Attributes operator ~ () const { return Attributes(~Bits); }
uint64_t Raw() const { return Bits; }
+ /// @brief Which attributes cannot be applied to a type.
+ static Attributes typeIncompatible(Type *Ty);
+
/// The set of Attributes set in Attributes is converted to a string of
/// equivalent mnemonics. This is, presumably, for writing out the mnemonics
/// for the assembly writer.
{NoInline_i | AlwaysInline_i}
};
-/// @brief Which attributes cannot be applied to a type.
-Attributes typeIncompatible(Type *Ty);
-
/// This returns an integer containing an encoding of all the
/// LLVM attributes found in the given attribute bitset. Any
/// change to this encoding is a breaking change to bitcode
// here. Currently, this should not be possible, but special handling might be
// required when new return value attributes are added.
if (NRetTy->isVoidTy())
- RAttrs &= ~Attribute::typeIncompatible(NRetTy);
+ RAttrs &= ~Attributes::typeIncompatible(NRetTy);
else
- assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
+ assert((RAttrs & Attributes::typeIncompatible(NRetTy)) == 0
&& "Return attributes no longer compatible?");
if (RAttrs)
Attributes RAttrs = CallPAL.getRetAttributes();
Attributes FnAttrs = CallPAL.getFnAttributes();
// Adjust in case the function was changed to return void.
- RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
+ RAttrs &= ~Attributes::typeIncompatible(NF->getReturnType());
if (RAttrs)
AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Attributes RAttrs = CallerPAL.getRetAttributes();
- if (RAttrs & Attribute::typeIncompatible(NewRetTy))
+ if (RAttrs & Attributes::typeIncompatible(NewRetTy))
return false; // Attribute not compatible with transformed value.
}
return false; // Cannot transform this parameter value.
Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
- if (Attrs & Attribute::typeIncompatible(ParamTy))
+ if (Attrs & Attributes::typeIncompatible(ParamTy))
return false; // Attribute not compatible with transformed value.
// If the parameter is passed as a byval argument, then we have to have a
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
- RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
+ RAttrs &= ~Attributes::typeIncompatible(NewRetTy);
// Add the new return attributes.
if (RAttrs)
return Result;
}
-Attributes Attribute::typeIncompatible(Type *Ty) {
- Attributes Incompatible = None;
+Attributes Attributes::typeIncompatible(Type *Ty) {
+ Attributes Incompatible = Attribute::None;
if (!Ty->isIntegerTy())
// Attributes that only apply to integers.
- Incompatible |= SExt | ZExt;
+ Incompatible |= Attribute::SExt | Attribute::ZExt;
if (!Ty->isPointerTy())
// Attributes that only apply to pointers.
- Incompatible |= ByVal | Nest | NoAlias | StructRet | NoCapture;
+ Incompatible |= Attribute::ByVal | Attribute::Nest | Attribute::NoAlias |
+ Attribute::StructRet | Attribute::NoCapture;
return Incompatible;
}
MutI.getAsString() + " are incompatible!", V);
}
- Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
+ Attributes TypeI = Attrs & Attributes::typeIncompatible(Ty);
Assert1(!TypeI, "Wrong type for attribute " +
TypeI.getAsString(), V);