32Ty, 1);
+ mlir::Value back = builder.createIntegerConstant(loc, i32Ty, 1);
+ genFct(builder, loc, result, a, dim, mask, kind, back);
+ checkCallOpFromResultBox(result, fctName, nbArgs);
+}
+
+TEST_F(RuntimeCallTest, genMaxlocDimTest) {
+ checkGenMxxlocDim(
+ *firBuilder, fir::runtime::genMaxlocDim, "_FortranAMaxlocDim", 6);
+}
+
+TEST_F(RuntimeCallTest, genMinlocDimTest) {
+ checkGenMxxlocDim(
+ *firBuilder, fir::runtime::genMinlocDim, "_FortranAMinlocDim", 6);
+}
+
+void checkGenMxxvalChar(fir::FirOpBuilder &builder,
+ void (*genFct)(
+ fir::FirOpBuilder &, Location, mlir::Value, mlir::Value, mlir::Value),
+ llvm::StringRef fctName, unsigned nbArgs) {
+ mlir::Location loc = builder.getUnknownLoc();
+ auto i32Ty = builder.getI32Type();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value a = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ genFct(builder, loc, result, a, mask);
+ checkCallOpFromResultBox(result, fctName, nbArgs);
+}
+
+TEST_F(RuntimeCallTest, genMaxvalCharTest) {
+ checkGenMxxvalChar(
+ *firBuilder, fir::runtime::genMaxvalChar, "_FortranAMaxvalCharacter", 3);
+}
+
+TEST_F(RuntimeCallTest, genMinvalCharTest) {
+ checkGenMxxvalChar(
+ *firBuilder, fir::runtime::genMinvalChar, "_FortranAMinvalCharacter", 3);
+}
+
+void checkGen4argsDim(fir::FirOpBuilder &builder,
+ void (*genFct)(fir::FirOpBuilder &, Location, mlir::Value, mlir::Value,
+ mlir::Value, mlir::Value),
+ llvm::StringRef fctName, unsigned nbArgs) {
+ mlir::Location loc = builder.getUnknownLoc();
+ auto i32Ty = builder.getI32Type();
+ mlir::Type seqTy =
+ fir::SequenceType::get(fir::SequenceType::Shape(1, 10), i32Ty);
+ mlir::Type refSeqTy = fir::ReferenceType::get(seqTy);
+ mlir::Value a = builder.create<fir::UndefOp>(loc, refSeqTy);
+ mlir::Value result = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value mask = builder.create<fir::UndefOp>(loc, seqTy);
+ mlir::Value dim = builder.createIntegerConstant(loc, i32Ty, 1);
+ genFct(builder, loc, result, a, dim, mask);
+ checkCallOpFromResultBox(result, fctName, nbArgs);
+}
+
+TEST_F(RuntimeCallTest, genMaxvalDimTest) {
+ checkGen4argsDim(
+ *firBuilder, fir::runtime::genMaxvalDim, "_FortranAMaxvalDim", 4);
+}
+
+TEST_F(RuntimeCallTest, genMinvalDimTest) {
+ checkGen4argsDim(
+ *firBuilder, fir::runtime::genMinvalDim, "_FortranAMinvalDim", 4);
+}
+
+TEST_F(RuntimeCallTest, genProductDimTest) {
+ checkGen4argsDim(
+ *firBuilder, fir::runtime::genProductDim, "_FortranAProductDim", 4);
+}
+
+TEST_F(RuntimeCallTest, genSumDimTest) {
+ checkGen4argsDim(*firBuilder, fir::runtime::genSumDim, "_FortranASumDim", 4);
+}