select ARCH_HAVE_NMI_SAFE_CMPXCHG
select GENERIC_SMP_IDLE_THREAD
select GENERIC_CMOS_UPDATE
+ select GENERIC_STRNCPY_FROM_USER
+ select GENERIC_STRNLEN_USER
help
The Alpha is a 64-bit general-purpose processor designed and
marketed by the Digital Equipment Corporation of blessed memory,
#undef __module_address
#undef __module_call
-/* Returns: -EFAULT if exception before terminator, N if the entire
- buffer filled, else strlen. */
+#define user_addr_max() \
+ (segment_eq(get_fs(), USER_DS) ? TASK_SIZE : ~0UL)
-extern long __strncpy_from_user(char *__to, const char __user *__from, long __to_len);
-
-extern inline long
-strncpy_from_user(char *to, const char __user *from, long n)
-{
- long ret = -EFAULT;
- if (__access_ok((unsigned long)from, 0, get_fs()))
- ret = __strncpy_from_user(to, from, n);
- return ret;
-}
-
-/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
-extern long __strlen_user(const char __user *);
-
-extern inline long strlen_user(const char __user *str)
-{
- return access_ok(VERIFY_READ,str,0) ? __strlen_user(str) : 0;
-}
-
-/* Returns: 0 if exception before NUL or reaching the supplied limit (N),
- * a value greater than N if the limit would be exceeded, else strlen. */
-extern long __strnlen_user(const char __user *, long);
-
-extern inline long strnlen_user(const char __user *str, long n)
-{
- return access_ok(VERIFY_READ,str,0) ? __strnlen_user(str, n) : 0;
-}
+extern long strncpy_from_user(char *dest, const char __user *src, long count);
+extern __must_check long strlen_user(const char __user *str);
+extern __must_check long strnlen_user(const char __user *str, long n);
/*
* About the exception table:
--- /dev/null
+#ifndef _ASM_WORD_AT_A_TIME_H
+#define _ASM_WORD_AT_A_TIME_H
+
+#include <asm/compiler.h>
+
+/*
+ * word-at-a-time interface for Alpha.
+ */
+
+/*
+ * We do not use the word_at_a_time struct on Alpha, but it needs to be
+ * implemented to humour the generic code.
+ */
+struct word_at_a_time {
+ const unsigned long unused;
+};
+
+#define WORD_AT_A_TIME_CONSTANTS { 0 }
+
+/* Return nonzero if val has a zero */
+static inline unsigned long has_zero(unsigned long val, unsigned long *bits, const struct word_at_a_time *c)
+{
+ unsigned long zero_locations = __kernel_cmpbge(0, val);
+ *bits = zero_locations;
+ return zero_locations;
+}
+
+static inline unsigned long prep_zero_mask(unsigned long val, unsigned long bits, const struct word_at_a_time *c)
+{
+ return bits;
+}
+
+#define create_zero_mask(bits) (bits)
+
+static inline unsigned long find_zero(unsigned long bits)
+{
+#if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67)
+ /* Simple if have CIX instructions */
+ return __kernel_cttz(bits);
+#else
+ unsigned long t1, t2, t3;
+ /* Retain lowest set bit only */
+ bits &= -bits;
+ /* Binary search for lowest set bit */
+ t1 = bits & 0xf0;
+ t2 = bits & 0xcc;
+ t3 = bits & 0xaa;
+ if (t1) t1 = 4;
+ if (t2) t2 = 2;
+ if (t3) t3 = 1;
+ return t1 + t2 + t3;
+#endif
+}
+
+#endif /* _ASM_WORD_AT_A_TIME_H */
*/
EXPORT_SYMBOL(__copy_user);
EXPORT_SYMBOL(__do_clear_user);
-EXPORT_SYMBOL(__strncpy_from_user);
-EXPORT_SYMBOL(__strnlen_user);
/*
* SMP-specific symbols.
$(ev6-y)memchr.o \
$(ev6-y)copy_user.o \
$(ev6-y)clear_user.o \
- $(ev6-y)strncpy_from_user.o \
- $(ev67-y)strlen_user.o \
$(ev6-y)csum_ipv6_magic.o \
$(ev6-y)clear_page.o \
$(ev6-y)copy_page.o \
+++ /dev/null
-/*
- * arch/alpha/lib/ev6-strncpy_from_user.S
- * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
- *
- * Just like strncpy except in the return value:
- *
- * -EFAULT if an exception occurs before the terminator is copied.
- * N if the buffer filled.
- *
- * Otherwise the length of the string is returned.
- *
- * Much of the information about 21264 scheduling/coding comes from:
- * Compiler Writer's Guide for the Alpha 21264
- * abbreviated as 'CWG' in other comments here
- * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
- * Scheduling notation:
- * E - either cluster
- * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
- * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
- * A bunch of instructions got moved and temp registers were changed
- * to aid in scheduling. Control flow was also re-arranged to eliminate
- * branches, and to provide longer code sequences to enable better scheduling.
- * A total rewrite (using byte load/stores for start & tail sequences)
- * is desirable, but very difficult to do without a from-scratch rewrite.
- * Save that for the future.
- */
-
-
-#include <asm/errno.h>
-#include <asm/regdef.h>
-
-
-/* Allow an exception for an insn; exit if we get one. */
-#define EX(x,y...) \
- 99: x,##y; \
- .section __ex_table,"a"; \
- .long 99b - .; \
- lda $31, $exception-99b($0); \
- .previous
-
-
- .set noat
- .set noreorder
- .text
-
- .globl __strncpy_from_user
- .ent __strncpy_from_user
- .frame $30, 0, $26
- .prologue 0
-
- .align 4
-__strncpy_from_user:
- and a0, 7, t3 # E : find dest misalignment
- beq a2, $zerolength # U :
-
- /* Are source and destination co-aligned? */
- mov a0, v0 # E : save the string start
- xor a0, a1, t4 # E :
- EX( ldq_u t1, 0(a1) ) # L : Latency=3 load first quadword
- ldq_u t0, 0(a0) # L : load first (partial) aligned dest quadword
-
- addq a2, t3, a2 # E : bias count by dest misalignment
- subq a2, 1, a3 # E :
- addq zero, 1, t10 # E :
- and t4, 7, t4 # E : misalignment between the two
-
- and a3, 7, t6 # E : number of tail bytes
- sll t10, t6, t10 # E : t10 = bitmask of last count byte
- bne t4, $unaligned # U :
- lda t2, -1 # E : build a mask against false zero
-
- /*
- * We are co-aligned; take care of a partial first word.
- * On entry to this basic block:
- * t0 == the first destination word for masking back in
- * t1 == the first source word.
- */
-
- srl a3, 3, a2 # E : a2 = loop counter = (count - 1)/8
- addq a1, 8, a1 # E :
- mskqh t2, a1, t2 # U : detection in the src word
- nop
-
- /* Create the 1st output word and detect 0's in the 1st input word. */
- mskqh t1, a1, t3 # U :
- mskql t0, a1, t0 # U : assemble the first output word
- ornot t1, t2, t2 # E :
- nop
-
- cmpbge zero, t2, t8 # E : bits set iff null found
- or t0, t3, t0 # E :
- beq a2, $a_eoc # U :
- bne t8, $a_eos # U : 2nd branch in a quad. Bad.
-
- /* On entry to this basic block:
- * t0 == a source quad not containing a null.
- * a0 - current aligned destination address
- * a1 - current aligned source address
- * a2 - count of quadwords to move.
- * NOTE: Loop improvement - unrolling this is going to be
- * a huge win, since we're going to stall otherwise.
- * Fix this later. For _really_ large copies, look
- * at using wh64 on a look-ahead basis. See the code
- * in clear_user.S and copy_user.S.
- * Presumably, since (a0) and (a1) do not overlap (by C definition)
- * Lots of nops here:
- * - Separate loads from stores
- * - Keep it to 1 branch/quadpack so the branch predictor
- * can train.
- */
-$a_loop:
- stq_u t0, 0(a0) # L :
- addq a0, 8, a0 # E :
- nop
- subq a2, 1, a2 # E :
-
- EX( ldq_u t0, 0(a1) ) # L :
- addq a1, 8, a1 # E :
- cmpbge zero, t0, t8 # E : Stall 2 cycles on t0
- beq a2, $a_eoc # U :
-
- beq t8, $a_loop # U :
- nop
- nop
- nop
-
- /* Take care of the final (partial) word store. At this point
- * the end-of-count bit is set in t8 iff it applies.
- *
- * On entry to this basic block we have:
- * t0 == the source word containing the null
- * t8 == the cmpbge mask that found it.
- */
-$a_eos:
- negq t8, t12 # E : find low bit set
- and t8, t12, t12 # E :
-
- /* We're doing a partial word store and so need to combine
- our source and original destination words. */
- ldq_u t1, 0(a0) # L :
- subq t12, 1, t6 # E :
-
- or t12, t6, t8 # E :
- zapnot t0, t8, t0 # U : clear src bytes > null
- zap t1, t8, t1 # U : clear dst bytes <= null
- or t0, t1, t0 # E :
-
- stq_u t0, 0(a0) # L :
- br $finish_up # L0 :
- nop
- nop
-
- /* Add the end-of-count bit to the eos detection bitmask. */
- .align 4
-$a_eoc:
- or t10, t8, t8
- br $a_eos
- nop
- nop
-
-
-/* The source and destination are not co-aligned. Align the destination
- and cope. We have to be very careful about not reading too much and
- causing a SEGV. */
-
- .align 4
-$u_head:
- /* We know just enough now to be able to assemble the first
- full source word. We can still find a zero at the end of it
- that prevents us from outputting the whole thing.
-
- On entry to this basic block:
- t0 == the first dest word, unmasked
- t1 == the shifted low bits of the first source word
- t6 == bytemask that is -1 in dest word bytes */
-
- EX( ldq_u t2, 8(a1) ) # L : load second src word
- addq a1, 8, a1 # E :
- mskql t0, a0, t0 # U : mask trailing garbage in dst
- extqh t2, a1, t4 # U :
-
- or t1, t4, t1 # E : first aligned src word complete
- mskqh t1, a0, t1 # U : mask leading garbage in src
- or t0, t1, t0 # E : first output word complete
- or t0, t6, t6 # E : mask original data for zero test
-
- cmpbge zero, t6, t8 # E :
- beq a2, $u_eocfin # U :
- bne t8, $u_final # U : bad news - 2nd branch in a quad
- lda t6, -1 # E : mask out the bits we have
-
- mskql t6, a1, t6 # U : already seen
- stq_u t0, 0(a0) # L : store first output word
- or t6, t2, t2 # E :
- cmpbge zero, t2, t8 # E : find nulls in second partial
-
- addq a0, 8, a0 # E :
- subq a2, 1, a2 # E :
- bne t8, $u_late_head_exit # U :
- nop
-
- /* Finally, we've got all the stupid leading edge cases taken care
- of and we can set up to enter the main loop. */
-
- extql t2, a1, t1 # U : position hi-bits of lo word
- EX( ldq_u t2, 8(a1) ) # L : read next high-order source word
- addq a1, 8, a1 # E :
- cmpbge zero, t2, t8 # E :
-
- beq a2, $u_eoc # U :
- bne t8, $u_eos # U :
- nop
- nop
-
- /* Unaligned copy main loop. In order to avoid reading too much,
- the loop is structured to detect zeros in aligned source words.
- This has, unfortunately, effectively pulled half of a loop
- iteration out into the head and half into the tail, but it does
- prevent nastiness from accumulating in the very thing we want
- to run as fast as possible.
-
- On entry to this basic block:
- t1 == the shifted high-order bits from the previous source word
- t2 == the unshifted current source word
-
- We further know that t2 does not contain a null terminator. */
-
- /*
- * Extra nops here:
- * separate load quads from store quads
- * only one branch/quad to permit predictor training
- */
-
- .align 4
-$u_loop:
- extqh t2, a1, t0 # U : extract high bits for current word
- addq a1, 8, a1 # E :
- extql t2, a1, t3 # U : extract low bits for next time
- addq a0, 8, a0 # E :
-
- or t0, t1, t0 # E : current dst word now complete
- EX( ldq_u t2, 0(a1) ) # L : load high word for next time
- subq a2, 1, a2 # E :
- nop
-
- stq_u t0, -8(a0) # L : save the current word
- mov t3, t1 # E :
- cmpbge zero, t2, t8 # E : test new word for eos
- beq a2, $u_eoc # U :
-
- beq t8, $u_loop # U :
- nop
- nop
- nop
-
- /* We've found a zero somewhere in the source word we just read.
- If it resides in the lower half, we have one (probably partial)
- word to write out, and if it resides in the upper half, we
- have one full and one partial word left to write out.
-
- On entry to this basic block:
- t1 == the shifted high-order bits from the previous source word
- t2 == the unshifted current source word. */
- .align 4
-$u_eos:
- extqh t2, a1, t0 # U :
- or t0, t1, t0 # E : first (partial) source word complete
- cmpbge zero, t0, t8 # E : is the null in this first bit?
- nop
-
- bne t8, $u_final # U :
- stq_u t0, 0(a0) # L : the null was in the high-order bits
- addq a0, 8, a0 # E :
- subq a2, 1, a2 # E :
-
- .align 4
-$u_late_head_exit:
- extql t2, a1, t0 # U :
- cmpbge zero, t0, t8 # E :
- or t8, t10, t6 # E :
- cmoveq a2, t6, t8 # E :
-
- /* Take care of a final (probably partial) result word.
- On entry to this basic block:
- t0 == assembled source word
- t8 == cmpbge mask that found the null. */
- .align 4
-$u_final:
- negq t8, t6 # E : isolate low bit set
- and t6, t8, t12 # E :
- ldq_u t1, 0(a0) # L :
- subq t12, 1, t6 # E :
-
- or t6, t12, t8 # E :
- zapnot t0, t8, t0 # U : kill source bytes > null
- zap t1, t8, t1 # U : kill dest bytes <= null
- or t0, t1, t0 # E :
-
- stq_u t0, 0(a0) # E :
- br $finish_up # U :
- nop
- nop
-
- .align 4
-$u_eoc: # end-of-count
- extqh t2, a1, t0 # U :
- or t0, t1, t0 # E :
- cmpbge zero, t0, t8 # E :
- nop
-
- .align 4
-$u_eocfin: # end-of-count, final word
- or t10, t8, t8 # E :
- br $u_final # U :
- nop
- nop
-
- /* Unaligned copy entry point. */
- .align 4
-$unaligned:
-
- srl a3, 3, a2 # U : a2 = loop counter = (count - 1)/8
- and a0, 7, t4 # E : find dest misalignment
- and a1, 7, t5 # E : find src misalignment
- mov zero, t0 # E :
-
- /* Conditionally load the first destination word and a bytemask
- with 0xff indicating that the destination byte is sacrosanct. */
-
- mov zero, t6 # E :
- beq t4, 1f # U :
- ldq_u t0, 0(a0) # L :
- lda t6, -1 # E :
-
- mskql t6, a0, t6 # E :
- nop
- nop
- nop
-
- .align 4
-1:
- subq a1, t4, a1 # E : sub dest misalignment from src addr
- /* If source misalignment is larger than dest misalignment, we need
- extra startup checks to avoid SEGV. */
- cmplt t4, t5, t12 # E :
- extql t1, a1, t1 # U : shift src into place
- lda t2, -1 # E : for creating masks later
-
- beq t12, $u_head # U :
- mskqh t2, t5, t2 # U : begin src byte validity mask
- cmpbge zero, t1, t8 # E : is there a zero?
- nop
-
- extql t2, a1, t2 # U :
- or t8, t10, t5 # E : test for end-of-count too
- cmpbge zero, t2, t3 # E :
- cmoveq a2, t5, t8 # E : Latency=2, extra map slot
-
- nop # E : goes with cmov
- andnot t8, t3, t8 # E :
- beq t8, $u_head # U :
- nop
-
- /* At this point we've found a zero in the first partial word of
- the source. We need to isolate the valid source data and mask
- it into the original destination data. (Incidentally, we know
- that we'll need at least one byte of that original dest word.) */
-
- ldq_u t0, 0(a0) # L :
- negq t8, t6 # E : build bitmask of bytes <= zero
- mskqh t1, t4, t1 # U :
- and t6, t8, t12 # E :
-
- subq t12, 1, t6 # E :
- or t6, t12, t8 # E :
- zapnot t2, t8, t2 # U : prepare source word; mirror changes
- zapnot t1, t8, t1 # U : to source validity mask
-
- andnot t0, t2, t0 # E : zero place for source to reside
- or t0, t1, t0 # E : and put it there
- stq_u t0, 0(a0) # L :
- nop
-
- .align 4
-$finish_up:
- zapnot t0, t12, t4 # U : was last byte written null?
- and t12, 0xf0, t3 # E : binary search for the address of the
- cmovne t4, 1, t4 # E : Latency=2, extra map slot
- nop # E : with cmovne
-
- and t12, 0xcc, t2 # E : last byte written
- and t12, 0xaa, t1 # E :
- cmovne t3, 4, t3 # E : Latency=2, extra map slot
- nop # E : with cmovne
-
- bic a0, 7, t0
- cmovne t2, 2, t2 # E : Latency=2, extra map slot
- nop # E : with cmovne
- nop
-
- cmovne t1, 1, t1 # E : Latency=2, extra map slot
- nop # E : with cmovne
- addq t0, t3, t0 # E :
- addq t1, t2, t1 # E :
-
- addq t0, t1, t0 # E :
- addq t0, t4, t0 # add one if we filled the buffer
- subq t0, v0, v0 # find string length
- ret # L0 :
-
- .align 4
-$zerolength:
- nop
- nop
- nop
- clr v0
-
-$exception:
- nop
- nop
- nop
- ret
-
- .end __strncpy_from_user
+++ /dev/null
-/*
- * arch/alpha/lib/ev67-strlen_user.S
- * 21264 version contributed by Rick Gorton <rick.gorton@api-networks.com>
- *
- * Return the length of the string including the NULL terminator
- * (strlen+1) or zero if an error occurred.
- *
- * In places where it is critical to limit the processing time,
- * and the data is not trusted, strnlen_user() should be used.
- * It will return a value greater than its second argument if
- * that limit would be exceeded. This implementation is allowed
- * to access memory beyond the limit, but will not cross a page
- * boundary when doing so.
- *
- * Much of the information about 21264 scheduling/coding comes from:
- * Compiler Writer's Guide for the Alpha 21264
- * abbreviated as 'CWG' in other comments here
- * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
- * Scheduling notation:
- * E - either cluster
- * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
- * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
- * Try not to change the actual algorithm if possible for consistency.
- */
-
-#include <asm/regdef.h>
-
-
-/* Allow an exception for an insn; exit if we get one. */
-#define EX(x,y...) \
- 99: x,##y; \
- .section __ex_table,"a"; \
- .long 99b - .; \
- lda v0, $exception-99b(zero); \
- .previous
-
-
- .set noreorder
- .set noat
- .text
-
- .globl __strlen_user
- .ent __strlen_user
- .frame sp, 0, ra
-
- .align 4
-__strlen_user:
- ldah a1, 32767(zero) # do not use plain strlen_user() for strings
- # that might be almost 2 GB long; you should
- # be using strnlen_user() instead
- nop
- nop
- nop
-
- .globl __strnlen_user
-
- .align 4
-__strnlen_user:
- .prologue 0
- EX( ldq_u t0, 0(a0) ) # L : load first quadword (a0 may be misaligned)
- lda t1, -1(zero) # E :
-
- insqh t1, a0, t1 # U :
- andnot a0, 7, v0 # E :
- or t1, t0, t0 # E :
- subq a0, 1, a0 # E : get our +1 for the return
-
- cmpbge zero, t0, t1 # E : t1 <- bitmask: bit i == 1 <==> i-th byte == 0
- subq a1, 7, t2 # E :
- subq a0, v0, t0 # E :
- bne t1, $found # U :
-
- addq t2, t0, t2 # E :
- addq a1, 1, a1 # E :
- nop # E :
- nop # E :
-
- .align 4
-$loop: ble t2, $limit # U :
- EX( ldq t0, 8(v0) ) # L :
- nop # E :
- nop # E :
-
- cmpbge zero, t0, t1 # E :
- subq t2, 8, t2 # E :
- addq v0, 8, v0 # E : addr += 8
- beq t1, $loop # U :
-
-$found: cttz t1, t2 # U0 :
- addq v0, t2, v0 # E :
- subq v0, a0, v0 # E :
- ret # L0 :
-
-$exception:
- nop
- nop
- nop
- ret
-
- .align 4 # currently redundant
-$limit:
- nop
- nop
- subq a1, t2, v0
- ret
-
- .end __strlen_user
+++ /dev/null
-/*
- * arch/alpha/lib/strlen_user.S
- *
- * Return the length of the string including the NUL terminator
- * (strlen+1) or zero if an error occurred.
- *
- * In places where it is critical to limit the processing time,
- * and the data is not trusted, strnlen_user() should be used.
- * It will return a value greater than its second argument if
- * that limit would be exceeded. This implementation is allowed
- * to access memory beyond the limit, but will not cross a page
- * boundary when doing so.
- */
-
-#include <asm/regdef.h>
-
-
-/* Allow an exception for an insn; exit if we get one. */
-#define EX(x,y...) \
- 99: x,##y; \
- .section __ex_table,"a"; \
- .long 99b - .; \
- lda v0, $exception-99b(zero); \
- .previous
-
-
- .set noreorder
- .set noat
- .text
-
- .globl __strlen_user
- .ent __strlen_user
- .frame sp, 0, ra
-
- .align 3
-__strlen_user:
- ldah a1, 32767(zero) # do not use plain strlen_user() for strings
- # that might be almost 2 GB long; you should
- # be using strnlen_user() instead
-
- .globl __strnlen_user
-
- .align 3
-__strnlen_user:
- .prologue 0
-
- EX( ldq_u t0, 0(a0) ) # load first quadword (a0 may be misaligned)
- lda t1, -1(zero)
- insqh t1, a0, t1
- andnot a0, 7, v0
- or t1, t0, t0
- subq a0, 1, a0 # get our +1 for the return
- cmpbge zero, t0, t1 # t1 <- bitmask: bit i == 1 <==> i-th byte == 0
- subq a1, 7, t2
- subq a0, v0, t0
- bne t1, $found
-
- addq t2, t0, t2
- addq a1, 1, a1
-
- .align 3
-$loop: ble t2, $limit
- EX( ldq t0, 8(v0) )
- subq t2, 8, t2
- addq v0, 8, v0 # addr += 8
- cmpbge zero, t0, t1
- beq t1, $loop
-
-$found: negq t1, t2 # clear all but least set bit
- and t1, t2, t1
-
- and t1, 0xf0, t2 # binary search for that set bit
- and t1, 0xcc, t3
- and t1, 0xaa, t4
- cmovne t2, 4, t2
- cmovne t3, 2, t3
- cmovne t4, 1, t4
- addq t2, t3, t2
- addq v0, t4, v0
- addq v0, t2, v0
- nop # dual issue next two on ev4 and ev5
- subq v0, a0, v0
-$exception:
- ret
-
- .align 3 # currently redundant
-$limit:
- subq a1, t2, v0
- ret
-
- .end __strlen_user
+++ /dev/null
-/*
- * arch/alpha/lib/strncpy_from_user.S
- * Contributed by Richard Henderson (rth@tamu.edu)
- *
- * Just like strncpy except in the return value:
- *
- * -EFAULT if an exception occurs before the terminator is copied.
- * N if the buffer filled.
- *
- * Otherwise the length of the string is returned.
- */
-
-
-#include <asm/errno.h>
-#include <asm/regdef.h>
-
-
-/* Allow an exception for an insn; exit if we get one. */
-#define EX(x,y...) \
- 99: x,##y; \
- .section __ex_table,"a"; \
- .long 99b - .; \
- lda $31, $exception-99b($0); \
- .previous
-
-
- .set noat
- .set noreorder
- .text
-
- .globl __strncpy_from_user
- .ent __strncpy_from_user
- .frame $30, 0, $26
- .prologue 0
-
- .align 3
-$aligned:
- /* On entry to this basic block:
- t0 == the first destination word for masking back in
- t1 == the first source word. */
-
- /* Create the 1st output word and detect 0's in the 1st input word. */
- lda t2, -1 # e1 : build a mask against false zero
- mskqh t2, a1, t2 # e0 : detection in the src word
- mskqh t1, a1, t3 # e0 :
- ornot t1, t2, t2 # .. e1 :
- mskql t0, a1, t0 # e0 : assemble the first output word
- cmpbge zero, t2, t8 # .. e1 : bits set iff null found
- or t0, t3, t0 # e0 :
- beq a2, $a_eoc # .. e1 :
- bne t8, $a_eos # .. e1 :
-
- /* On entry to this basic block:
- t0 == a source word not containing a null. */
-
-$a_loop:
- stq_u t0, 0(a0) # e0 :
- addq a0, 8, a0 # .. e1 :
- EX( ldq_u t0, 0(a1) ) # e0 :
- addq a1, 8, a1 # .. e1 :
- subq a2, 1, a2 # e0 :
- cmpbge zero, t0, t8 # .. e1 (stall)
- beq a2, $a_eoc # e1 :
- beq t8, $a_loop # e1 :
-
- /* Take care of the final (partial) word store. At this point
- the end-of-count bit is set in t8 iff it applies.
-
- On entry to this basic block we have:
- t0 == the source word containing the null
- t8 == the cmpbge mask that found it. */
-
-$a_eos:
- negq t8, t12 # e0 : find low bit set
- and t8, t12, t12 # e1 (stall)
-
- /* For the sake of the cache, don't read a destination word
- if we're not going to need it. */
- and t12, 0x80, t6 # e0 :
- bne t6, 1f # .. e1 (zdb)
-
- /* We're doing a partial word store and so need to combine
- our source and original destination words. */
- ldq_u t1, 0(a0) # e0 :
- subq t12, 1, t6 # .. e1 :
- or t12, t6, t8 # e0 :
- unop #
- zapnot t0, t8, t0 # e0 : clear src bytes > null
- zap t1, t8, t1 # .. e1 : clear dst bytes <= null
- or t0, t1, t0 # e1 :
-
-1: stq_u t0, 0(a0)
- br $finish_up
-
- /* Add the end-of-count bit to the eos detection bitmask. */
-$a_eoc:
- or t10, t8, t8
- br $a_eos
-
- /*** The Function Entry Point ***/
- .align 3
-__strncpy_from_user:
- mov a0, v0 # save the string start
- beq a2, $zerolength
-
- /* Are source and destination co-aligned? */
- xor a0, a1, t1 # e0 :
- and a0, 7, t0 # .. e1 : find dest misalignment
- and t1, 7, t1 # e0 :
- addq a2, t0, a2 # .. e1 : bias count by dest misalignment
- subq a2, 1, a2 # e0 :
- and a2, 7, t2 # e1 :
- srl a2, 3, a2 # e0 : a2 = loop counter = (count - 1)/8
- addq zero, 1, t10 # .. e1 :
- sll t10, t2, t10 # e0 : t10 = bitmask of last count byte
- bne t1, $unaligned # .. e1 :
-
- /* We are co-aligned; take care of a partial first word. */
-
- EX( ldq_u t1, 0(a1) ) # e0 : load first src word
- addq a1, 8, a1 # .. e1 :
-
- beq t0, $aligned # avoid loading dest word if not needed
- ldq_u t0, 0(a0) # e0 :
- br $aligned # .. e1 :
-
-
-/* The source and destination are not co-aligned. Align the destination
- and cope. We have to be very careful about not reading too much and
- causing a SEGV. */
-
- .align 3
-$u_head:
- /* We know just enough now to be able to assemble the first
- full source word. We can still find a zero at the end of it
- that prevents us from outputting the whole thing.
-
- On entry to this basic block:
- t0 == the first dest word, unmasked
- t1 == the shifted low bits of the first source word
- t6 == bytemask that is -1 in dest word bytes */
-
- EX( ldq_u t2, 8(a1) ) # e0 : load second src word
- addq a1, 8, a1 # .. e1 :
- mskql t0, a0, t0 # e0 : mask trailing garbage in dst
- extqh t2, a1, t4 # e0 :
- or t1, t4, t1 # e1 : first aligned src word complete
- mskqh t1, a0, t1 # e0 : mask leading garbage in src
- or t0, t1, t0 # e0 : first output word complete
- or t0, t6, t6 # e1 : mask original data for zero test
- cmpbge zero, t6, t8 # e0 :
- beq a2, $u_eocfin # .. e1 :
- bne t8, $u_final # e1 :
-
- lda t6, -1 # e1 : mask out the bits we have
- mskql t6, a1, t6 # e0 : already seen
- stq_u t0, 0(a0) # e0 : store first output word
- or t6, t2, t2 # .. e1 :
- cmpbge zero, t2, t8 # e0 : find nulls in second partial
- addq a0, 8, a0 # .. e1 :
- subq a2, 1, a2 # e0 :
- bne t8, $u_late_head_exit # .. e1 :
-
- /* Finally, we've got all the stupid leading edge cases taken care
- of and we can set up to enter the main loop. */
-
- extql t2, a1, t1 # e0 : position hi-bits of lo word
- EX( ldq_u t2, 8(a1) ) # .. e1 : read next high-order source word
- addq a1, 8, a1 # e0 :
- cmpbge zero, t2, t8 # e1 (stall)
- beq a2, $u_eoc # e1 :
- bne t8, $u_eos # e1 :
-
- /* Unaligned copy main loop. In order to avoid reading too much,
- the loop is structured to detect zeros in aligned source words.
- This has, unfortunately, effectively pulled half of a loop
- iteration out into the head and half into the tail, but it does
- prevent nastiness from accumulating in the very thing we want
- to run as fast as possible.
-
- On entry to this basic block:
- t1 == the shifted high-order bits from the previous source word
- t2 == the unshifted current source word
-
- We further know that t2 does not contain a null terminator. */
-
- .align 3
-$u_loop:
- extqh t2, a1, t0 # e0 : extract high bits for current word
- addq a1, 8, a1 # .. e1 :
- extql t2, a1, t3 # e0 : extract low bits for next time
- addq a0, 8, a0 # .. e1 :
- or t0, t1, t0 # e0 : current dst word now complete
- EX( ldq_u t2, 0(a1) ) # .. e1 : load high word for next time
- stq_u t0, -8(a0) # e0 : save the current word
- mov t3, t1 # .. e1 :
- subq a2, 1, a2 # e0 :
- cmpbge zero, t2, t8 # .. e1 : test new word for eos
- beq a2, $u_eoc # e1 :
- beq t8, $u_loop # e1 :
-
- /* We've found a zero somewhere in the source word we just read.
- If it resides in the lower half, we have one (probably partial)
- word to write out, and if it resides in the upper half, we
- have one full and one partial word left to write out.
-
- On entry to this basic block:
- t1 == the shifted high-order bits from the previous source word
- t2 == the unshifted current source word. */
-$u_eos:
- extqh t2, a1, t0 # e0 :
- or t0, t1, t0 # e1 : first (partial) source word complete
-
- cmpbge zero, t0, t8 # e0 : is the null in this first bit?
- bne t8, $u_final # .. e1 (zdb)
-
- stq_u t0, 0(a0) # e0 : the null was in the high-order bits
- addq a0, 8, a0 # .. e1 :
- subq a2, 1, a2 # e1 :
-
-$u_late_head_exit:
- extql t2, a1, t0 # .. e0 :
- cmpbge zero, t0, t8 # e0 :
- or t8, t10, t6 # e1 :
- cmoveq a2, t6, t8 # e0 :
- nop # .. e1 :
-
- /* Take care of a final (probably partial) result word.
- On entry to this basic block:
- t0 == assembled source word
- t8 == cmpbge mask that found the null. */
-$u_final:
- negq t8, t6 # e0 : isolate low bit set
- and t6, t8, t12 # e1 :
-
- and t12, 0x80, t6 # e0 : avoid dest word load if we can
- bne t6, 1f # .. e1 (zdb)
-
- ldq_u t1, 0(a0) # e0 :
- subq t12, 1, t6 # .. e1 :
- or t6, t12, t8 # e0 :
- zapnot t0, t8, t0 # .. e1 : kill source bytes > null
- zap t1, t8, t1 # e0 : kill dest bytes <= null
- or t0, t1, t0 # e1 :
-
-1: stq_u t0, 0(a0) # e0 :
- br $finish_up
-
-$u_eoc: # end-of-count
- extqh t2, a1, t0
- or t0, t1, t0
- cmpbge zero, t0, t8
-
-$u_eocfin: # end-of-count, final word
- or t10, t8, t8
- br $u_final
-
- /* Unaligned copy entry point. */
- .align 3
-$unaligned:
-
- EX( ldq_u t1, 0(a1) ) # e0 : load first source word
-
- and a0, 7, t4 # .. e1 : find dest misalignment
- and a1, 7, t5 # e0 : find src misalignment
-
- /* Conditionally load the first destination word and a bytemask
- with 0xff indicating that the destination byte is sacrosanct. */
-
- mov zero, t0 # .. e1 :
- mov zero, t6 # e0 :
- beq t4, 1f # .. e1 :
- ldq_u t0, 0(a0) # e0 :
- lda t6, -1 # .. e1 :
- mskql t6, a0, t6 # e0 :
-1:
- subq a1, t4, a1 # .. e1 : sub dest misalignment from src addr
-
- /* If source misalignment is larger than dest misalignment, we need
- extra startup checks to avoid SEGV. */
-
- cmplt t4, t5, t12 # e1 :
- extql t1, a1, t1 # .. e0 : shift src into place
- lda t2, -1 # e0 : for creating masks later
- beq t12, $u_head # e1 :
-
- mskqh t2, t5, t2 # e0 : begin src byte validity mask
- cmpbge zero, t1, t8 # .. e1 : is there a zero?
- extql t2, a1, t2 # e0 :
- or t8, t10, t5 # .. e1 : test for end-of-count too
- cmpbge zero, t2, t3 # e0 :
- cmoveq a2, t5, t8 # .. e1 :
- andnot t8, t3, t8 # e0 :
- beq t8, $u_head # .. e1 (zdb)
-
- /* At this point we've found a zero in the first partial word of
- the source. We need to isolate the valid source data and mask
- it into the original destination data. (Incidentally, we know
- that we'll need at least one byte of that original dest word.) */
-
- ldq_u t0, 0(a0) # e0 :
- negq t8, t6 # .. e1 : build bitmask of bytes <= zero
- mskqh t1, t4, t1 # e0 :
- and t6, t8, t12 # .. e1 :
- subq t12, 1, t6 # e0 :
- or t6, t12, t8 # e1 :
-
- zapnot t2, t8, t2 # e0 : prepare source word; mirror changes
- zapnot t1, t8, t1 # .. e1 : to source validity mask
-
- andnot t0, t2, t0 # e0 : zero place for source to reside
- or t0, t1, t0 # e1 : and put it there
- stq_u t0, 0(a0) # e0 :
-
-$finish_up:
- zapnot t0, t12, t4 # was last byte written null?
- cmovne t4, 1, t4
-
- and t12, 0xf0, t3 # binary search for the address of the
- and t12, 0xcc, t2 # last byte written
- and t12, 0xaa, t1
- bic a0, 7, t0
- cmovne t3, 4, t3
- cmovne t2, 2, t2
- cmovne t1, 1, t1
- addq t0, t3, t0
- addq t1, t2, t1
- addq t0, t1, t0
- addq t0, t4, t0 # add one if we filled the buffer
-
- subq t0, v0, v0 # find string length
- ret
-
-$zerolength:
- clr v0
-$exception:
- ret
-
- .end __strncpy_from_user