}
-void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::SIN,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(r0);
-}
-
-
-void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::COS,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(r0);
-}
-
-
-void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::TAN,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(r0);
-}
-
-
void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::LOG,
Handle<JSFunction> caller = current_info()->closure();
Handle<SharedFunctionInfo> target_shared(target->shared());
+ // Always inline builtins marked for inlining.
+ if (target->IsBuiltin()) {
+ return target_shared->inline_builtin() ? 0 : kNotInlinable;
+ }
+
// Do a quick check on source code length to avoid parsing large
// inlining candidates.
if (target_shared->SourceSize() >
}
// Target must be inlineable.
- if (!target->IsInlineable()) {
+ if (!target_shared->IsInlineable()) {
TraceInline(target, caller, "target not inlineable");
return kNotInlinable;
}
case kMathAbs:
case kMathSqrt:
case kMathLog:
- case kMathSin:
- case kMathCos:
- case kMathTan:
if (expr->arguments()->length() == 1) {
HValue* argument = Pop();
Drop(1); // Receiver.
case kMathAbs:
case kMathSqrt:
case kMathLog:
- case kMathSin:
- case kMathCos:
- case kMathTan:
if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* argument = Pop();
}
-void HOptimizedGraphBuilder::GenerateMathSin(CallRuntime* call) {
- ASSERT_EQ(1, call->arguments()->length());
- CHECK_ALIVE(VisitArgumentList(call->arguments()));
- HCallStub* result = New<HCallStub>(CodeStub::TranscendentalCache, 1);
- result->set_transcendental_type(TranscendentalCache::SIN);
- Drop(1);
- return ast_context()->ReturnInstruction(result, call->id());
-}
-
-
-void HOptimizedGraphBuilder::GenerateMathCos(CallRuntime* call) {
- ASSERT_EQ(1, call->arguments()->length());
- CHECK_ALIVE(VisitArgumentList(call->arguments()));
- HCallStub* result = New<HCallStub>(CodeStub::TranscendentalCache, 1);
- result->set_transcendental_type(TranscendentalCache::COS);
- Drop(1);
- return ast_context()->ReturnInstruction(result, call->id());
-}
-
-
-void HOptimizedGraphBuilder::GenerateMathTan(CallRuntime* call) {
- ASSERT_EQ(1, call->arguments()->length());
- CHECK_ALIVE(VisitArgumentList(call->arguments()));
- HCallStub* result = New<HCallStub>(CodeStub::TranscendentalCache, 1);
- result->set_transcendental_type(TranscendentalCache::TAN);
- Drop(1);
- return ast_context()->ReturnInstruction(result, call->id());
-}
-
-
void HOptimizedGraphBuilder::GenerateMathLog(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
}
-void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::SIN,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(eax);
-}
-
-
-void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::COS,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(eax);
-}
-
-
-void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::TAN,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(eax);
-}
-
-
void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::LOG,
// ECMA 262 - 15.8.2.7
function MathCos(x) {
- return %_MathCos(TO_NUMBER_INLINE(x));
+ return MathCosImpl(x);
}
// ECMA 262 - 15.8.2.8
// ECMA 262 - 15.8.2.16
function MathSin(x) {
- return %_MathSin(TO_NUMBER_INLINE(x));
+ return MathSinImpl(x);
}
// ECMA 262 - 15.8.2.17
// ECMA 262 - 15.8.2.18
function MathTan(x) {
- return %_MathTan(TO_NUMBER_INLINE(x));
+ return MathSinImpl(x) / MathCosImpl(x);
}
// Non-standard extension.
}
+var MathSinImpl = function(x) {
+ InitTrigonometricFunctions();
+ return MathSinImpl(x);
+}
+
+
+var MathCosImpl = function(x) {
+ InitTrigonometricFunctions();
+ return MathCosImpl(x);
+}
+
+
+var InitTrigonometricFunctions;
+
+
+// Define constants and interpolation functions.
+// Also define the initialization function that populates the lookup table
+// and then wires up the function definitions.
+function SetupTrigonometricFunctions() {
+ var samples = 2048; // Table size.
+ var pi = 3.1415926535897932;
+ var pi_half = pi / 2;
+ var inverse_pi_half = 1 / pi_half;
+ var two_pi = pi * 2;
+ var interval = pi_half / samples;
+ var inverse_interval = samples / pi_half;
+ var table_sin;
+ var table_cos_interval;
+
+ // This implements sine using the following algorithm.
+ // 1) Multiplication takes care of to-number conversion.
+ // 2) Reduce x to the first quadrant [0, pi/2].
+ // Conveniently enough, in case of +/-Infinity, we get NaN.
+ // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
+ // 4) Do a table lookup for the closest samples to the left and right of x.
+ // 5) Find the derivatives at those sampling points by table lookup:
+ // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
+ // 6) Use cubic spline interpolation to approximate sin(x).
+ // 7) Negate the result if x was in the 3rd or 4th quadrant.
+ // 8) Get rid of -0 by adding 0.
+ var Interpolation = function(x) {
+ var double_index = x * inverse_interval;
+ var index = double_index | 0;
+ var t1 = double_index - index;
+ var t2 = 1 - t1;
+ var y1 = table_sin[index];
+ var y2 = table_sin[index + 1];
+ var dy = y2 - y1;
+ return (t2 * y1 + t1 * y2 +
+ t1 * t2 * ((table_cos_interval[index] - dy) * t2 +
+ (dy - table_cos_interval[index + 1]) * t1));
+ }
+
+ var MathSinInterpolation = function(x) {
+ var multiple = MathFloor(x * inverse_pi_half);
+ if (%_IsMinusZero(multiple)) return multiple;
+ x = (multiple & 1) * pi_half +
+ (1 - ((multiple & 1) << 1)) * (x - multiple * pi_half);
+ return Interpolation(x) * (1 - (multiple & 2)) + 0;
+ }
+
+ // Cosine is sine with a phase offset of pi/2.
+ var MathCosInterpolation = function(x) {
+ var multiple = MathFloor(x * inverse_pi_half);
+ var phase = multiple + 1;
+ x = (phase & 1) * pi_half +
+ (1 - ((phase & 1) << 1)) * (x - multiple * pi_half);
+ return Interpolation(x) * (1 - (phase & 2)) + 0;
+ };
+
+ %SetInlineBuiltinFlag(Interpolation);
+ %SetInlineBuiltinFlag(MathSinInterpolation);
+ %SetInlineBuiltinFlag(MathCosInterpolation);
+
+ InitTrigonometricFunctions = function() {
+ table_sin = new global.Float64Array(samples + 2);
+ table_cos_interval = new global.Float64Array(samples + 2);
+ %PopulateTrigonometricTable(table_sin, table_cos_interval, samples);
+ MathSinImpl = MathSinInterpolation;
+ MathCosImpl = MathCosInterpolation;
+ }
+}
+
+SetupTrigonometricFunctions();
+
+
// -------------------------------------------------------------------
function SetUpMath() {
"min", MathMin,
"imul", MathImul
));
+
+ %SetInlineBuiltinFlag(MathSin);
+ %SetInlineBuiltinFlag(MathCos);
+ %SetInlineBuiltinFlag(MathTan);
}
SetUpMath();
}
-void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::SIN,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
- __ CallStub(&stub);
- context()->Plug(v0);
-}
-
-
-void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::COS,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
- __ CallStub(&stub);
- context()->Plug(v0);
-}
-
-
-void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
+void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::TAN,
+ TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::TAGGED);
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
}
-void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::LOG,
- TranscendentalCacheStub::TAGGED);
+void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
+ // Load the argument on the stack and call the runtime function.
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
- __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
- __ CallStub(&stub);
+ __ CallRuntime(Runtime::kMath_sqrt, 1);
context()->Plug(v0);
}
-void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
+void FullCodeGenerator::EmitMathFloor(CallRuntime* expr) {
// Load the argument on the stack and call the runtime function.
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
- __ CallRuntime(Runtime::kMath_sqrt, 1);
+ __ CallRuntime(Runtime::kMath_floor, 1);
context()->Plug(v0);
}
BOOL_GETTER(SharedFunctionInfo, compiler_hints, is_extended_mode,
kExtendedModeFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative)
+BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, inline_builtin,
+ kInlineBuiltin)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
name_should_print_as_anonymous,
kNameShouldPrintAsAnonymous)
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
+ ASSERT(value->kind() != Code::OPTIMIZED_FUNCTION);
WRITE_FIELD(this, kCodeOffset, value);
CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode);
}
}
-bool JSFunction::IsInlineable() {
- if (IsBuiltin()) return false;
- SharedFunctionInfo* shared_info = shared();
- // Check that the function has a script associated with it.
- if (!shared_info->script()->IsScript()) return false;
- if (shared_info->optimization_disabled()) return false;
- Code* code = shared_info->code();
- if (code->kind() == Code::OPTIMIZED_FUNCTION) return true;
- // If we never ran this (unlikely) then lets try to optimize it.
- if (code->kind() != Code::FUNCTION) return true;
- return code->optimizable();
-}
-
-
void JSObject::OptimizeAsPrototype(Handle<JSObject> object) {
if (object->IsGlobalObject()) return;
}
+bool SharedFunctionInfo::IsInlineable() {
+ // Check that the function has a script associated with it.
+ if (!script()->IsScript()) return false;
+ if (optimization_disabled()) return false;
+ // If we never ran this (unlikely) then lets try to optimize it.
+ if (code()->kind() != Code::FUNCTION) return true;
+ return code()->optimizable();
+}
+
+
int SharedFunctionInfo::SourceSize() {
return end_position() - start_position();
}
// global object.
DECL_BOOLEAN_ACCESSORS(native)
+ // Indicate that this builtin needs to be inlined in crankshaft.
+ DECL_BOOLEAN_ACCESSORS(inline_builtin)
+
// Indicates that the function was created by the Function function.
// Though it's anonymous, toString should treat it as if it had the name
// "anonymous". We don't set the name itself so that the system does not
set_dont_optimize(reason != kNoReason);
}
+ // Check whether or not this function is inlineable.
+ bool IsInlineable();
+
// Source size of this function.
int SourceSize();
kUsesArguments,
kHasDuplicateParameters,
kNative,
+ kInlineBuiltin,
kBoundFunction,
kIsAnonymous,
kNameShouldPrintAsAnonymous,
// Tells whether or not the function is on the concurrent recompilation queue.
inline bool IsInRecompileQueue();
- // Check whether or not this function is inlineable.
- bool IsInlineable();
-
// [literals_or_bindings]: Fixed array holding either
// the materialized literals or the bindings of a bound function.
//
}
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetInlineBuiltinFlag) {
+ SealHandleScope shs(isolate);
+ RUNTIME_ASSERT(args.length() == 1);
+
+ Handle<Object> object = args.at<Object>(0);
+
+ if (object->IsJSFunction()) {
+ JSFunction* func = JSFunction::cast(*object);
+ func->shared()->set_inline_builtin(true);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreArrayLiteralElement) {
HandleScope scope(isolate);
RUNTIME_ASSERT(args.length() == 5);
}
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PopulateTrigonometricTable) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sin_table, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, cos_table, 1);
+ CONVERT_SMI_ARG_CHECKED(samples, 2);
+ RUNTIME_ASSERT(sin_table->type() == kExternalDoubleArray);
+ RUNTIME_ASSERT(cos_table->type() == kExternalDoubleArray);
+ double* sin_buffer = reinterpret_cast<double*>(
+ JSArrayBuffer::cast(sin_table->buffer())->backing_store());
+ double* cos_buffer = reinterpret_cast<double*>(
+ JSArrayBuffer::cast(cos_table->buffer())->backing_store());
+
+ static const double pi_half = 3.1415926535897932 / 2;
+ double interval = pi_half / samples;
+ for (int i = 0; i < samples + 1; i++) {
+ double sample = sin(i * interval);
+ sin_buffer[i] = sample;
+ cos_buffer[samples - i] = sample * interval;
+ }
+
+ // Fill this to catch out of bound accesses when calculating Math.sin(pi/2).
+ sin_buffer[samples + 1] = sin(pi_half + interval);
+ cos_buffer[samples + 1] = cos(pi_half + interval) * interval;
+
+ return isolate->heap()->undefined_value();
+}
+
+
RUNTIME_FUNCTION(MaybeObject*, Runtime_DateMakeDay) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
F(AllocateInOldPointerSpace, 1, 1) \
F(AllocateInOldDataSpace, 1, 1) \
F(SetNativeFlag, 1, 1) \
+ F(SetInlineBuiltinFlag, 1, 1) \
F(StoreArrayLiteralElement, 5, 1) \
F(DebugCallbackSupportsStepping, 1, 1) \
F(DebugPrepareStepInIfStepping, 1, 1) \
F(Math_sin, 1, 1) \
F(Math_sqrt, 1, 1) \
F(Math_tan, 1, 1) \
+ F(PopulateTrigonometricTable, 3, 1) \
\
/* Regular expressions */ \
F(RegExpCompile, 3, 1) \
F(IsSpecObject, 1, 1) \
F(IsStringWrapperSafeForDefaultValueOf, 1, 1) \
F(MathPow, 2, 1) \
- F(MathSin, 1, 1) \
- F(MathCos, 1, 1) \
- F(MathTan, 1, 1) \
F(MathSqrt, 1, 1) \
F(MathLog, 1, 1) \
F(IsMinusZero, 1, 1) \
}
-void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::SIN,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(rax);
-}
-
-
-void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::COS,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(rax);
-}
-
-
-void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
- // Load the argument on the stack and call the stub.
- TranscendentalCacheStub stub(TranscendentalCache::TAN,
- TranscendentalCacheStub::TAGGED);
- ZoneList<Expression*>* args = expr->arguments();
- ASSERT(args->length() == 1);
- VisitForStackValue(args->at(0));
- __ CallStub(&stub);
- context()->Plug(rax);
-}
-
-
void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::LOG,
assertEquals("Infinity", String(1 / Math.max(0.0, -0.0)));
});
-test(function mathSin() {
- assertEquals(0.0, Math.sin(0.0));
- assertTrue(0.8 < Math.sin(1) && Math.sin(1) < 0.9);
- assertEquals("NaN", String(Math.sin(Infinity)));
- assertEquals("NaN", String(Math.sin(-Infinity)));
- assertEquals("NaN", String(Math.sin(NaN)));
-});
-
-test(function mathCos() {
- assertEquals(1.0, Math.cos(0.0));
- assertTrue(0.5 < Math.cos(1) && Math.cos(1) < 0.6);
- assertEquals("NaN", String(Math.cos(Infinity)));
- assertEquals("NaN", String(Math.cos(-Infinity)));
- assertEquals("NaN", String(Math.cos(NaN)));
-});
-
-test(function mathTan() {
- assertEquals(0.0, Math.tan(0.0));
- assertTrue(1.5 < Math.tan(1) && Math.tan(1) < 1.6);
- assertEquals("NaN", String(Math.tan(Infinity)));
- assertEquals("NaN", String(Math.tan(-Infinity)));
- assertEquals("NaN", String(Math.tan(NaN)));
-});
-
test(function mathExp() {
assertEquals(1.0, Math.exp(0.0));
assertTrue(2.7 < Math.exp(1) && Math.exp(1) < 2.8);
// By accident, the slow case for sine and cosine were both sine at
// some point. This is a regression test for that issue.
-var x = Math.pow(2, 70);
+var x = Math.pow(2, 30);
assertTrue(Math.sin(x) != Math.cos(x));
// Ensure that sine and log are not the same.
x = 0.5;
assertTrue(Math.sin(x) != Math.log(x));
+
+// Test against approximation by series.
+var factorial = [1];
+var accuracy = 50;
+for (var i = 1; i < accuracy; i++) {
+ factorial[i] = factorial[i-1] * i;
+}
+
+// We sum up in the reverse order for higher precision, as we expect the terms
+// to grow smaller for x reasonably close to 0.
+function precision_sum(array) {
+ var result = 0;
+ while (array.length > 0) {
+ result += array.pop();
+ }
+ return result;
+}
+
+function sin(x) {
+ var sign = 1;
+ var x2 = x*x;
+ var terms = [];
+ for (var i = 1; i < accuracy; i += 2) {
+ terms.push(sign * x / factorial[i]);
+ x *= x2;
+ sign *= -1;
+ }
+ return precision_sum(terms);
+}
+
+function cos(x) {
+ var sign = -1;
+ var x2 = x*x;
+ x = x2;
+ var terms = [1];
+ for (var i = 2; i < accuracy; i += 2) {
+ terms.push(sign * x / factorial[i]);
+ x *= x2;
+ sign *= -1;
+ }
+ return precision_sum(terms);
+}
+
+function abs_error(fun, ref, x) {
+ return Math.abs(ref(x) - fun(x));
+}
+
+var test_inputs = [];
+for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257);
+var epsilon = 0.000001;
+
+test_inputs.push(0);
+test_inputs.push(0 + epsilon);
+test_inputs.push(0 - epsilon);
+test_inputs.push(Math.PI/2);
+test_inputs.push(Math.PI/2 + epsilon);
+test_inputs.push(Math.PI/2 - epsilon);
+test_inputs.push(Math.PI);
+test_inputs.push(Math.PI + epsilon);
+test_inputs.push(Math.PI - epsilon);
+test_inputs.push(- 2*Math.PI);
+test_inputs.push(- 2*Math.PI + epsilon);
+test_inputs.push(- 2*Math.PI - epsilon);
+
+var squares = [];
+for (var i = 0; i < test_inputs.length; i++) {
+ var x = test_inputs[i];
+ var err_sin = abs_error(Math.sin, sin, x);
+ var err_cos = abs_error(Math.cos, cos, x)
+ assertTrue(err_sin < 1E-13);
+ assertTrue(err_cos < 1E-13);
+ squares.push(err_sin*err_sin + err_cos*err_cos);
+}
+
+// Sum squares up by adding them pairwise, to avoid losing precision.
+while (squares.length > 1) {
+ var reduced = [];
+ if (squares.length % 2 == 1) reduced.push(squares.pop());
+ // Remaining number of elements is even.
+ while(squares.length > 1) reduced.push(squares.pop() + squares.pop());
+ squares = reduced;
+}
+
+var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2);
+assertTrue(err_rms < 1E-14);
+
+assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } }));
+assertEquals(0, Math.sin("0x00000"));
+assertEquals(1, Math.cos("0x00000"));
+assertTrue(isNaN(Math.sin(Infinity)));
+assertTrue(isNaN(Math.cos("-Infinity")));
+assertEquals("Infinity", String(Math.tan(Math.PI/2)));
+assertEquals("-Infinity", String(Math.tan(-Math.PI/2)));
'ecma/TypeConversion/9.3.1-3': [FAIL_OK],
+ # Math.tan expectations are more strict than the spec.
+ 'ecma/Math/15.8.2.18': [FAIL_OK],
+
##################### FAILING TESTS #####################
# This section is for tests that fail in V8 and pass in JSC.
# trigonometric functions are platform/compiler dependent. Furthermore, the
# expectation values by far deviates from the actual result given by an
# arbitrary-precision calculator, making those tests partly bogus.
+ 'S15.8.2.7_A7': [PASS, FAIL_OK], # Math.cos
'S15.8.2.8_A6': [PASS, FAIL_OK], # Math.exp (less precise with --fast-math)
'S15.8.2.16_A7': [PASS, FAIL_OK], # Math.sin
'S15.8.2.18_A7': [PASS, FAIL_OK], # Math.tan