extended python interface for KalmanFilter
authorJuan Carlos Niebles <niebles@gmail.com>
Wed, 17 Sep 2014 23:45:48 +0000 (18:45 -0500)
committerJuan Carlos Niebles <niebles@gmail.com>
Wed, 17 Sep 2014 23:45:48 +0000 (18:45 -0500)
modules/video/include/opencv2/video/tracking.hpp
samples/python2/kalman.py [new file with mode: 0755]

index 18a3088..1c52f11 100644 (file)
@@ -129,6 +129,23 @@ public:
     //! updates the predicted state from the measurement
     CV_WRAP const Mat& correct( const Mat& measurement );
 
+    //! sets predicted state
+    CV_WRAP void setStatePre( const Mat& state ) { statePre = state; }
+    //! sets corrected state
+    CV_WRAP void setStatePost( const Mat& state ) { statePost = state; }
+    //! sets transition matrix
+    CV_WRAP void setTransitionMatrix( const Mat& transition ) { transitionMatrix = transition; }
+    //! sets control matrix
+    CV_WRAP void setControlMatrix( const Mat& control ) { controlMatrix = control; }
+    //! sets measurement matrix
+    CV_WRAP void setMeasurementMatrix( const Mat& measurement ) { measurementMatrix = measurement; }
+    //! sets process noise covariance matrix
+    CV_WRAP void setProcessNoiseCov( const Mat& noise ) { processNoiseCov = noise; }
+    //! sets measurement noise covariance matrix
+    CV_WRAP void setMeasurementNoiseCov( const Mat& noise ) { measurementNoiseCov = noise; }
+    //! sets posteriori error covariance
+    CV_WRAP void setErrorCovPost( const Mat& error ) { errorCovPost = error; }
+
     Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
     Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
     Mat transitionMatrix;   //!< state transition matrix (A)
diff --git a/samples/python2/kalman.py b/samples/python2/kalman.py
new file mode 100755 (executable)
index 0000000..fcb7847
--- /dev/null
@@ -0,0 +1,103 @@
+#!/usr/bin/python
+"""
+   Tracking of rotating point.
+   Rotation speed is constant.
+   Both state and measurements vectors are 1D (a point angle),
+   Measurement is the real point angle + gaussian noise.
+   The real and the estimated points are connected with yellow line segment,
+   the real and the measured points are connected with red line segment.
+   (if Kalman filter works correctly,
+    the yellow segment should be shorter than the red one).
+   Pressing any key (except ESC) will reset the tracking with a different speed.
+   Pressing ESC will stop the program.
+"""
+import urllib2
+import cv2
+from math import cos, sin, sqrt
+import sys
+import numpy as np
+
+if __name__ == "__main__":
+
+    img_height = 500
+    img_width = 500
+    img = np.array((img_height, img_width, 3), np.uint8)
+    kalman = cv2.KalmanFilter(2, 1, 0)
+    state = np.zeros((2, 1))  # (phi, delta_phi)
+    process_noise = np.zeros((2, 1))
+    measurement = np.zeros((1, 1))
+
+    code = -1L
+
+    cv2.namedWindow("Kalman")
+
+    while True:
+        state = 0.1 * np.random.randn(2, 1)
+
+        transition_matrix = np.array([[1., 1.], [0., 1.]])
+        kalman.setTransitionMatrix(transition_matrix)
+        measurement_matrix = 1. * np.ones((1, 2))
+        kalman.setMeasurementMatrix(measurement_matrix)
+
+        process_noise_cov = 1e-5
+        kalman.setProcessNoiseCov(process_noise_cov * np.eye(2))
+
+        measurement_noise_cov = 1e-1
+        kalman.setMeasurementNoiseCov(measurement_noise_cov * np.ones((1, 1)))
+
+        kalman.setErrorCovPost(1. * np.ones((2, 2)))
+
+        kalman.setStatePost(0.1 * np.random.randn(2, 1))
+
+        while True:
+            def calc_point(angle):
+                return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
+                         np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
+
+            state_angle = state[0, 0]
+            state_pt = calc_point(state_angle)
+
+            prediction = kalman.predict()
+            predict_angle = prediction[0, 0]
+            predict_pt = calc_point(predict_angle)
+
+
+            measurement = measurement_noise_cov * np.random.randn(1, 1) 
+
+            # generate measurement
+            measurement = np.dot(measurement_matrix, state) + measurement
+
+            measurement_angle = measurement[0, 0]
+            measurement_pt = calc_point(measurement_angle)
+
+            # plot points
+            def draw_cross(center, color, d):
+                cv2.line(img, (center[0] - d, center[1] - d),
+                              (center[0] + d, center[1] + d), color, 1, cv2.LINE_AA, 0)
+                cv2.line(img, (center[0] + d, center[1] - d),
+                              (center[0] - d, center[1] + d), color, 1, cv2.LINE_AA, 0)
+
+            img = np.zeros((img_height, img_width, 3), np.uint8)
+            draw_cross(np.int32(state_pt), (255, 255, 255), 3)
+            draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
+            draw_cross(np.int32(predict_pt), (0, 255, 0), 3)
+
+            cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0)
+            cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0)
+
+            kalman.correct(measurement)
+
+            process_noise = process_noise_cov * np.random.randn(2, 1)
+            
+            state = np.dot(transition_matrix, state) + process_noise
+
+            cv2.imshow("Kalman", img)
+
+            code = cv2.waitKey(100) % 0x100
+            if code != -1:
+                break
+
+        if code in [27, ord('q'), ord('Q')]:
+            break
+
+    cv2.destroyWindow("Kalman")