int Status = STATUS_SUCCESS;
BOOLEAN bInfinite = FALSE;
- /*Check if num_of_time is -ve. If yes, blink led in infinite loop*/
+ /* Check if num_of_time is -ve. If yes, blink led in infinite loop */
if (num_of_time < 0)
{
bInfinite = TRUE;
if (currdriverstate == Adapter->DriverState)
TURN_ON_LED(GPIO_Num, uiLedIndex);
- /*Wait for timeout after setting on the LED*/
+ /* Wait for timeout after setting on the LED */
Status = wait_event_interruptible_timeout(Adapter->LEDInfo.notify_led_event,
currdriverstate != Adapter->DriverState || kthread_should_stop(),
msecs_to_jiffies(timeout));
static INT LED_Proportional_Blink(PMINI_ADAPTER Adapter, UCHAR GPIO_Num_tx,
UCHAR uiTxLedIndex, UCHAR GPIO_Num_rx, UCHAR uiRxLedIndex, LedEventInfo_t currdriverstate)
{
- /* Initial values of TX and RX packets*/
+ /* Initial values of TX and RX packets */
ULONG64 Initial_num_of_packts_tx = 0, Initial_num_of_packts_rx = 0;
- /*values of TX and RX packets after 1 sec*/
+ /* values of TX and RX packets after 1 sec */
ULONG64 Final_num_of_packts_tx = 0, Final_num_of_packts_rx = 0;
- /*Rate of transfer of Tx and Rx in 1 sec*/
+ /* Rate of transfer of Tx and Rx in 1 sec */
ULONG64 rate_of_transfer_tx = 0, rate_of_transfer_rx = 0;
int Status = STATUS_SUCCESS;
INT num_of_time = 0, num_of_time_tx = 0, num_of_time_rx = 0;
UINT remDelay = 0;
BOOLEAN bBlinkBothLED = TRUE;
- //UINT GPIO_num = DISABLE_GPIO_NUM;
+ /* UINT GPIO_num = DISABLE_GPIO_NUM; */
ulong timeout = 0;
- /*Read initial value of packets sent/received */
+ /* Read initial value of packets sent/received */
Initial_num_of_packts_tx = Adapter->dev->stats.tx_packets;
Initial_num_of_packts_rx = Adapter->dev->stats.rx_packets;
- /*Scale the rate of transfer to no of blinks.*/
+ /* Scale the rate of transfer to no of blinks. */
num_of_time_tx = ScaleRateofTransfer((ULONG)rate_of_transfer_tx);
num_of_time_rx = ScaleRateofTransfer((ULONG)rate_of_transfer_rx);
while ((Adapter->device_removed == FALSE))
{
timeout = 50;
- /*Blink Tx and Rx LED when both Tx and Rx is in normal bandwidth*/
+ /*
+ * Blink Tx and Rx LED when both Tx and Rx is
+ * in normal bandwidth
+ */
if (bBlinkBothLED)
{
- /*Assign minimum number of blinks of either Tx or Rx.*/
+ /*
+ * Assign minimum number of blinks of
+ * either Tx or Rx.
+ */
if (num_of_time_tx > num_of_time_rx)
num_of_time = num_of_time_rx;
else
num_of_time = num_of_time_tx;
if (num_of_time > 0)
{
- /*Blink both Tx and Rx LEDs*/
+ /* Blink both Tx and Rx LEDs */
if (LED_Blink(Adapter, 1 << GPIO_Num_tx, uiTxLedIndex, timeout, num_of_time, currdriverstate)
== EVENT_SIGNALED)
{
if (num_of_time == num_of_time_tx)
{
- /*Blink pending rate of Rx*/
+ /* Blink pending rate of Rx */
if (LED_Blink(Adapter, (1 << GPIO_Num_rx), uiRxLedIndex, timeout,
num_of_time_rx-num_of_time, currdriverstate) == EVENT_SIGNALED)
{
}
else
{
- /*Blink pending rate of Tx*/
+ /* Blink pending rate of Tx */
if (LED_Blink(Adapter, 1 << GPIO_Num_tx, uiTxLedIndex, timeout,
num_of_time_tx-num_of_time, currdriverstate) == EVENT_SIGNALED)
{
{
if (num_of_time == num_of_time_tx)
{
- /*Blink pending rate of Rx*/
+ /* Blink pending rate of Rx */
if (LED_Blink(Adapter, 1 << GPIO_Num_tx, uiTxLedIndex, timeout, num_of_time, currdriverstate)
== EVENT_SIGNALED)
{
}
else
{
- /*Blink pending rate of Tx*/
+ /* Blink pending rate of Tx */
if (LED_Blink(Adapter, 1 << GPIO_Num_rx, uiRxLedIndex, timeout,
num_of_time, currdriverstate) == EVENT_SIGNALED)
{
}
}
}
- /* If Tx/Rx rate is less than maximum blinks per second,
- * wait till delay completes to 1 second
- */
+
+ /*
+ * If Tx/Rx rate is less than maximum blinks per second,
+ * wait till delay completes to 1 second
+ */
remDelay = MAX_NUM_OF_BLINKS - num_of_time;
if (remDelay > 0)
{
return EVENT_SIGNALED;
}
- /*Turn off both Tx and Rx LEDs before next second*/
+ /* Turn off both Tx and Rx LEDs before next second */
TURN_OFF_LED(1 << GPIO_Num_tx, uiTxLedIndex);
TURN_OFF_LED(1 << GPIO_Num_rx, uiTxLedIndex);
rate_of_transfer_tx = Final_num_of_packts_tx - Initial_num_of_packts_tx;
rate_of_transfer_rx = Final_num_of_packts_rx - Initial_num_of_packts_rx;
- /*Read initial value of packets sent/received */
+ /* Read initial value of packets sent/received */
Initial_num_of_packts_tx = Final_num_of_packts_tx;
Initial_num_of_packts_rx = Final_num_of_packts_rx;
- /*Scale the rate of transfer to no of blinks.*/
+ /* Scale the rate of transfer to no of blinks. */
num_of_time_tx = ScaleRateofTransfer((ULONG)rate_of_transfer_tx);
num_of_time_rx = ScaleRateofTransfer((ULONG)rate_of_transfer_rx);
return Status;
}
-
-//-----------------------------------------------------------------------------
-// Procedure: ValidateDSDParamsChecksum
-//
-// Description: Reads DSD Params and validates checkusm.
-//
-// Arguments:
-// Adapter - Pointer to Adapter structure.
-// ulParamOffset - Start offset of the DSD parameter to be read and validated.
-// usParamLen - Length of the DSD Parameter.
-//
-// Returns:
-// <OSAL_STATUS_CODE>
-//-----------------------------------------------------------------------------
-
+/*
+ * -----------------------------------------------------------------------------
+ * Procedure: ValidateDSDParamsChecksum
+ *
+ * Description: Reads DSD Params and validates checkusm.
+ *
+ * Arguments:
+ * Adapter - Pointer to Adapter structure.
+ * ulParamOffset - Start offset of the DSD parameter to be read and
+ * validated.
+ * usParamLen - Length of the DSD Parameter.
+ *
+ * Returns:
+ * <OSAL_STATUS_CODE>
+ * -----------------------------------------------------------------------------
+ */
static INT ValidateDSDParamsChecksum(PMINI_ADAPTER Adapter, ULONG ulParamOffset, USHORT usParamLen)
{
INT Status = STATUS_SUCCESS;
}
- //
- // Read the DSD data from the parameter offset.
- //
+ /* Read the DSD data from the parameter offset. */
if (STATUS_SUCCESS != BeceemNVMRead(Adapter, (PUINT)puBuffer, ulParamOffset, usParamLen))
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed");
goto exit;
}
- //
- // Calculate the checksum of the data read from the DSD parameter.
- //
+ /* Calculate the checksum of the data read from the DSD parameter. */
usChecksumCalculated = CFG_CalculateChecksum(puBuffer, usParamLen);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: usCheckSumCalculated = 0x%x\n", usChecksumCalculated);
- //
- // End of the DSD parameter will have a TWO bytes checksum stored in it. Read it and compare with the calculated
- // Checksum.
- //
+ /*
+ * End of the DSD parameter will have a TWO bytes checksum stored in it.
+ * Read it and compare with the calculated Checksum.
+ */
if (STATUS_SUCCESS != BeceemNVMRead(Adapter, (PUINT)&usChksmOrg, ulParamOffset+usParamLen, 2))
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed");
usChksmOrg = ntohs(usChksmOrg);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: usChksmOrg = 0x%x", usChksmOrg);
- //
- // Compare the checksum calculated with the checksum read from DSD section
- //
+ /*
+ * Compare the checksum calculated with the checksum read
+ * from DSD section
+ */
if (usChecksumCalculated ^ usChksmOrg)
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: ValidateDSDParamsChecksum: Checksums don't match");
}
-//-----------------------------------------------------------------------------
-// Procedure: ValidateHWParmStructure
-//
-// Description: Validates HW Parameters.
-//
-// Arguments:
-// Adapter - Pointer to Adapter structure.
-// ulHwParamOffset - Start offset of the HW parameter Section to be read and validated.
-//
-// Returns:
-// <OSAL_STATUS_CODE>
-//-----------------------------------------------------------------------------
-
+/*
+ * -----------------------------------------------------------------------------
+ * Procedure: ValidateHWParmStructure
+ *
+ * Description: Validates HW Parameters.
+ *
+ * Arguments:
+ * Adapter - Pointer to Adapter structure.
+ * ulHwParamOffset - Start offset of the HW parameter Section to be read
+ * and validated.
+ *
+ * Returns:
+ * <OSAL_STATUS_CODE>
+ * -----------------------------------------------------------------------------
+ */
static INT ValidateHWParmStructure(PMINI_ADAPTER Adapter, ULONG ulHwParamOffset)
{
INT Status = STATUS_SUCCESS;
USHORT HwParamLen = 0;
- // Add DSD start offset to the hwParamOffset to get the actual address.
+ /*
+ * Add DSD start offset to the hwParamOffset to get
+ * the actual address.
+ */
ulHwParamOffset += DSD_START_OFFSET;
- /*Read the Length of HW_PARAM structure*/
+ /* Read the Length of HW_PARAM structure */
BeceemNVMRead(Adapter, (PUINT)&HwParamLen, ulHwParamOffset, 2);
HwParamLen = ntohs(HwParamLen);
if (0 == HwParamLen || HwParamLen > Adapter->uiNVMDSDSize)
}
else
{
- //
- // Validate Compatibility section and then read HW param if compatibility section is valid.
- //
+ /*
+ * Validate Compatibility section and then read HW param
+ * if compatibility section is valid.
+ */
Status = ValidateDSDParamsChecksum(Adapter,
DSD_START_OFFSET,
COMPATIBILITY_SECTION_LENGTH_MAP5);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: Start address of HW_PARAM structure = 0x%lx", dwReadValue);
- //
- // Validate if the address read out is within the DSD.
- // Adapter->uiNVMDSDSize gives whole DSD size inclusive of Autoinit.
- // lower limit should be above DSD_START_OFFSET and
- // upper limit should be below (Adapter->uiNVMDSDSize-DSD_START_OFFSET)
- //
+ /*
+ * Validate if the address read out is within the DSD.
+ * Adapter->uiNVMDSDSize gives whole DSD size inclusive of Autoinit.
+ * lower limit should be above DSD_START_OFFSET and
+ * upper limit should be below (Adapter->uiNVMDSDSize-DSD_START_OFFSET)
+ */
if (dwReadValue < DSD_START_OFFSET ||
dwReadValue > (Adapter->uiNVMDSDSize-DSD_START_OFFSET))
{
}
/*
- Add DSD_START_OFFSET to the offset read from the EEPROM.
- This will give the actual start HW Parameters start address.
- To read GPIO section, add GPIO offset further.
- */
+ * Add DSD_START_OFFSET to the offset read from the EEPROM.
+ * This will give the actual start HW Parameters start address.
+ * To read GPIO section, add GPIO offset further.
+ */
- dwReadValue += DSD_START_OFFSET; // = start address of hw param section.
- dwReadValue += GPIO_SECTION_START_OFFSET; // = GPIO start offset within HW Param section.
+ dwReadValue +=
+ DSD_START_OFFSET; /* = start address of hw param section. */
+ dwReadValue += GPIO_SECTION_START_OFFSET;
+ /* = GPIO start offset within HW Param section. */
- /* Read the GPIO values for 32 GPIOs from EEPROM and map the function
+ /*
+ * Read the GPIO values for 32 GPIOs from EEPROM and map the function
* number to GPIO pin number to GPIO_Array
*/
BeceemNVMRead(Adapter, (UINT *)ucGPIOInfo, dwReadValue, 32);
static int ReadConfigFileStructure(PMINI_ADAPTER Adapter, BOOLEAN *bEnableThread)
{
int Status = STATUS_SUCCESS;
- UCHAR GPIO_Array[NUM_OF_LEDS+1]; /*Array to store GPIO numbers from EEPROM*/
+ /* Array to store GPIO numbers from EEPROM */
+ UCHAR GPIO_Array[NUM_OF_LEDS+1];
UINT uiIndex = 0;
UINT uiNum_of_LED_Type = 0;
PUCHAR puCFGData = NULL;
return -ENOENT;
}
- /*Populate GPIO_Array with GPIO numbers for LED functions*/
- /*Read the GPIO numbers from EEPROM*/
+ /* Populate GPIO_Array with GPIO numbers for LED functions */
+ /* Read the GPIO numbers from EEPROM */
Status = ReadLEDInformationFromEEPROM(Adapter, GPIO_Array);
if (Status == STATUS_IMAGE_CHECKSUM_MISMATCH)
{
*bEnableThread = FALSE;
return Status;
}
- /*
- * CONFIG file read successfully. Deallocate the memory of
- * uiFileNameBufferSize
- */
+
+ /*
+ * CONFIG file read successfully. Deallocate the memory of
+ * uiFileNameBufferSize
+ */
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: Config file read successfully\n");
puCFGData = (PUCHAR) &Adapter->pstargetparams->HostDrvrConfig1;
{
bData = *puCFGData;
- /*Check Bit 8 for polarity. If it is set, polarity is reverse polarity*/
+ /*
+ * Check Bit 8 for polarity. If it is set,
+ * polarity is reverse polarity
+ */
if (bData & 0x80)
{
Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 0;
- /*unset the bit 8*/
+ /* unset the bit 8 */
bData = bData & 0x7f;
}
puCFGData++;
}
- /*Check if all the LED settings are disabled. If it is disabled, dont launch the LED control thread.*/
+ /*
+ * Check if all the LED settings are disabled. If it is disabled,
+ * dont launch the LED control thread.
+ */
for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
if ((Adapter->LEDInfo.LEDState[uiIndex].LED_Type == DISABLE_GPIO_NUM) ||
return Status;
}
-//--------------------------------------------------------------------------
-// Procedure: LedGpioInit
-//
-// Description: Initializes LED GPIOs. Makes the LED GPIOs to OUTPUT mode and make the
-// initial state to be OFF.
-//
-// Arguments:
-// Adapter - Pointer to MINI_ADAPTER structure.
-//
-// Returns: VOID
-//
-//-----------------------------------------------------------------------------
+/*
+ * -----------------------------------------------------------------------------
+ * Procedure: LedGpioInit
+ *
+ * Description: Initializes LED GPIOs. Makes the LED GPIOs to OUTPUT mode
+ * and make the initial state to be OFF.
+ *
+ * Arguments:
+ * Adapter - Pointer to MINI_ADAPTER structure.
+ *
+ * Returns: VOID
+ *
+ * -----------------------------------------------------------------------------
+ */
static VOID LedGpioInit(PMINI_ADAPTER Adapter)
{
UINT uiResetValue = 0;
Adapter->LEDInfo.bIdle_led_off = FALSE;
}
-//-----------------------------------------------------------------------------
static INT BcmGetGPIOPinInfo(PMINI_ADAPTER Adapter, UCHAR *GPIO_num_tx, UCHAR *GPIO_num_rx, UCHAR *uiLedTxIndex, UCHAR *uiLedRxIndex, LedEventInfo_t currdriverstate)
{
UCHAR dummyGPIONum = 0;
UCHAR dummyIndex = 0;
- //currdriverstate = Adapter->DriverState;
+ /* currdriverstate = Adapter->DriverState; */
Adapter->LEDInfo.bIdleMode_tx_from_host = FALSE;
- /*Wait till event is triggered*/
- //wait_event(Adapter->LEDInfo.notify_led_event,
- // currdriverstate!= Adapter->DriverState);
+ /*
+ * Wait till event is triggered
+ *
+ * wait_event(Adapter->LEDInfo.notify_led_event,
+ * currdriverstate!= Adapter->DriverState);
+ */
GPIO_num = DISABLE_GPIO_NUM;
while (TRUE)
{
- /*Wait till event is triggered*/
+ /* Wait till event is triggered */
if ((GPIO_num == DISABLE_GPIO_NUM)
||
((currdriverstate != FW_DOWNLOAD) &&
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Led thread got signal to exit..hence exiting");
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED;
TURN_OFF_LED(1 << GPIO_num, uiLedIndex);
- return;//STATUS_FAILURE;
+ return; /* STATUS_FAILURE; */
}
if (GPIO_num != DISABLE_GPIO_NUM)
{
case DRIVER_INIT:
{
- currdriverstate = DRIVER_INIT;//Adapter->DriverState;
+ currdriverstate = DRIVER_INIT;
+ /* Adapter->DriverState; */
BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex, currdriverstate);
if (GPIO_num != DISABLE_GPIO_NUM)
break;
case FW_DOWNLOAD:
{
- //BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,"LED Thread: FW_DN_DONE called\n");
+ /*
+ * BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS,
+ * LED_DUMP_INFO, DBG_LVL_ALL,
+ * "LED Thread: FW_DN_DONE called\n");
+ */
currdriverstate = FW_DOWNLOAD;
BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex, currdriverstate);
break;
case SHUTDOWN_EXIT:
- //no break, continue to NO_NETWORK_ENTRY state as well.
-
+ /*
+ * no break, continue to NO_NETWORK_ENTRY
+ * state as well.
+ */
case NO_NETWORK_ENTRY:
{
currdriverstate = NO_NETWORK_ENTRY;
}
else
{
- /*If single LED is selected, use same for both Tx and Rx*/
+ /*
+ * If single LED is selected, use same
+ * for both Tx and Rx
+ */
if (GPIO_num_tx == DISABLE_GPIO_NUM)
{
GPIO_num_tx = GPIO_num_rx;
GPIO_num_rx = GPIO_num_tx;
uiLEDRx = uiLEDTx;
}
- /*Blink the LED in proportionate to Tx and Rx transmissions.*/
+ /*
+ * Blink the LED in proportionate
+ * to Tx and Rx transmissions.
+ */
LED_Proportional_Blink(Adapter, GPIO_num_tx, uiLEDTx, GPIO_num_rx, uiLEDRx, currdriverstate);
}
}
DISABLE_GPIO_NUM)
TURN_OFF_LED((1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num), uiIndex);
}
- //Adapter->DriverState = DRIVER_INIT;
+ /* Adapter->DriverState = DRIVER_INIT; */
}
break;
case LED_THREAD_INACTIVE:
currdriverstate = LED_THREAD_INACTIVE;
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_INACTIVELY;
Adapter->LEDInfo.bLedInitDone = FALSE;
- //disable ALL LED
+ /* disable ALL LED */
for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
{
if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num !=
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_ACTIVELY;
}
break;
- //return;
+ /* return; */
default:
break;
}
BOOLEAN bEnableThread = TRUE;
UCHAR uiIndex = 0;
- /*Initially set BitPolarity to normal polarity. The bit 8 of LED type
- * is used to change the polarity of the LED.*/
+ /*
+ * Initially set BitPolarity to normal polarity. The bit 8 of LED type
+ * is used to change the polarity of the LED.
+ */
for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 1;
}
- /*Read the LED settings of CONFIG file and map it to GPIO numbers in EEPROM*/
+ /*
+ * Read the LED settings of CONFIG file and map it
+ * to GPIO numbers in EEPROM
+ */
Status = ReadConfigFileStructure(Adapter, &bEnableThread);
if (STATUS_SUCCESS != Status)
{
else if (bEnableThread)
{
- /*Create secondary thread to handle the LEDs*/
+ /* Create secondary thread to handle the LEDs */
init_waitqueue_head(&Adapter->LEDInfo.notify_led_event);
init_waitqueue_head(&Adapter->LEDInfo.idleModeSyncEvent);
Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_ACTIVELY;