// There is no need to differentiate between a pending CCValAssign and other
// kinds, as they are stored in a different list.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
- LocInfo HTP) {
- return getReg(ValNo, ValVT, 0, LocVT, HTP);
+ LocInfo HTP, unsigned ExtraInfo = 0) {
+ return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
}
void convertToReg(unsigned RegNo) {
unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
+ unsigned getExtraInfo() const { return Loc; }
MVT getLocVT() const { return LocVT; }
LocInfo getLocInfo() const { return HTP; }
}
if (Args[i].isNest)
Flags.setNest();
- if (NeedsRegBlock) {
+ if (NeedsRegBlock)
Flags.setInConsecutiveRegs();
- if (Value == NumValues - 1)
- Flags.setInConsecutiveRegsLast();
- }
Flags.setOrigAlign(OriginalAlignment);
MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
CLI.Outs.push_back(MyFlags);
CLI.OutVals.push_back(Parts[j]);
}
+
+ if (NeedsRegBlock && Value == NumValues - 1)
+ CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
}
}
}
if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
Flags.setNest();
- if (NeedsRegBlock) {
+ if (NeedsRegBlock)
Flags.setInConsecutiveRegs();
- if (Value == NumValues - 1)
- Flags.setInConsecutiveRegsLast();
- }
Flags.setOrigAlign(OriginalAlignment);
MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
MyFlags.Flags.setOrigAlign(1);
Ins.push_back(MyFlags);
}
+ if (NeedsRegBlock && Value == NumValues - 1)
+ Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
PartBase += VT.getStoreSize();
}
}
State);
}
+static const uint16_t RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
+
static const uint16_t SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
static const uint16_t QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
+
// Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
// has InConsecutiveRegs set, and that the last member also has
// InConsecutiveRegsLast set. We must process all members of the HA before
// we can allocate it, as we need to know the total number of registers that
// will be needed in order to (attempt to) allocate a contiguous block.
-static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags, CCState &State) {
- SmallVectorImpl<CCValAssign> &PendingHAMembers = State.getPendingLocs();
+static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
// AAPCS HFAs must have 1-4 elements, all of the same type
- assert(PendingHAMembers.size() < 4);
- if (PendingHAMembers.size() > 0)
- assert(PendingHAMembers[0].getLocVT() == LocVT);
+ if (PendingMembers.size() > 0)
+ assert(PendingMembers[0].getLocVT() == LocVT);
// Add the argument to the list to be allocated once we know the size of the
- // HA
- PendingHAMembers.push_back(
- CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
-
- if (ArgFlags.isInConsecutiveRegsLast()) {
- assert(PendingHAMembers.size() > 0 && PendingHAMembers.size() <= 4 &&
- "Homogeneous aggregates must have between 1 and 4 members");
-
- // Try to allocate a contiguous block of registers, each of the correct
- // size to hold one member.
- ArrayRef<uint16_t> RegList;
- switch (LocVT.SimpleTy) {
- case MVT::f32:
- RegList = SRegList;
- break;
- case MVT::f64:
- RegList = DRegList;
- break;
- case MVT::v2f64:
- RegList = QRegList;
- break;
- default:
- llvm_unreachable("Unexpected member type for HA");
- break;
- }
+ // aggregate. Store the type's required alignmnent as extra info for later: in
+ // the [N x i64] case all trace has been removed by the time we actually get
+ // to do allocation.
+ PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
+ ArgFlags.getOrigAlign()));
- unsigned RegResult =
- State.AllocateRegBlock(RegList, PendingHAMembers.size());
-
- if (RegResult) {
- for (SmallVectorImpl<CCValAssign>::iterator It = PendingHAMembers.begin();
- It != PendingHAMembers.end(); ++It) {
- It->convertToReg(RegResult);
- State.addLoc(*It);
- ++RegResult;
- }
- PendingHAMembers.clear();
- return true;
- }
+ if (!ArgFlags.isInConsecutiveRegsLast())
+ return true;
+
+ // Try to allocate a contiguous block of registers, each of the correct
+ // size to hold one member.
+ unsigned Align = std::min(PendingMembers[0].getExtraInfo(), 8U);
- // Register allocation failed, fall back to the stack
+ ArrayRef<uint16_t> RegList;
+ switch (LocVT.SimpleTy) {
+ case MVT::i32: {
+ RegList = RRegList;
+ unsigned RegIdx = State.getFirstUnallocated(RegList);
- // Mark all VFP regs as unavailable (AAPCS rule C.2.vfp)
- for (unsigned regNo = 0; regNo < 16; ++regNo)
- State.AllocateReg(SRegList[regNo]);
+ // First consume all registers that would give an unaligned object. Whether
+ // we go on stack or in regs, no-one will be using them in future.
+ unsigned RegAlign = RoundUpToAlignment(Align, 4) / 4;
+ while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
+ State.AllocateReg(RegList[RegIdx++]);
- unsigned Size = LocVT.getSizeInBits() / 8;
- unsigned Align = std::min(Size, 8U);
+ break;
+ }
+ case MVT::f32:
+ RegList = SRegList;
+ break;
+ case MVT::f64:
+ RegList = DRegList;
+ break;
+ case MVT::v2f64:
+ RegList = QRegList;
+ break;
+ default:
+ llvm_unreachable("Unexpected member type for block aggregate");
+ break;
+ }
+
+ unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
+ if (RegResult) {
+ for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
+ It != PendingMembers.end(); ++It) {
+ It->convertToReg(RegResult);
+ State.addLoc(*It);
+ ++RegResult;
+ }
+ PendingMembers.clear();
+ return true;
+ }
+
+ // Register allocation failed, we'll be needing the stack
+ unsigned Size = LocVT.getSizeInBits() / 8;
+ if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
+ // If nothing else has used the stack until this point, a non-HFA aggregate
+ // can be split between regs and stack.
+ unsigned RegIdx = State.getFirstUnallocated(RegList);
+ for (auto &It : PendingMembers) {
+ if (RegIdx >= RegList.size())
+ It.convertToMem(State.AllocateStack(Size, Size));
+ else
+ It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
- for (auto It : PendingHAMembers) {
- It.convertToMem(State.AllocateStack(Size, Align));
State.addLoc(It);
}
+ PendingMembers.clear();
+ return true;
+ } else if (LocVT != MVT::i32)
+ RegList = SRegList;
+
+ // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
+ for (auto Reg : RegList)
+ State.AllocateReg(Reg);
- // All pending members have now been allocated
- PendingHAMembers.clear();
+ for (auto &It : PendingMembers) {
+ It.convertToMem(State.AllocateStack(Size, Align));
+ State.addLoc(It);
+
+ // After the first item has been allocated, the rest are packed as tightly
+ // as possible. (E.g. an incoming i64 would have starting Align of 8, but
+ // we'll be allocating a bunch of i32 slots).
+ Align = Size;
}
- // This will be allocated by the last member of the HA
+ // All pending members have now been allocated
+ PendingMembers.clear();
+
+ // This will be allocated by the last member of the aggregate
return true;
}
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
// HFAs are passed in a contiguous block of registers, or on the stack
- CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_HA">>,
+ CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_Aggregate">>,
CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
return (Members > 0 && Members <= 4);
}
-/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate.
+/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
+/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
+/// passing according to AAPCS rules.
bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
if (getEffectiveCallingConv(CallConv, isVarArg) !=
HABaseType Base = HA_UNKNOWN;
uint64_t Members = 0;
- bool result = isHomogeneousAggregate(Ty, Base, Members);
- DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump());
- return result;
+ bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
+ DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
+
+ bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
+ return IsHA || IsIntArray;
}
--- /dev/null
+; RUN: llc -mtriple=armv7-linux-gnueabihf %s -o - | FileCheck %s
+
+; [2 x i64] should be contiguous when split (e.g. we shouldn't try to align all
+; i32 components to 64 bits). Also makes sure i64 based types are properly
+; aligned on the stack.
+define i64 @test_i64_contiguous_on_stack([8 x double], float, i32 %in, [2 x i64] %arg) nounwind {
+; CHECK-LABEL: test_i64_contiguous_on_stack:
+; CHECK-DAG: ldr [[LO0:r[0-9]+]], [sp, #8]
+; CHECK-DAG: ldr [[HI0:r[0-9]+]], [sp, #12]
+; CHECK-DAG: ldr [[LO1:r[0-9]+]], [sp, #16]
+; CHECK-DAG: ldr [[HI1:r[0-9]+]], [sp, #20]
+; CHECK: adds r0, [[LO0]], [[LO1]]
+; CHECK: adc r1, [[HI0]], [[HI1]]
+
+ %val1 = extractvalue [2 x i64] %arg, 0
+ %val2 = extractvalue [2 x i64] %arg, 1
+ %sum = add i64 %val1, %val2
+ ret i64 %sum
+}
+
+; [2 x i64] should try to use looks for 4 regs, not 8 (which might happen if the
+; i64 -> i32, i32 split wasn't handled correctly).
+define i64 @test_2xi64_uses_4_regs([8 x double], float, [2 x i64] %arg) nounwind {
+; CHECK-LABEL: test_2xi64_uses_4_regs:
+; CHECK-DAG: mov r0, r2
+; CHECK-DAG: mov r1, r3
+
+ %val = extractvalue [2 x i64] %arg, 1
+ ret i64 %val
+}
+
+; An aggregate should be able to split between registers and stack if there is
+; nothing else on the stack.
+define i32 @test_aggregates_split([8 x double], i32, [4 x i32] %arg) nounwind {
+; CHECK-LABEL: test_aggregates_split:
+; CHECK: ldr [[VAL3:r[0-9]+]], [sp]
+; CHECK: add r0, r1, [[VAL3]]
+
+ %val0 = extractvalue [4 x i32] %arg, 0
+ %val3 = extractvalue [4 x i32] %arg, 3
+ %sum = add i32 %val0, %val3
+ ret i32 %sum
+}
+
+; If an aggregate has to be moved entirely onto the stack, nothing should be
+; able to use r0-r3 any more. Also checks that [2 x i64] properly aligned when
+; it uses regs.
+define i32 @test_no_int_backfilling([8 x double], float, i32, [2 x i64], i32 %arg) nounwind {
+; CHECK-LABEL: test_no_int_backfilling:
+; CHECK: ldr r0, [sp, #24]
+ ret i32 %arg
+}
+
+; Even if the argument was successfully allocated as reg block, there should be
+; no backfillig to r1.
+define i32 @test_no_int_backfilling_regsonly(i32, [1 x i64], i32 %arg) {
+; CHECK-LABEL: test_no_int_backfilling_regsonly:
+; CHECK: ldr r0, [sp]
+ ret i32 %arg
+}
+
+; If an aggregate has to be moved entirely onto the stack, nothing should be
+; able to use r0-r3 any more.
+define float @test_no_float_backfilling([7 x double], [4 x i32], i32, [4 x double], float %arg) nounwind {
+; CHECK-LABEL: test_no_float_backfilling:
+; CHECK: vldr s0, [sp, #40]
+ ret float %arg
+}
+
+; They're a bit pointless, but types like [N x i8] should work as well.
+define i8 @test_i8_in_regs(i32, [3 x i8] %arg) {
+; CHECK-LABEL: test_i8_in_regs:
+; CHECK: add r0, r1, r3
+ %val0 = extractvalue [3 x i8] %arg, 0
+ %val2 = extractvalue [3 x i8] %arg, 2
+ %sum = add i8 %val0, %val2
+ ret i8 %sum
+}
+
+define i16 @test_i16_split(i32, i32, [3 x i16] %arg) {
+; CHECK-LABEL: test_i16_split:
+; CHECK: ldrh [[VAL2:r[0-9]+]], [sp]
+; CHECK: add r0, r2, [[VAL2]]
+ %val0 = extractvalue [3 x i16] %arg, 0
+ %val2 = extractvalue [3 x i16] %arg, 2
+ %sum = add i16 %val0, %val2
+ ret i16 %sum
+}
+
+; Beware: on the stack each i16 still gets a 32-bit slot, the array is not
+; packed.
+define i16 @test_i16_forced_stack([8 x double], double, i32, i32, [3 x i16] %arg) {
+; CHECK-LABEL: test_i16_forced_stack:
+; CHECK-DAG: ldrh [[VAL0:r[0-9]+]], [sp, #8]
+; CHECK-DAG: ldrh [[VAL2:r[0-9]+]], [sp, #16]
+; CHECK: add r0, [[VAL0]], [[VAL2]]
+ %val0 = extractvalue [3 x i16] %arg, 0
+ %val2 = extractvalue [3 x i16] %arg, 2
+ %sum = add i16 %val0, %val2
+ ret i16 %sum
+}