def __exit__(self, *args):
pass
-DIM_TEST_SCENARIOS = [
-]
-
# This is intentionally prefixed by an underscore. Otherwise pytest will try to
# run its methods as test cases.
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_sum_dim(self):
- for sizes, dim in DIM_TEST_SCENARIOS:
- self._test_dim_ops(
- lambda t, d: t.sum(d),
- lambda n, d: n.sum(d))
+ self._test_dim_ops(
+ lambda t, d: t.sum(d),
+ lambda n, d: n.sum(d))
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_mean_dim(self):
- for sizes, dim in DIM_TEST_SCENARIOS:
- self._test_dim_ops(
- lambda t, d: t.mean(d),
- lambda n, d: n.mean(d),
- use_integral=False)
+ self._test_dim_ops(
+ lambda t, d: t.mean(d),
+ lambda n, d: n.mean(d),
+ use_integral=False)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_std_dim(self):
for unbiased in [False, True]:
- for sizes, dim in DIM_TEST_SCENARIOS:
- self._test_dim_ops(
- lambda t, d: t.std(d, unbiased=unbiased),
- lambda n, d: n.std(d, ddof=1 if unbiased else 0),
- use_integral=False)
+ self._test_dim_ops(
+ lambda t, d: t.std(d, unbiased=unbiased),
+ lambda n, d: n.std(d, ddof=1 if unbiased else 0),
+ use_integral=False)
def test_sum_out(self):
x = torch.rand(100, 100)