Equivalent to xfs_ilock_data_map_shared, except for the attribute fork.
Make xfs_getbmap use it if called for the attribute fork instead of
xfs_ilock_data_map_shared.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
return XFS_ERROR(ENOMEM);
xfs_ilock(ip, XFS_IOLOCK_SHARED);
- if (whichfork == XFS_DATA_FORK && !(iflags & BMV_IF_DELALLOC)) {
- if (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size) {
+ if (whichfork == XFS_DATA_FORK) {
+ if (!(iflags & BMV_IF_DELALLOC) &&
+ (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
error = -filemap_write_and_wait(VFS_I(ip)->i_mapping);
if (error)
goto out_unlock_iolock;
+
+ /*
+ * Even after flushing the inode, there can still be
+ * delalloc blocks on the inode beyond EOF due to
+ * speculative preallocation. These are not removed
+ * until the release function is called or the inode
+ * is inactivated. Hence we cannot assert here that
+ * ip->i_delayed_blks == 0.
+ */
}
- /*
- * even after flushing the inode, there can still be delalloc
- * blocks on the inode beyond EOF due to speculative
- * preallocation. These are not removed until the release
- * function is called or the inode is inactivated. Hence we
- * cannot assert here that ip->i_delayed_blks == 0.
- */
- }
- lock = xfs_ilock_data_map_shared(ip);
+ lock = xfs_ilock_data_map_shared(ip);
+ } else {
+ lock = xfs_ilock_attr_map_shared(ip);
+ }
/*
* Don't let nex be bigger than the number of extents
}
/*
- * This is a wrapper routine around the xfs_ilock() routine used to centralize
- * some grungy code. It is used in places that wish to lock the inode solely
- * for reading the extents. The reason these places can't just call
- * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
- * extents from disk for a file in b-tree format. If the inode is in b-tree
- * format, then we need to lock the inode exclusively until the extents are read
- * in. Locking it exclusively all the time would limit our parallelism
- * unnecessarily, though. What we do instead is check to see if the extents
- * have been read in yet, and only lock the inode exclusively if they have not.
+ * These two are wrapper routines around the xfs_ilock() routine used to
+ * centralize some grungy code. They are used in places that wish to lock the
+ * inode solely for reading the extents. The reason these places can't just
+ * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
+ * bringing in of the extents from disk for a file in b-tree format. If the
+ * inode is in b-tree format, then we need to lock the inode exclusively until
+ * the extents are read in. Locking it exclusively all the time would limit
+ * our parallelism unnecessarily, though. What we do instead is check to see
+ * if the extents have been read in yet, and only lock the inode exclusively
+ * if they have not.
*
- * The function returns a value which should be given to the corresponding
+ * The functions return a value which should be given to the corresponding
* xfs_iunlock() call.
*/
uint
return lock_mode;
}
+uint
+xfs_ilock_attr_map_shared(
+ struct xfs_inode *ip)
+{
+ uint lock_mode = XFS_ILOCK_SHARED;
+
+ if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
+ (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
+ lock_mode = XFS_ILOCK_EXCL;
+ xfs_ilock(ip, lock_mode);
+ return lock_mode;
+}
+
/*
* The xfs inode contains 2 locks: a multi-reader lock called the
* i_iolock and a multi-reader lock called the i_lock. This routine
void xfs_ilock_demote(xfs_inode_t *, uint);
int xfs_isilocked(xfs_inode_t *, uint);
uint xfs_ilock_data_map_shared(struct xfs_inode *);
+uint xfs_ilock_attr_map_shared(struct xfs_inode *);
int xfs_ialloc(struct xfs_trans *, xfs_inode_t *, umode_t,
xfs_nlink_t, xfs_dev_t, prid_t, int,
struct xfs_buf **, xfs_inode_t **);