public:
static char ID; // Pass ID, replacement for typeid
DominatorTreeBase<MachineBasicBlock>* DT;
-
+
MachineDominatorTree();
-
+
~MachineDominatorTree();
-
+
DominatorTreeBase<MachineBasicBlock>& getBase() { return *DT; }
-
+
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
-
+
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
inline const std::vector<MachineBasicBlock*> &getRoots() const {
return DT->getRoots();
}
-
+
inline MachineBasicBlock *getRoot() const {
return DT->getRoot();
}
-
+
inline MachineDomTreeNode *getRootNode() const {
return DT->getRootNode();
}
-
+
virtual bool runOnMachineFunction(MachineFunction &F);
-
+
inline bool dominates(MachineDomTreeNode* A, MachineDomTreeNode* B) const {
return DT->dominates(A, B);
}
-
+
inline bool dominates(MachineBasicBlock* A, MachineBasicBlock* B) const {
return DT->dominates(A, B);
}
-
+
// dominates - Return true if A dominates B. This performs the
// special checks necessary if A and B are in the same basic block.
bool dominates(MachineInstr *A, MachineInstr *B) const {
// return &*I == B;
//}
}
-
+
inline bool properlyDominates(const MachineDomTreeNode* A,
MachineDomTreeNode* B) const {
return DT->properlyDominates(A, B);
}
-
+
inline bool properlyDominates(MachineBasicBlock* A,
MachineBasicBlock* B) const {
return DT->properlyDominates(A, B);
}
-
+
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
MachineBasicBlock *B) {
return DT->findNearestCommonDominator(A, B);
}
-
+
inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
return DT->getNode(BB);
}
-
+
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
return DT->getNode(BB);
}
-
+
/// addNewBlock - Add a new node to the dominator tree information. This
- /// creates a new node as a child of DomBB dominator node,linking it into
+ /// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
MachineBasicBlock *DomBB) {
return DT->addNewBlock(BB, DomBB);
}
-
+
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
MachineBasicBlock* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
-
+
inline void changeImmediateDominator(MachineDomTreeNode *N,
MachineDomTreeNode* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
-
+
/// eraseNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
inline void eraseNode(MachineBasicBlock *BB) {
DT->eraseNode(BB);
}
-
+
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
inline void splitBlock(MachineBasicBlock* NewBB) {
}
virtual void releaseMemory();
-
+
virtual void print(raw_ostream &OS, const Module*) const;
};
template <> struct GraphTraits<MachineDomTreeNode *> {
typedef MachineDomTreeNode NodeType;
typedef NodeType::iterator ChildIteratorType;
-
+
static NodeType *getEntryNode(NodeType *N) {
return N;
}