--- /dev/null
+#!/usr/bin/env python
+
+import sys, os, os.path, glob, math, cv2
+from datetime import datetime
+from optparse import OptionParser
+
+def parse(ipath, f):
+ bbs = []
+ path = None
+ for l in f:
+ box = None
+ if l.startswith("Bounding box"):
+ b = [x.strip() for x in l.split(":")[1].split("-")]
+ c = [x[1:-1].split(",") for x in b]
+ d = [int(x) for x in sum(c, [])]
+ bbs.append(d)
+
+ if l.startswith("Image filename"):
+ path = os.path.join(os.path.join(ipath, ".."), l.split('"')[-2])
+
+ return (path, bbs)
+
+def adjust(box, tb, lr):
+
+ mix = int(round(box[0] - lr))
+ miy = int(round(box[1] - tb))
+
+ max = int(round(box[2] + lr))
+ may = int(round(box[3] + tb))
+
+ return [mix, miy, max, may]
+
+def resize(image, d_w, d_h):
+ if (d_h < image.shape[0]) or (d_w < image.shape[1]):
+ ratio = min(d_h / float(image.shape[0]), d_w / float(image.shape[1]))
+
+ kernel_size = int( 5 / (2 * ratio))
+ sigma = 0.5 / ratio
+ image_to_resize = cv2.filter2D(image, cv2.CV_8UC3, cv2.getGaussianKernel(kernel_size, sigma))
+ interpolation_type = cv2.INTER_AREA
+ else:
+ image_to_resize = image
+ interpolation_type = cv2.INTER_CUBIC
+
+ return cv2.resize(image_to_resize,(d_w, d_h), None, 0, 0, interpolation_type)
+
+if __name__ == "__main__":
+ parser = OptionParser()
+ parser.add_option("-i", "--input", dest="input", metavar="DIRECTORY", type="string",
+ help="path to Inria train data folder")
+
+ parser.add_option("-o", "--output", dest="output", metavar="DIRECTORY", type="string",
+ help="path to store data", default=".")
+
+ parser.add_option("-t", "--target", dest="target", type="string", help="should be train or test", default="train")
+
+ (options, args) = parser.parse_args()
+ if not options.input:
+ parser.error("Inria data folder required")
+
+ if options.target not in ["train", "test"]:
+ parser.error("dataset should contain train or test data")
+
+ octaves = [-1, 0, 1, 2]
+
+ path = os.path.join(options.output, datetime.now().strftime("rescaled-" + options.target + "-%Y-%m-%d-%H-%M-%S"))
+ os.mkdir(path)
+
+ neg_path = os.path.join(path, "neg")
+ os.mkdir(neg_path)
+
+ pos_path = os.path.join(path, "pos")
+ os.mkdir(pos_path)
+
+ print "rescaled Inria training data stored into", path, "\nprocessing",
+ for each in octaves:
+ octave = 2**each
+
+ whole_mod_w = int(64 * octave) + 2 * int(20 * octave)
+ whole_mod_h = int(128 * octave) + 2 * int(20 * octave)
+
+ cpos_path = os.path.join(pos_path, "octave_%d" % each)
+ os.mkdir(cpos_path)
+ idx = 0
+
+ gl = glob.iglob(os.path.join(options.input, "annotations/*.txt"))
+ for image, boxes in [parse(options.input, open(__p)) for __p in gl]:
+ for box in boxes:
+ height = box[3] - box[1]
+ scale = height / float(96)
+
+ mat = cv2.imread(image)
+ mat_h, mat_w, _ = mat.shape
+
+ rel_scale = scale / octave
+
+ d_w = whole_mod_w * rel_scale
+ d_h = whole_mod_h * rel_scale
+
+ top_bottom_border = (d_h - (box[3] - box[1])) / 2.0
+ left_right_border = (d_w - (box[2] - box[0])) / 2.0
+
+ box = adjust(box, top_bottom_border, left_right_border)
+ inner = [max(0, box[0]), max(0, box[1]), min(mat_w, box[2]), min(mat_h, box[3]) ]
+
+ cropped = mat[inner[1]:inner[3], inner[0]:inner[2], :]
+
+ top = int(max(0, 0 - box[1]))
+ bottom = int(max(0, box[3] - mat_h))
+ left = int(max(0, 0 - box[0]))
+ right = int(max(0, box[2] - mat_w))
+ cropped = cv2.copyMakeBorder(cropped, top, bottom, left, right, cv2.BORDER_REPLICATE)
+ resized = resize(cropped, whole_mod_w, whole_mod_h)
+
+ out_name = ".png"
+ if round(math.log(scale)/math.log(2)) < each:
+ out_name = "_upscaled" + out_name
+
+ cv2.imwrite(os.path.join(cpos_path, "sample_%d" % idx + out_name), resized)
+
+ flipped = cv2.flip(resized, 1)
+ cv2.imwrite(os.path.join(cpos_path, "sample_%d" % idx + "_mirror" + out_name), flipped)
+ idx = idx + 1
+ print "." ,
+ sys.stdout.flush()
+
+ idx = 0
+ cneg_path = os.path.join(neg_path, "octave_%d" % each)
+ os.mkdir(cneg_path)
+
+ for each in [__n for __n in glob.iglob(os.path.join(options.input, "neg/*.*"))]:
+ img = cv2.imread(each)
+ min_shape = (1.5 * whole_mod_h, 1.5 * whole_mod_w)
+
+ if (img.shape[1] <= min_shape[1]) or (img.shape[0] <= min_shape[0]):
+ out_name = "negative_sample_%i_resized.png" % idx
+
+ ratio = float(img.shape[1]) / img.shape[0]
+
+ if (img.shape[1] <= min_shape[1]):
+ resized_size = (int(min_shape[1]), int(min_shape[1] / ratio))
+
+ if (img.shape[0] <= min_shape[0]):
+ resized_size = (int(min_shape[0] * ratio), int(min_shape[0]))
+
+ img = resize(img, resized_size[0], resized_size[1])
+ else:
+ out_name = "negative_sample_%i.png" % idx
+
+ cv2.imwrite(os.path.join(cneg_path, out_name), img)
+ idx = idx + 1
+ print "." ,
+ sys.stdout.flush()
\ No newline at end of file