Andrew Morton <akpm@linux-foundation.org>
Andrew Vasquez <andrew.vasquez@qlogic.com>
Andy Adamson <andros@citi.umich.edu>
+Antoine Tenart <antoine.tenart@free-electrons.com>
Antonio Ospite <ao2@ao2.it> <ao2@amarulasolutions.com>
Archit Taneja <archit@ti.com>
Arnaud Patard <arnaud.patard@rtp-net.org>
Ben Gardner <bgardner@wabtec.com>
Ben M Cahill <ben.m.cahill@intel.com>
Björn Steinbrink <B.Steinbrink@gmx.de>
+Boris Brezillon <boris.brezillon@free-electrons.com>
+Boris Brezillon <boris.brezillon@free-electrons.com> <b.brezillon.dev@gmail.com>
+Boris Brezillon <boris.brezillon@free-electrons.com> <b.brezillon@overkiz.com>
Brian Avery <b.avery@hp.com>
Brian King <brking@us.ibm.com>
Christoph Hellwig <hch@lst.de>
What: /config/usb-gadget/gadget/functions/uvc.name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: UVC function directory
streaming_maxburst - 0..15 (ss only)
What: /config/usb-gadget/gadget/functions/uvc.name/control
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Control descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class/ss
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Super speed control class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class/fs
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Full speed control class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/output
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Output terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/output/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default output terminal descriptors
All attributes read only:
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/camera
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Camera terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/camera/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default camera terminal descriptors
All attributes read only:
What: /config/usb-gadget/gadget/functions/uvc.name/control/processing
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Processing unit descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/processing/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default processing unit descriptors
All attributes read only:
What: /config/usb-gadget/gadget/functions/uvc.name/control/header
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Control header descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/header/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific control header descriptors
dwClockFrequency
bcdUVC
What: /config/usb-gadget/gadget/functions/uvc.name/streaming
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Streaming descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/ss
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Super speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/hs
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: High speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/fs
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Full speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/color_matching
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Color matching descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/color_matching/default
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Default color matching descriptors
All attributes read only:
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: MJPEG format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific MJPEG format descriptors
All attributes read only,
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg/name/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific MJPEG frame descriptors
dwFrameInterval - indicates how frame interval can be
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Uncompressed format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific uncompressed format descriptors
bmaControls - this format's data for bmaControls in
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed/name/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific uncompressed frame descriptors
dwFrameInterval - indicates how frame interval can be
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/header
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Streaming header descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/header/name
Date: Dec 2014
-KernelVersion: 3.20
+KernelVersion: 4.0
Description: Specific streaming header descriptors
All attributes read only:
-What /sys/bus/iio/devices/iio:deviceX/in_proximity_raw
+What /sys/bus/iio/devices/iio:deviceX/in_proximity_input
Date: March 2014
KernelVersion: 3.15
Contact: Matt Ranostay <mranostay@gmail.com>
--- /dev/null
+ALPS HID Touchpad Protocol
+----------------------
+
+Introduction
+------------
+Currently ALPS HID driver supports U1 Touchpad device.
+
+U1 devuce basic information.
+Vender ID 0x044E
+Product ID 0x120B
+Version ID 0x0121
+
+
+HID Descriptor
+------------
+Byte Field Value Notes
+0 wHIDDescLength 001E Length of HID Descriptor : 30 bytes
+2 bcdVersion 0100 Compliant with Version 1.00
+4 wReportDescLength 00B2 Report Descriptor is 178 Bytes (0x00B2)
+6 wReportDescRegister 0002 Identifier to read Report Descriptor
+8 wInputRegister 0003 Identifier to read Input Report
+10 wMaxInputLength 0053 Input Report is 80 Bytes + 2
+12 wOutputRegister 0000 Identifier to read Output Report
+14 wMaxOutputLength 0000 No Output Reports
+16 wCommandRegister 0005 Identifier for Command Register
+18 wDataRegister 0006 Identifier for Data Register
+20 wVendorID 044E Vendor ID 0x044E
+22 wProductID 120B Product ID 0x120B
+24 wVersionID 0121 Version 01.21
+26 RESERVED 0000 RESERVED
+
+
+Report ID
+------------
+ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
+ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
+ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
+ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
+ReportID-5 (Feature Reports) Feature Reports
+ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
+ReportID-7 (Feature Reports) Flash update (Bootloader)
+
+
+Data pattern
+------------
+Case1 ReportID_1 TP/SP Relative/Relative
+Case2 ReportID_3 TP Absolute
+ ReportID_6 SP Absolute
+
+
+Command Read/Write
+------------------
+To read/write to RAM, need to send a commands to the device.
+The command format is as below.
+
+DataByte(SET_REPORT)
+Byte1 Command Byte
+Byte2 Address - Byte 0 (LSB)
+Byte3 Address - Byte 1
+Byte4 Address - Byte 2
+Byte5 Address - Byte 3 (MSB)
+Byte6 Value Byte
+Byte7 Checksum
+
+Command Byte is read=0xD1/write=0xD2 .
+Address is read/write RAM address.
+Value Byte is writing data when you send the write commands.
+When you read RAM, there is no meaning.
+
+DataByte(GET_REPORT)
+Byte1 Response Byte
+Byte2 Address - Byte 0 (LSB)
+Byte3 Address - Byte 1
+Byte4 Address - Byte 2
+Byte5 Address - Byte 3 (MSB)
+Byte6 Value Byte
+Byte7 Checksum
+
+Read value is stored in Value Byte.
+
+
+Packet Format
+Touchpad data byte
+------------------
+ b7 b6 b5 b4 b3 b2 b1 b0
+1 0 0 SW6 SW5 SW4 SW3 SW2 SW1
+2 0 0 0 Fcv Fn3 Fn2 Fn1 Fn0
+3 Xa0_7 Xa0_6 Xa0_5 Xa0_4 Xa0_3 Xa0_2 Xa0_1 Xa0_0
+4 Xa0_15 Xa0_14 Xa0_13 Xa0_12 Xa0_11 Xa0_10 Xa0_9 Xa0_8
+5 Ya0_7 Ya0_6 Ya0_5 Ya0_4 Ya0_3 Ya0_2 Ya0_1 Ya0_0
+6 Ya0_15 Ya0_14 Ya0_13 Ya0_12 Ya0_11 Ya0_10 Ya0_9 Ya0_8
+7 LFB0 Zs0_6 Zs0_5 Zs0_4 Zs0_3 Zs0_2 Zs0_1 Zs0_0
+
+8 Xa1_7 Xa1_6 Xa1_5 Xa1_4 Xa1_3 Xa1_2 Xa1_1 Xa1_0
+9 Xa1_15 Xa1_14 Xa1_13 Xa1_12 Xa1_11 Xa1_10 Xa1_9 Xa1_8
+10 Ya1_7 Ya1_6 Ya1_5 Ya1_4 Ya1_3 Ya1_2 Ya1_1 Ya1_0
+11 Ya1_15 Ya1_14 Ya1_13 Ya1_12 Ya1_11 Ya1_10 Ya1_9 Ya1_8
+12 LFB1 Zs1_6 Zs1_5 Zs1_4 Zs1_3 Zs1_2 Zs1_1 Zs1_0
+
+13 Xa2_7 Xa2_6 Xa2_5 Xa2_4 Xa2_3 Xa2_2 Xa2_1 Xa2_0
+14 Xa2_15 Xa2_14 Xa2_13 Xa2_12 Xa2_11 Xa2_10 Xa2_9 Xa2_8
+15 Ya2_7 Ya2_6 Ya2_5 Ya2_4 Ya2_3 Ya2_2 Ya2_1 Ya2_0
+16 Ya2_15 Ya2_14 Ya2_13 Ya2_12 Ya2_11 Ya2_10 Ya2_9 Ya2_8
+17 LFB2 Zs2_6 Zs2_5 Zs2_4 Zs2_3 Zs2_2 Zs2_1 Zs2_0
+
+18 Xa3_7 Xa3_6 Xa3_5 Xa3_4 Xa3_3 Xa3_2 Xa3_1 Xa3_0
+19 Xa3_15 Xa3_14 Xa3_13 Xa3_12 Xa3_11 Xa3_10 Xa3_9 Xa3_8
+20 Ya3_7 Ya3_6 Ya3_5 Ya3_4 Ya3_3 Ya3_2 Ya3_1 Ya3_0
+21 Ya3_15 Ya3_14 Ya3_13 Ya3_12 Ya3_11 Ya3_10 Ya3_9 Ya3_8
+22 LFB3 Zs3_6 Zs3_5 Zs3_4 Zs3_3 Zs3_2 Zs3_1 Zs3_0
+
+23 Xa4_7 Xa4_6 Xa4_5 Xa4_4 Xa4_3 Xa4_2 Xa4_1 Xa4_0
+24 Xa4_15 Xa4_14 Xa4_13 Xa4_12 Xa4_11 Xa4_10 Xa4_9 Xa4_8
+25 Ya4_7 Ya4_6 Ya4_5 Ya4_4 Ya4_3 Ya4_2 Ya4_1 Ya4_0
+26 Ya4_15 Ya4_14 Ya4_13 Ya4_12 Ya4_11 Ya4_10 Ya4_9 Ya4_8
+27 LFB4 Zs4_6 Zs4_5 Zs4_4 Zs4_3 Zs4_2 Zs4_1 Zs4_0
+
+
+SW1-SW6: SW ON/OFF status
+Xan_15-0(16bit):X Absolute data of the "n"th finger
+Yan_15-0(16bit):Y Absolute data of the "n"th finger
+Zsn_6-0(7bit): Operation area of the "n"th finger
+
+
+StickPointer data byte
+------------------
+ b7 b6 b5 b4 b3 b2 b1 b0
+Byte1 1 1 1 0 1 SW3 SW2 SW1
+Byte2 X7 X6 X5 X4 X3 X2 X1 X0
+Byte3 X15 X14 X13 X12 X11 X10 X9 X8
+Byte4 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
+Byte5 Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
+Byte6 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0
+Byte7 T&P Z14 Z13 Z12 Z11 Z10 Z9 Z8
+
+SW1-SW3: SW ON/OFF status
+Xn_15-0(16bit):X Absolute data
+Yn_15-0(16bit):Y Absolute data
+Zn_14-0(15bit):Z
3. scmd recovered
ACTION: scsi_eh_finish_cmd() is invoked to EH-finish scmd
- - shost->host_failed--
- clear scmd->eh_eflags
- scsi_setup_cmd_retry()
- move from local eh_work_q to local eh_done_q
LOCKING: none
+ CONCURRENCY: at most one thread per separate eh_work_q to
+ keep queue manipulation lockless
4. EH completes
ACTION: scsi_eh_flush_done_q() retries scmds or notifies upper
- layer of failure.
+ layer of failure. May be called concurrently but must have
+ a no more than one thread per separate eh_work_q to
+ manipulate the queue locklessly
- scmd is removed from eh_done_q and scmd->eh_entry is cleared
- if retry is necessary, scmd is requeued using
scsi_queue_insert()
- otherwise, scsi_finish_command() is invoked for scmd
+ - zero shost->host_failed
LOCKING: queue or finish function performs appropriate locking
L: linux-alpha@vger.kernel.org
F: arch/alpha/
+ALPS PS/2 TOUCHPAD DRIVER
+R: Pali Rohár <pali.rohar@gmail.com>
+F: drivers/input/mouse/alps.*
+
ALTERA MAILBOX DRIVER
M: Ley Foon Tan <lftan@altera.com>
L: nios2-dev@lists.rocketboards.org (moderated for non-subscribers)
ARM/FREESCALE IMX / MXC ARM ARCHITECTURE
M: Shawn Guo <shawnguo@kernel.org>
M: Sascha Hauer <kernel@pengutronix.de>
+R: Fabio Estevam <fabio.estevam@nxp.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo/linux.git
F: net/caif/
CALGARY x86-64 IOMMU
-M: Muli Ben-Yehuda <muli@il.ibm.com>
-M: "Jon D. Mason" <jdmason@kudzu.us>
-L: discuss@x86-64.org
+M: Muli Ben-Yehuda <mulix@mulix.org>
+M: Jon Mason <jdmason@kudzu.us>
+L: iommu@lists.linux-foundation.org
S: Maintained
F: arch/x86/kernel/pci-calgary_64.c
F: arch/x86/kernel/tce_64.c
S: Maintained
F: drivers/dma/
F: include/linux/dmaengine.h
+F: Documentation/devicetree/bindings/dma/
F: Documentation/dmaengine/
T: git git://git.infradead.org/users/vkoul/slave-dma.git
W: http://www.linux-usb.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb.git
S: Supported
+F: Documentation/devicetree/bindings/usb/
F: Documentation/usb/
F: drivers/usb/
F: include/linux/usb.h
VERSION = 4
PATCHLEVEL = 7
SUBLEVEL = 0
-EXTRAVERSION = -rc3
+EXTRAVERSION = -rc5
NAME = Psychotic Stoned Sheep
# *DOCUMENTATION*
CHECKFLAGS := -D__linux__ -Dlinux -D__STDC__ -Dunix -D__unix__ \
-Wbitwise -Wno-return-void $(CF)
+NOSTDINC_FLAGS =
CFLAGS_MODULE =
AFLAGS_MODULE =
LDFLAGS_MODULE =
CFLAGS_KERNEL =
AFLAGS_KERNEL =
+LDFLAGS_vmlinux =
CFLAGS_GCOV = -fprofile-arcs -ftest-coverage -fno-tree-loop-im -Wno-maybe-uninitialized
CFLAGS_KCOV = -fsanitize-coverage=trace-pc
config ARCH_TASK_STRUCT_ALLOCATOR
bool
-# Select if arch has its private alloc_thread_info() function
-config ARCH_THREAD_INFO_ALLOCATOR
+# Select if arch has its private alloc_thread_stack() function
+config ARCH_THREAD_STACK_ALLOCATOR
bool
# Select if arch wants to size task_struct dynamically via arch_task_struct_size:
file which provides platform-specific implementations of some
functions in <linux/hash.h> or fs/namei.c.
+config ISA_BUS_API
+ def_bool ISA
+
#
# ABI hall of shame
#
static inline pmd_t *
pmd_alloc_one(struct mm_struct *mm, unsigned long address)
{
- pmd_t *ret = (pmd_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pmd_t *ret = (pmd_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
return ret;
}
static inline pte_t *
pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
- pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
return pte;
}
{
pte_t *pte;
- pte = (pte_t *) __get_free_pages(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO,
+ pte = (pte_t *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
__get_order_pte());
return pte;
pgtable_t pte_pg;
struct page *page;
- pte_pg = (pgtable_t)__get_free_pages(GFP_KERNEL | __GFP_REPEAT, __get_order_pte());
+ pte_pg = (pgtable_t)__get_free_pages(GFP_KERNEL, __get_order_pte());
if (!pte_pg)
return 0;
memzero((void *)pte_pg, PTRS_PER_PTE * sizeof(pte_t));
sun7i-a20-olimex-som-evb.dtb \
sun7i-a20-olinuxino-lime.dtb \
sun7i-a20-olinuxino-lime2.dtb \
+ sun7i-a20-olinuxino-lime2-emmc.dtb \
sun7i-a20-olinuxino-micro.dtb \
sun7i-a20-orangepi.dtb \
sun7i-a20-orangepi-mini.dtb \
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&i2c0_pins>;
- clock-frequency = <400000>;
+ clock-frequency = <100000>;
tps@24 {
compatible = "ti,tps65218";
tps659038_pmic {
compatible = "ti,tps659038-pmic";
+
+ smps12-in-supply = <&vmain>;
+ smps3-in-supply = <&vmain>;
+ smps45-in-supply = <&vmain>;
+ smps6-in-supply = <&vmain>;
+ smps7-in-supply = <&vmain>;
+ smps8-in-supply = <&vmain>;
+ smps9-in-supply = <&vmain>;
+ ldo1-in-supply = <&vmain>;
+ ldo2-in-supply = <&vmain>;
+ ldo3-in-supply = <&vmain>;
+ ldo4-in-supply = <&vmain>;
+ ldo9-in-supply = <&vmain>;
+ ldoln-in-supply = <&vmain>;
+ ldousb-in-supply = <&vmain>;
+ ldortc-in-supply = <&vmain>;
+
regulators {
smps12_reg: smps12 {
/* VDD_MPU */
- vin-supply = <&vmain>;
regulator-name = "smps12";
regulator-min-microvolt = <850000>;
regulator-max-microvolt = <1250000>;
smps3_reg: smps3 {
/* VDD_DDR EMIF1 EMIF2 */
- vin-supply = <&vmain>;
regulator-name = "smps3";
regulator-min-microvolt = <1350000>;
regulator-max-microvolt = <1350000>;
smps45_reg: smps45 {
/* VDD_DSPEVE on AM572 */
/* VDD_IVA + VDD_DSP on AM571 */
- vin-supply = <&vmain>;
regulator-name = "smps45";
regulator-min-microvolt = <850000>;
regulator-max-microvolt = <1250000>;
smps6_reg: smps6 {
/* VDD_GPU */
- vin-supply = <&vmain>;
regulator-name = "smps6";
regulator-min-microvolt = <850000>;
regulator-max-microvolt = <1250000>;
smps7_reg: smps7 {
/* VDD_CORE */
- vin-supply = <&vmain>;
regulator-name = "smps7";
regulator-min-microvolt = <850000>;
regulator-max-microvolt = <1150000>;
smps8_reg: smps8 {
/* 5728 - VDD_IVAHD */
/* 5718 - N.C. test point */
- vin-supply = <&vmain>;
regulator-name = "smps8";
};
smps9_reg: smps9 {
/* VDD_3_3D */
- vin-supply = <&vmain>;
regulator-name = "smps9";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
ldo1_reg: ldo1 {
/* VDDSHV8 - VSDMMC */
/* NOTE: on rev 1.3a, data supply */
- vin-supply = <&vmain>;
regulator-name = "ldo1";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <3300000>;
ldo2_reg: ldo2 {
/* VDDSH18V */
- vin-supply = <&vmain>;
regulator-name = "ldo2";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
ldo3_reg: ldo3 {
/* R1.3a 572x V1_8PHY_LDO3: USB, SATA */
- vin-supply = <&vmain>;
regulator-name = "ldo3";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
ldo4_reg: ldo4 {
/* R1.3a 572x V1_8PHY_LDO4: PCIE, HDMI*/
- vin-supply = <&vmain>;
regulator-name = "ldo4";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
ldo9_reg: ldo9 {
/* VDD_RTC */
- vin-supply = <&vmain>;
regulator-name = "ldo9";
regulator-min-microvolt = <840000>;
regulator-max-microvolt = <1160000>;
ldoln_reg: ldoln {
/* VDDA_1V8_PLL */
- vin-supply = <&vmain>;
regulator-name = "ldoln";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
ldousb_reg: ldousb {
/* VDDA_3V_USB: VDDA_USBHS33 */
- vin-supply = <&vmain>;
regulator-name = "ldousb";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
ldortc_reg: ldortc {
/* VDDA_RTC */
- vin-supply = <&vmain>;
regulator-name = "ldortc";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
};
};
+&mmc1 {
+ status = "disabled";
+};
+
&mmc2 {
pinctrl-names = "default";
pinctrl-0 = <&sd1_pins>;
cd-gpios = <&gpio2 6 GPIO_ACTIVE_LOW>;
};
+&mmc3 {
+ status = "disabled";
+};
+
&pincntl {
sd1_pins: pinmux_sd1_pins {
pinctrl-single,pins = <
phy-mode = "rgmii";
};
+&mmc1 {
+ status = "disabled";
+};
+
+&mmc2 {
+ status = "disabled";
+};
+
&mmc3 {
pinctrl-names = "default";
pinctrl-0 = <&sd2_pins>;
dmas = <&edma_xbar 8 0 1 /* use SDTXEVT1 instead of MCASP0TX */
&edma_xbar 9 0 2>; /* use SDRXEVT1 instead of MCASP0RX */
dma-names = "tx", "rx";
+ non-removable;
};
&pincntl {
ti,hwmods = "gpmc";
reg = <0x50000000 0x37c>; /* device IO registers */
interrupts = <GIC_SPI 15 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&edma_xbar 4 0>;
+ dma-names = "rxtx";
gpmc,num-cs = <8>;
gpmc,num-waitpins = <2>;
#address-cells = <2>;
reg = <0x58000000 0x80>,
<0x58004054 0x4>,
<0x58004300 0x20>,
- <0x58005054 0x4>,
- <0x58005300 0x20>;
+ <0x58009054 0x4>,
+ <0x58009300 0x20>;
reg-names = "dss", "pll1_clkctrl", "pll1",
"pll2_clkctrl", "pll2";
hpd-gpios = <&gpx0 7 GPIO_ACTIVE_HIGH>;
ports {
- port0 {
+ port {
dp_out: endpoint {
remote-endpoint = <&bridge_in>;
};
edid-emulation = <5>;
ports {
- port0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
bridge_out: endpoint {
remote-endpoint = <&panel_in>;
};
};
- port1 {
+ port@1 {
+ reg = <1>;
+
bridge_in: endpoint {
remote-endpoint = <&dp_out>;
};
hpd-gpios = <&gpx2 6 GPIO_ACTIVE_HIGH>;
ports {
- port0 {
+ port {
dp_out: endpoint {
remote-endpoint = <&bridge_in>;
};
use-external-pwm;
ports {
- port0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+
bridge_out: endpoint {
remote-endpoint = <&panel_in>;
};
};
- port1 {
+ port@1 {
+ reg = <1>;
+
bridge_in: endpoint {
remote-endpoint = <&dp_out>;
};
OMAP3_CORE1_IOPAD(0x2158, PIN_INPUT_PULLUP | MUX_MODE0) /* sdmmc2_clk.sdmmc2_clk */
OMAP3_CORE1_IOPAD(0x215a, PIN_INPUT_PULLUP | MUX_MODE0) /* sdmmc2_cmd.sdmmc2_cmd */
OMAP3_CORE1_IOPAD(0x215c, PIN_INPUT_PULLUP | MUX_MODE0) /* sdmmc2_dat0.sdmmc2_dat0 */
- OMAP3_CORE1_IOPAD(0x215e, WAKEUP_EN | PIN_INPUT_PULLUP | MUX_MODE0) /* sdmmc2_dat1.sdmmc2_dat1 */
+ OMAP3_CORE1_IOPAD(0x215e, PIN_INPUT_PULLUP | MUX_MODE0) /* sdmmc2_dat1.sdmmc2_dat1 */
OMAP3_CORE1_IOPAD(0x2160, PIN_INPUT_PULLUP | MUX_MODE0) /* sdmmc2_dat2.sdmmc2_dat2 */
OMAP3_CORE1_IOPAD(0x2162, PIN_INPUT_PULLUP | MUX_MODE0) /* sdmmc2_dat3.sdmmc2_dat3 */
>;
vmmc-supply = <&vmmc1>;
vmmc_aux-supply = <&vsim>;
bus-width = <4>;
+ cd-gpios = <&twl_gpio 0 GPIO_ACTIVE_LOW>;
};
&mmc3 {
OMAP3630_CORE2_IOPAD(0x25f8, PIN_OUTPUT | MUX_MODE4) /* etk_d14.gpio_28 */
>;
};
+
+ mmc1_wp_pins: pinmux_mmc1_cd_pins {
+ pinctrl-single,pins = <
+ OMAP3630_CORE2_IOPAD(0x25fa, PIN_INPUT | MUX_MODE4) /* etk_d15.gpio_29 */
+ >;
+ };
};
&i2c3 {
};
};
};
+
+&mmc1 {
+ pinctrl-0 = <&mmc1_pins &mmc1_wp_pins>;
+ wp-gpios = <&gpio1 29 GPIO_ACTIVE_LOW>; /* gpio_29 */
+};
pinctrl-single,pins = <
OMAP3_CORE1_IOPAD(0x2180, PIN_INPUT_PULLUP | MUX_MODE1) /* ssi1_rdy_tx */
OMAP3_CORE1_IOPAD(0x217e, PIN_OUTPUT | MUX_MODE1) /* ssi1_flag_tx */
- OMAP3_CORE1_IOPAD(0x2182, PIN_INPUT | WAKEUP_EN | MUX_MODE4) /* ssi1_wake_tx (cawake) */
+ OMAP3_CORE1_IOPAD(0x2182, PIN_INPUT | MUX_MODE4) /* ssi1_wake_tx (cawake) */
OMAP3_CORE1_IOPAD(0x217c, PIN_OUTPUT | MUX_MODE1) /* ssi1_dat_tx */
OMAP3_CORE1_IOPAD(0x2184, PIN_INPUT | MUX_MODE1) /* ssi1_dat_rx */
OMAP3_CORE1_IOPAD(0x2186, PIN_INPUT | MUX_MODE1) /* ssi1_flag_rx */
modem_pins: pinmux_modem {
pinctrl-single,pins = <
OMAP3_CORE1_IOPAD(0x20dc, PIN_OUTPUT | MUX_MODE4) /* gpio 70 => cmt_apeslpx */
- OMAP3_CORE1_IOPAD(0x20e0, PIN_INPUT | WAKEUP_EN | MUX_MODE4) /* gpio 72 => ape_rst_rq */
+ OMAP3_CORE1_IOPAD(0x20e0, PIN_INPUT | MUX_MODE4) /* gpio 72 => ape_rst_rq */
OMAP3_CORE1_IOPAD(0x20e2, PIN_OUTPUT | MUX_MODE4) /* gpio 73 => cmt_rst_rq */
OMAP3_CORE1_IOPAD(0x20e4, PIN_OUTPUT | MUX_MODE4) /* gpio 74 => cmt_en */
OMAP3_CORE1_IOPAD(0x20e6, PIN_OUTPUT | MUX_MODE4) /* gpio 75 => cmt_rst */
OMAP3_CORE1_IOPAD(0x217c, PIN_OUTPUT | MUX_MODE1) /* ssi1_dat_tx */
OMAP3_CORE1_IOPAD(0x217e, PIN_OUTPUT | MUX_MODE1) /* ssi1_flag_tx */
OMAP3_CORE1_IOPAD(0x2180, PIN_INPUT_PULLUP | MUX_MODE1) /* ssi1_rdy_tx */
- OMAP3_CORE1_IOPAD(0x2182, PIN_INPUT | WAKEUP_EN | MUX_MODE4) /* ssi1_wake_tx (cawake) */
+ OMAP3_CORE1_IOPAD(0x2182, PIN_INPUT | MUX_MODE4) /* ssi1_wake_tx (cawake) */
OMAP3_CORE1_IOPAD(0x2184, PIN_INPUT | MUX_MODE1) /* ssi1_dat_rx */
OMAP3_CORE1_IOPAD(0x2186, PIN_INPUT | MUX_MODE1) /* ssi1_flag_rx */
OMAP3_CORE1_IOPAD(0x2188, PIN_OUTPUT | MUX_MODE1) /* ssi1_rdy_rx */
OMAP3_CORE1_IOPAD(0x217c, PIN_OUTPUT | MUX_MODE7) /* ssi1_dat_tx */
OMAP3_CORE1_IOPAD(0x217e, PIN_OUTPUT | MUX_MODE7) /* ssi1_flag_tx */
OMAP3_CORE1_IOPAD(0x2180, PIN_INPUT_PULLDOWN | MUX_MODE7) /* ssi1_rdy_tx */
- OMAP3_CORE1_IOPAD(0x2182, PIN_INPUT | WAKEUP_EN | MUX_MODE4) /* ssi1_wake_tx (cawake) */
+ OMAP3_CORE1_IOPAD(0x2182, PIN_INPUT | MUX_MODE4) /* ssi1_wake_tx (cawake) */
OMAP3_CORE1_IOPAD(0x2184, PIN_INPUT | MUX_MODE7) /* ssi1_dat_rx */
OMAP3_CORE1_IOPAD(0x2186, PIN_INPUT | MUX_MODE7) /* ssi1_flag_rx */
OMAP3_CORE1_IOPAD(0x2188, PIN_OUTPUT | MUX_MODE4) /* ssi1_rdy_rx */
modem_pins1: pinmux_modem_core1_pins {
pinctrl-single,pins = <
- OMAP3_CORE1_IOPAD(0x207a, PIN_INPUT | WAKEUP_EN | MUX_MODE4) /* gpio_34 (ape_rst_rq) */
+ OMAP3_CORE1_IOPAD(0x207a, PIN_INPUT | MUX_MODE4) /* gpio_34 (ape_rst_rq) */
OMAP3_CORE1_IOPAD(0x2100, PIN_OUTPUT | MUX_MODE4) /* gpio_88 (cmt_rst_rq) */
OMAP3_CORE1_IOPAD(0x210a, PIN_OUTPUT | MUX_MODE4) /* gpio_93 (cmt_apeslpx) */
>;
pinctrl-single,pins = <
OMAP3_CORE1_IOPAD(0x2174, PIN_INPUT_PULLUP | MUX_MODE0) /* uart2_cts.uart2_cts */
OMAP3_CORE1_IOPAD(0x2176, PIN_OUTPUT | MUX_MODE0) /* uart2_rts.uart2_rts */
- OMAP3_CORE1_IOPAD(0x217a, WAKEUP_EN | PIN_INPUT | MUX_MODE0) /* uart2_rx.uart2_rx */
+ OMAP3_CORE1_IOPAD(0x217a, PIN_INPUT | MUX_MODE0) /* uart2_rx.uart2_rx */
OMAP3_CORE1_IOPAD(0x2178, PIN_OUTPUT | MUX_MODE0) /* uart2_tx.uart2_tx */
>;
};
pinctrl-single,pins = <
OMAP3_CORE1_IOPAD(0x219a, PIN_INPUT_PULLDOWN | MUX_MODE0) /* uart3_cts_rctx.uart3_cts_rctx */
OMAP3_CORE1_IOPAD(0x219c, PIN_OUTPUT | MUX_MODE0) /* uart3_rts_sd.uart3_rts_sd */
- OMAP3_CORE1_IOPAD(0x219e, WAKEUP_EN | PIN_INPUT | MUX_MODE0) /* uart3_rx_irrx.uart3_rx_irrx */
+ OMAP3_CORE1_IOPAD(0x219e, PIN_INPUT | MUX_MODE0) /* uart3_rx_irrx.uart3_rx_irrx */
OMAP3_CORE1_IOPAD(0x21a0, PIN_OUTPUT | MUX_MODE0) /* uart3_tx_irtx.uart3_tx_irtx */
>;
};
pinctrl-single,pins = <
OMAP3630_CORE2_IOPAD(0x25d8, PIN_INPUT_PULLUP | MUX_MODE2) /* etk_clk.sdmmc3_clk */
OMAP3630_CORE2_IOPAD(0x25e4, PIN_INPUT_PULLUP | MUX_MODE2) /* etk_d4.sdmmc3_dat0 */
- OMAP3630_CORE2_IOPAD(0x25e6, WAKEUP_EN | PIN_INPUT_PULLUP | MUX_MODE2) /* etk_d5.sdmmc3_dat1 */
+ OMAP3630_CORE2_IOPAD(0x25e6, PIN_INPUT_PULLUP | MUX_MODE2) /* etk_d5.sdmmc3_dat1 */
OMAP3630_CORE2_IOPAD(0x25e8, PIN_INPUT_PULLUP | MUX_MODE2) /* etk_d6.sdmmc3_dat2 */
OMAP3630_CORE2_IOPAD(0x25e2, PIN_INPUT_PULLUP | MUX_MODE2) /* etk_d3.sdmmc3_dat3 */
>;
display0 = &hdmi0;
};
+ vmain: fixedregulator-vmain {
+ compatible = "regulator-fixed";
+ regulator-name = "vmain";
+ regulator-min-microvolt = <5000000>;
+ regulator-max-microvolt = <5000000>;
+ };
+
+ vsys_cobra: fixedregulator-vsys_cobra {
+ compatible = "regulator-fixed";
+ regulator-name = "vsys_cobra";
+ vin-supply = <&vmain>;
+ regulator-min-microvolt = <5000000>;
+ regulator-max-microvolt = <5000000>;
+ };
+
+ vdds_1v8_main: fixedregulator-vdds_1v8_main {
+ compatible = "regulator-fixed";
+ regulator-name = "vdds_1v8_main";
+ vin-supply = <&smps7_reg>;
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ };
+
vmmcsd_fixed: fixedregulator-mmcsd {
compatible = "regulator-fixed";
regulator-name = "vmmcsd_fixed";
wlcore_irq_pin: pinmux_wlcore_irq_pin {
pinctrl-single,pins = <
- OMAP5_IOPAD(0x40, WAKEUP_EN | PIN_INPUT_PULLUP | MUX_MODE6) /* llia_wakereqin.gpio1_wk14 */
+ OMAP5_IOPAD(0x40, PIN_INPUT_PULLUP | MUX_MODE6) /* llia_wakereqin.gpio1_wk14 */
>;
};
};
ti,ldo6-vibrator;
+ smps123-in-supply = <&vsys_cobra>;
+ smps45-in-supply = <&vsys_cobra>;
+ smps6-in-supply = <&vsys_cobra>;
+ smps7-in-supply = <&vsys_cobra>;
+ smps8-in-supply = <&vsys_cobra>;
+ smps9-in-supply = <&vsys_cobra>;
+ smps10_out2-in-supply = <&vsys_cobra>;
+ smps10_out1-in-supply = <&vsys_cobra>;
+ ldo1-in-supply = <&vsys_cobra>;
+ ldo2-in-supply = <&vsys_cobra>;
+ ldo3-in-supply = <&vdds_1v8_main>;
+ ldo4-in-supply = <&vdds_1v8_main>;
+ ldo5-in-supply = <&vsys_cobra>;
+ ldo6-in-supply = <&vdds_1v8_main>;
+ ldo7-in-supply = <&vsys_cobra>;
+ ldo8-in-supply = <&vsys_cobra>;
+ ldo9-in-supply = <&vmmcsd_fixed>;
+ ldoln-in-supply = <&vsys_cobra>;
+ ldousb-in-supply = <&vsys_cobra>;
+
regulators {
smps123_reg: smps123 {
/* VDD_OPP_MPU */
pinctrl-0 = <&twl6040_pins>;
interrupts = <GIC_SPI 119 IRQ_TYPE_NONE>; /* IRQ_SYS_2N cascaded to gic */
- ti,audpwron-gpio = <&gpio5 13 GPIO_ACTIVE_HIGH>; /* gpio line 141 */
+
+ /* audpwron gpio defined in the board specific dts */
vio-supply = <&smps7_reg>;
v2v1-supply = <&smps9_reg>;
};
};
+/* LDO4 is VPP1 - ball AD9 */
+&ldo4_reg {
+ regulator-min-microvolt = <2000000>;
+ regulator-max-microvolt = <2000000>;
+};
+
+/*
+ * LDO7 is used for HDMI: VDDA_DSIPORTA - ball AA33, VDDA_DSIPORTC - ball AE33,
+ * VDDA_HDMI - ball AN25
+ */
+&ldo7_reg {
+ status = "okay";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+};
+
&omap5_pmx_core {
i2c4_pins: pinmux_i2c4_pins {
pinctrl-single,pins = <
<&gpio7 3 0>; /* 195, SDA */
};
+&twl6040 {
+ ti,audpwron-gpio = <&gpio5 16 GPIO_ACTIVE_HIGH>; /* gpio line 144 */
+};
+
+&twl6040_pins {
+ pinctrl-single,pins = <
+ OMAP5_IOPAD(0x1c4, PIN_OUTPUT | MUX_MODE6) /* mcspi1_somi.gpio5_144 */
+ OMAP5_IOPAD(0x1ca, PIN_OUTPUT | MUX_MODE6) /* perslimbus2_clock.gpio5_145 */
+ >;
+};
<&gpio9 1 GPIO_ACTIVE_HIGH>, /* TCA6424A P00, LS OE */
<&gpio7 1 GPIO_ACTIVE_HIGH>; /* GPIO 193, HPD */
};
+
+&twl6040 {
+ ti,audpwron-gpio = <&gpio5 13 GPIO_ACTIVE_HIGH>; /* gpio line 141 */
+};
+
+&twl6040_pins {
+ pinctrl-single,pins = <
+ OMAP5_IOPAD(0x1be, PIN_OUTPUT | MUX_MODE6) /* mcspi1_somi.gpio5_141 */
+ >;
+};
&gmac1 {
status = "okay";
phy-mode = "rgmii";
+ phy-handle = <&phy1>;
snps,reset-gpio = <&porta 0 GPIO_ACTIVE_LOW>;
snps,reset-active-low;
compatible = "shared-dma-pool";
reg = <0x40000000 0x01000000>;
no-map;
+ status = "disabled";
};
gp1_reserved: rproc@41000000 {
compatible = "shared-dma-pool";
reg = <0x41000000 0x01000000>;
no-map;
+ status = "disabled";
};
audio_reserved: rproc@42000000 {
compatible = "shared-dma-pool";
reg = <0x42000000 0x01000000>;
no-map;
+ status = "disabled";
};
dmu_reserved: rproc@43000000 {
};
®_dc1sw {
- regulator-min-microvolt = <3000000>;
- regulator-max-microvolt = <3000000>;
regulator-name = "vcc-lcd";
};
®_dc1sw {
regulator-name = "vcc-lcd-usb2";
- regulator-min-microvolt = <3000000>;
- regulator-max-microvolt = <3000000>;
};
®_dc5ldo {
CONFIG_INPUT_MISC=y
CONFIG_INPUT_MAX77693_HAPTIC=y
CONFIG_INPUT_MAX8997_HAPTIC=y
+CONFIG_KEYBOARD_SAMSUNG=y
CONFIG_SERIAL_8250=y
CONFIG_SERIAL_SAMSUNG=y
CONFIG_SERIAL_SAMSUNG_CONSOLE=y
CONFIG_KEYBOARD_SPEAR=y
CONFIG_KEYBOARD_ST_KEYSCAN=y
CONFIG_KEYBOARD_CROS_EC=m
+CONFIG_KEYBOARD_SAMSUNG=m
CONFIG_MOUSE_PS2_ELANTECH=y
CONFIG_MOUSE_CYAPA=m
CONFIG_MOUSE_ELAN_I2C=y
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_REPEAT);
+ return (pmd_t *)get_zeroed_page(GFP_KERNEL);
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
#define pmd_large(pmd) (pmd_val(pmd) & 2)
#define pmd_bad(pmd) (pmd_val(pmd) & 2)
+#define pmd_present(pmd) (pmd_val(pmd))
#define copy_pmd(pmdpd,pmdps) \
do { \
: !!(pmd_val(pmd) & (val)))
#define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
+#define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
#define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
#define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
static inline pte_t pte_mkspecial(pte_t pte)
#define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
-/* represent a notpresent pmd by zero, this is used by pmdp_invalidate */
+/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
- return __pmd(0);
+ return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
#define pmd_none(pmd) (!pmd_val(pmd))
-#define pmd_present(pmd) (pmd_val(pmd))
static inline pte_t *pmd_page_vaddr(pmd_t pmd)
{
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
{
- trace_ipi_raise(target, ipi_types[ipinr]);
+ trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
__smp_cross_call(target, ipinr);
}
select CLKSRC_SAMSUNG_PWM if CPU_EXYNOS4210
select CPU_EXYNOS4210
select GIC_NON_BANKED
- select KEYBOARD_SAMSUNG if INPUT_KEYBOARD
select MIGHT_HAVE_CACHE_L2X0
help
Samsung EXYNOS4 (Cortex-A9) SoC based systems
static void __init imx6ul_enet_phy_init(void)
{
if (IS_BUILTIN(CONFIG_PHYLIB))
- phy_register_fixup_for_uid(PHY_ID_KSZ8081, 0xffffffff,
+ phy_register_fixup_for_uid(PHY_ID_KSZ8081, MICREL_PHY_ID_MASK,
ksz8081_phy_fixup);
}
#define OTHERS_MASK (MODEM_IRQ_MASK | HOOK_SWITCH_MASK)
/* IRQ handler register bitmasks */
-#define DEFERRED_FIQ_MASK (0x1 << (INT_DEFERRED_FIQ % IH2_BASE))
-#define GPIO_BANK1_MASK (0x1 << INT_GPIO_BANK1)
+#define DEFERRED_FIQ_MASK OMAP_IRQ_BIT(INT_DEFERRED_FIQ)
+#define GPIO_BANK1_MASK OMAP_IRQ_BIT(INT_GPIO_BANK1)
/* Driver buffer byte offsets */
#define BUF_MASK (FIQ_MASK * 4)
mov r8, #2 @ reset FIQ agreement
str r8, [r12, #IRQ_CONTROL_REG_OFFSET]
- cmp r10, #INT_GPIO_BANK1 @ is it GPIO bank interrupt?
+ cmp r10, #(INT_GPIO_BANK1 - NR_IRQS_LEGACY) @ is it GPIO interrupt?
beq gpio @ yes - process it
mov r8, #1
* Since no set_type() method is provided by OMAP irq chip,
* switch to edge triggered interrupt type manually.
*/
- offset = IRQ_ILR0_REG_OFFSET + INT_DEFERRED_FIQ * 0x4;
+ offset = IRQ_ILR0_REG_OFFSET +
+ ((INT_DEFERRED_FIQ - NR_IRQS_LEGACY) & 0x1f) * 0x4;
val = omap_readl(DEFERRED_FIQ_IH_BASE + offset) & ~(1 << 1);
omap_writel(val, DEFERRED_FIQ_IH_BASE + offset);
/*
* Redirect GPIO interrupts to FIQ
*/
- offset = IRQ_ILR0_REG_OFFSET + INT_GPIO_BANK1 * 0x4;
+ offset = IRQ_ILR0_REG_OFFSET + (INT_GPIO_BANK1 - NR_IRQS_LEGACY) * 0x4;
val = omap_readl(OMAP_IH1_BASE + offset) | 1;
omap_writel(val, OMAP_IH1_BASE + offset);
}
#ifndef __AMS_DELTA_FIQ_H
#define __AMS_DELTA_FIQ_H
+#include <mach/irqs.h>
+
/*
* Interrupt number used for passing control from FIQ to IRQ.
* IRQ12, described as reserved, has been selected.
select PM_OPP if PM
select PM if CPU_IDLE
select SOC_HAS_OMAP2_SDRC
+ select ARM_ERRATA_430973
config ARCH_OMAP4
bool "TI OMAP4"
select PM if CPU_IDLE
select ARM_ERRATA_754322
select ARM_ERRATA_775420
+ select OMAP_INTERCONNECT
config SOC_OMAP5
bool "TI OMAP5"
select HAVE_ARM_SCU
select GENERIC_CLOCKEVENTS_BROADCAST
select HAVE_ARM_TWD
+ select ARM_ERRATA_754322
+ select ARM_ERRATA_775420
config SOC_DRA7XX
bool "TI DRA7XX"
endif
+config OMAP5_ERRATA_801819
+ bool "Errata 801819: An eviction from L1 data cache might stall indefinitely"
+ depends on SOC_OMAP5 || SOC_DRA7XX
+ help
+ A livelock can occur in the L2 cache arbitration that might prevent
+ a snoop from completing. Under certain conditions this can cause the
+ system to deadlock.
+
endmenu
#define OMAP5_DRA7_MON_SET_CNTFRQ_INDEX 0x109
#define OMAP5_MON_AMBA_IF_INDEX 0x108
+#define OMAP5_DRA7_MON_SET_ACR_INDEX 0x107
/* Secure PPA(Primary Protected Application) APIs */
#define OMAP4_PPA_L2_POR_INDEX 0x23
return scu_base;
}
+#ifdef CONFIG_OMAP5_ERRATA_801819
+void omap5_erratum_workaround_801819(void)
+{
+ u32 acr, revidr;
+ u32 acr_mask;
+
+ /* REVIDR[3] indicates erratum fix available on silicon */
+ asm volatile ("mrc p15, 0, %0, c0, c0, 6" : "=r" (revidr));
+ if (revidr & (0x1 << 3))
+ return;
+
+ asm volatile ("mrc p15, 0, %0, c1, c0, 1" : "=r" (acr));
+ /*
+ * BIT(27) - Disables streaming. All write-allocate lines allocate in
+ * the L1 or L2 cache.
+ * BIT(25) - Disables streaming. All write-allocate lines allocate in
+ * the L1 cache.
+ */
+ acr_mask = (0x3 << 25) | (0x3 << 27);
+ /* do we already have it done.. if yes, skip expensive smc */
+ if ((acr & acr_mask) == acr_mask)
+ return;
+
+ acr |= acr_mask;
+ omap_smc1(OMAP5_DRA7_MON_SET_ACR_INDEX, acr);
+
+ pr_debug("%s: ARM erratum workaround 801819 applied on CPU%d\n",
+ __func__, smp_processor_id());
+}
+#else
+static inline void omap5_erratum_workaround_801819(void) { }
+#endif
+
static void omap4_secondary_init(unsigned int cpu)
{
/*
omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
4, 0, 0, 0, 0, 0);
- /*
- * Configure the CNTFRQ register for the secondary cpu's which
- * indicates the frequency of the cpu local timers.
- */
- if (soc_is_omap54xx() || soc_is_dra7xx())
+ if (soc_is_omap54xx() || soc_is_dra7xx()) {
+ /*
+ * Configure the CNTFRQ register for the secondary cpu's which
+ * indicates the frequency of the cpu local timers.
+ */
set_cntfreq();
+ /* Configure ACR to disable streaming WA for 801819 */
+ omap5_erratum_workaround_801819();
+ }
/*
* Synchronise with the boot thread.
if (cpu_is_omap446x())
startup_addr = omap4460_secondary_startup;
+ if (soc_is_dra74x() || soc_is_omap54xx())
+ omap5_erratum_workaround_801819();
/*
* Write the address of secondary startup routine into the
trace_state = (PWRDM_TRACE_STATES_FLAG |
((next & OMAP_POWERSTATE_MASK) << 8) |
((prev & OMAP_POWERSTATE_MASK) << 0));
- trace_power_domain_target(pwrdm->name, trace_state,
- smp_processor_id());
+ trace_power_domain_target_rcuidle(pwrdm->name,
+ trace_state,
+ smp_processor_id());
}
break;
default:
if (arch_pwrdm && arch_pwrdm->pwrdm_set_next_pwrst) {
/* Trace the pwrdm desired target state */
- trace_power_domain_target(pwrdm->name, pwrst,
- smp_processor_id());
+ trace_power_domain_target_rcuidle(pwrdm->name, pwrst,
+ smp_processor_id());
/* Program the pwrdm desired target state */
ret = arch_pwrdm->pwrdm_set_next_pwrst(pwrdm, pwrst);
}
.prcm_offs = DRA7XX_PRM_IVA_INST,
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
- .pwrsts_logic_ret = PWRSTS_OFF,
.banks = 4,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* hwa_mem */
- [1] = PWRSTS_OFF_RET, /* sl2_mem */
- [2] = PWRSTS_OFF_RET, /* tcm1_mem */
- [3] = PWRSTS_OFF_RET, /* tcm2_mem */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* hwa_mem */
[1] = PWRSTS_ON, /* sl2_mem */
.prcm_offs = DRA7XX_PRM_IPU_INST,
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
- .pwrsts_logic_ret = PWRSTS_OFF,
.banks = 2,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* aessmem */
- [1] = PWRSTS_OFF_RET, /* periphmem */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* aessmem */
[1] = PWRSTS_ON, /* periphmem */
.prcm_offs = DRA7XX_PRM_DSS_INST,
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
- .pwrsts_logic_ret = PWRSTS_OFF,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* dss_mem */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* dss_mem */
},
.name = "l4per_pwrdm",
.prcm_offs = DRA7XX_PRM_L4PER_INST,
.prcm_partition = DRA7XX_PRM_PARTITION,
- .pwrsts = PWRSTS_RET_ON,
- .pwrsts_logic_ret = PWRSTS_RET,
+ .pwrsts = PWRSTS_ON,
.banks = 2,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* nonretained_bank */
- [1] = PWRSTS_OFF_RET, /* retained_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* nonretained_bank */
[1] = PWRSTS_ON, /* retained_bank */
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* gpu_mem */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* gpu_mem */
},
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* wkup_bank */
},
.prcm_offs = DRA7XX_PRM_CORE_INST,
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_ON,
- .pwrsts_logic_ret = PWRSTS_RET,
.banks = 5,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* core_nret_bank */
- [1] = PWRSTS_OFF_RET, /* core_ocmram */
- [2] = PWRSTS_OFF_RET, /* core_other_bank */
- [3] = PWRSTS_OFF_RET, /* ipu_l2ram */
- [4] = PWRSTS_OFF_RET, /* ipu_unicache */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* core_nret_bank */
[1] = PWRSTS_ON, /* core_ocmram */
.prcm_offs = DRA7XX_PRM_VPE_INST,
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
- .pwrsts_logic_ret = PWRSTS_OFF,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* vpe_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* vpe_bank */
},
.name = "l3init_pwrdm",
.prcm_offs = DRA7XX_PRM_L3INIT_INST,
.prcm_partition = DRA7XX_PRM_PARTITION,
- .pwrsts = PWRSTS_RET_ON,
- .pwrsts_logic_ret = PWRSTS_RET,
+ .pwrsts = PWRSTS_ON,
.banks = 3,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* gmac_bank */
- [1] = PWRSTS_OFF_RET, /* l3init_bank1 */
- [2] = PWRSTS_OFF_RET, /* l3init_bank2 */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* gmac_bank */
[1] = PWRSTS_ON, /* l3init_bank1 */
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* eve3_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* eve3_bank */
},
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* emu_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* emu_bank */
},
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 3,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* dsp2_edma */
- [1] = PWRSTS_OFF_RET, /* dsp2_l1 */
- [2] = PWRSTS_OFF_RET, /* dsp2_l2 */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* dsp2_edma */
[1] = PWRSTS_ON, /* dsp2_l1 */
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 3,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* dsp1_edma */
- [1] = PWRSTS_OFF_RET, /* dsp1_l1 */
- [2] = PWRSTS_OFF_RET, /* dsp1_l2 */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* dsp1_edma */
[1] = PWRSTS_ON, /* dsp1_l1 */
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* vip_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* vip_bank */
},
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* eve4_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* eve4_bank */
},
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* eve2_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* eve2_bank */
},
.prcm_partition = DRA7XX_PRM_PARTITION,
.pwrsts = PWRSTS_OFF_ON,
.banks = 1,
- .pwrsts_mem_ret = {
- [0] = PWRSTS_OFF_RET, /* eve1_bank */
- },
.pwrsts_mem_on = {
[0] = PWRSTS_ON, /* eve1_bank */
},
__omap_sync32k_timer_init(1, "timer_32k_ck", "ti,timer-alwon",
2, "timer_sys_ck", NULL, false);
- if (of_have_populated_dt())
- clocksource_probe();
+ clocksource_probe();
}
#if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_SOC_AM43XX)
{
__omap_sync32k_timer_init(12, "secure_32k_fck", "ti,timer-secure",
2, "timer_sys_ck", NULL, false);
+
+ clocksource_probe();
}
#endif /* CONFIG_ARCH_OMAP3 */
{
__omap_sync32k_timer_init(2, "timer_sys_ck", NULL,
1, "timer_sys_ck", "ti,timer-alwon", true);
+
+ clocksource_probe();
}
#endif
#include <linux/platform_data/asoc-s3c.h>
#include <linux/platform_data/spi-s3c64xx.h>
-static u64 samsung_device_dma_mask = DMA_BIT_MASK(32);
+#define samsung_device_dma_mask (*((u64[]) { DMA_BIT_MASK(32) }))
/* AC97 */
#ifdef CONFIG_CPU_S3C2440
Image: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@
-Image.%: vmlinux
+Image.%: Image
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@
zinstall install:
#size-cells = <1>;
#interrupts-cells = <3>;
- compatible = "arm,amba-bus";
+ compatible = "simple-bus";
interrupt-parent = <&gic>;
ranges;
};
amba {
- compatible = "arm,amba-bus";
+ compatible = "simple-bus";
#address-cells = <2>;
#size-cells = <2>;
ranges;
#define check_pgt_cache() do { } while (0)
-#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
+#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO)
#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
#if CONFIG_PGTABLE_LEVELS > 2
cpu_park_loop();
}
+/*
+ * If a secondary CPU enters the kernel but fails to come online,
+ * (e.g. due to mismatched features), and cannot exit the kernel,
+ * we increment cpus_stuck_in_kernel and leave the CPU in a
+ * quiesecent loop within the kernel text. The memory containing
+ * this loop must not be re-used for anything else as the 'stuck'
+ * core is executing it.
+ *
+ * This function is used to inhibit features like kexec and hibernate.
+ */
+bool cpus_are_stuck_in_kernel(void);
+
#endif /* ifndef __ASSEMBLY__ */
#endif /* ifndef __ASM_SMP_H */
#include <asm/pgtable.h>
#include <asm/pgtable-hwdef.h>
#include <asm/sections.h>
+#include <asm/smp.h>
#include <asm/suspend.h>
#include <asm/virt.h>
unsigned long flags;
struct sleep_stack_data state;
+ if (cpus_are_stuck_in_kernel()) {
+ pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
+ return -EBUSY;
+ }
+
local_dbg_save(flags);
if (__cpu_suspend_enter(&state)) {
{
return -EINVAL;
}
+
+static bool have_cpu_die(void)
+{
+#ifdef CONFIG_HOTPLUG_CPU
+ int any_cpu = raw_smp_processor_id();
+
+ if (cpu_ops[any_cpu]->cpu_die)
+ return true;
+#endif
+ return false;
+}
+
+bool cpus_are_stuck_in_kernel(void)
+{
+ bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
+
+ return !!cpus_stuck_in_kernel || smp_spin_tables;
+}
&asid_generation);
flush_context(cpu);
- /* We have at least 1 ASID per CPU, so this will always succeed */
+ /* We have more ASIDs than CPUs, so this will always succeed */
asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
set_asid:
static int asids_init(void)
{
asid_bits = get_cpu_asid_bits();
- /* If we end up with more CPUs than ASIDs, expect things to crash */
- WARN_ON(NUM_USER_ASIDS < num_possible_cpus());
+ /*
+ * Expect allocation after rollover to fail if we don't have at least
+ * one more ASID than CPUs. ASID #0 is reserved for init_mm.
+ */
+ WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus());
atomic64_set(&asid_generation, ASID_FIRST_VERSION);
asid_map = kzalloc(BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(*asid_map),
GFP_KERNEL);
{
struct page *page = pte_page(pte);
- /* no flushing needed for anonymous pages */
- if (!page_mapping(page))
- return;
-
if (!test_and_set_bit(PG_dcache_clean, &page->flags))
sync_icache_aliases(page_address(page),
PAGE_SIZE << compound_order(page));
*/
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
- return quicklist_alloc(QUICK_PGD, GFP_KERNEL | __GFP_REPEAT, pgd_ctor);
+ return quicklist_alloc(QUICK_PGD, GFP_KERNEL, pgd_ctor);
}
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- return quicklist_alloc(QUICK_PT, GFP_KERNEL | __GFP_REPEAT, NULL);
+ return quicklist_alloc(QUICK_PT, GFP_KERNEL, NULL);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
struct page *page;
void *pg;
- pg = quicklist_alloc(QUICK_PT, GFP_KERNEL | __GFP_REPEAT, NULL);
+ pg = quicklist_alloc(QUICK_PT, GFP_KERNEL, NULL);
if (!pg)
return NULL;
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
- pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
return pte;
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
struct page *pte;
- pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
+ pte = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
if (!pte)
return NULL;
if (!pgtable_page_ctor(pte)) {
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
- pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT);
+ pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL);
if (pte)
clear_page(pte);
return pte;
struct page *page;
#ifdef CONFIG_HIGHPTE
- page = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT, 0);
+ page = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM, 0);
#else
- page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, 0);
+ page = alloc_pages(GFP_KERNEL, 0);
#endif
if (!page)
return NULL;
{
struct page *pte;
- pte = alloc_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
+ pte = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!pte)
return NULL;
if (!pgtable_page_ctor(pte)) {
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- gfp_t flags = GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO;
+ gfp_t flags = GFP_KERNEL | __GFP_ZERO;
return (pte_t *) __get_free_page(flags);
}
select GENERIC_SMP_IDLE_THREAD
select ARCH_INIT_TASK
select ARCH_TASK_STRUCT_ALLOCATOR
- select ARCH_THREAD_INFO_ALLOCATOR
+ select ARCH_THREAD_STACK_ALLOCATOR
select ARCH_CLOCKSOURCE_DATA
select GENERIC_TIME_VSYSCALL_OLD
select SYSCTL_ARCH_UNALIGN_NO_WARN
#ifndef ASM_OFFSETS_C
/* how to get the thread information struct from C */
#define current_thread_info() ((struct thread_info *) ((char *) current + IA64_TASK_SIZE))
-#define alloc_thread_info_node(tsk, node) \
- ((struct thread_info *) ((char *) (tsk) + IA64_TASK_SIZE))
+#define alloc_thread_stack_node(tsk, node) \
+ ((unsigned long *) ((char *) (tsk) + IA64_TASK_SIZE))
#define task_thread_info(tsk) ((struct thread_info *) ((char *) (tsk) + IA64_TASK_SIZE))
#else
#define current_thread_info() ((struct thread_info *) 0)
-#define alloc_thread_info_node(tsk, node) ((struct thread_info *) 0)
+#define alloc_thread_stack_node(tsk, node) ((unsigned long *) 0)
#define task_thread_info(tsk) ((struct thread_info *) 0)
#endif
-#define free_thread_info(ti) /* nothing */
+#define free_thread_stack(ti) /* nothing */
#define task_stack_page(tsk) ((void *)(tsk))
#define __HAVE_THREAD_FUNCTIONS
* handled. This is done by having a special ".data..init_task" section...
*/
#define init_thread_info init_task_mem.s.thread_info
+#define init_stack init_task_mem.stack
union {
struct {
extern inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- unsigned long page = __get_free_page(GFP_DMA|__GFP_REPEAT);
+ unsigned long page = __get_free_page(GFP_DMA);
if (!page)
return NULL;
static inline struct page *pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
- struct page *page = alloc_pages(GFP_DMA|__GFP_REPEAT, 0);
+ struct page *page = alloc_pages(GFP_DMA, 0);
pte_t *pte;
if (!page)
{
pte_t *pte;
- pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
if (pte) {
__flush_page_to_ram(pte);
flush_tlb_kernel_page(pte);
struct page *page;
pte_t *pte;
- page = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
+ page = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
if(!page)
return NULL;
if (!pgtable_page_ctor(page)) {
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- unsigned long page = __get_free_page(GFP_KERNEL|__GFP_REPEAT);
+ unsigned long page = __get_free_page(GFP_KERNEL);
if (!page)
return NULL;
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
- struct page *page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, 0);
+ struct page *page = alloc_pages(GFP_KERNEL, 0);
if (page == NULL)
return NULL;
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT |
- __GFP_ZERO);
+ pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
return pte;
}
unsigned long address)
{
struct page *pte;
- pte = alloc_pages(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO, 0);
+ pte = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0);
if (!pte)
return NULL;
if (!pgtable_page_ctor(pte)) {
struct page *ptepage;
#ifdef CONFIG_HIGHPTE
- int flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_REPEAT;
+ int flags = GFP_KERNEL | __GFP_HIGHMEM;
#else
- int flags = GFP_KERNEL | __GFP_REPEAT;
+ int flags = GFP_KERNEL;
#endif
ptepage = alloc_pages(flags, 0);
{
pte_t *pte;
if (mem_init_done) {
- pte = (pte_t *)__get_free_page(GFP_KERNEL |
- __GFP_REPEAT | __GFP_ZERO);
+ pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
} else {
pte = (pte_t *)early_get_page();
if (pte)
{
pte_t *pte;
- pte = (pte_t *) __get_free_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, PTE_ORDER);
+ pte = (pte_t *) __get_free_pages(GFP_KERNEL|__GFP_ZERO, PTE_ORDER);
return pte;
}
{
struct page *pte;
- pte = alloc_pages(GFP_KERNEL | __GFP_REPEAT, PTE_ORDER);
+ pte = alloc_pages(GFP_KERNEL, PTE_ORDER);
if (!pte)
return NULL;
clear_highpage(pte);
{
pmd_t *pmd;
- pmd = (pmd_t *) __get_free_pages(GFP_KERNEL|__GFP_REPEAT, PMD_ORDER);
+ pmd = (pmd_t *) __get_free_pages(GFP_KERNEL, PMD_ORDER);
if (pmd)
pmd_init((unsigned long)pmd, (unsigned long)invalid_pte_table);
return pmd;
}
#ifndef CONFIG_KGDB
-void arch_release_thread_info(struct thread_info *ti);
+void arch_release_thread_stack(unsigned long *stack);
#endif
#define get_thread_info(ti) get_task_struct((ti)->task)
#define put_thread_info(ti) put_task_struct((ti)->task)
* single-step state is cleared. At this point the breakpoints should have
* been removed by __switch_to().
*/
-void arch_release_thread_info(struct thread_info *ti)
+void arch_release_thread_stack(unsigned long *stack)
{
+ struct thread_info *ti = (void *)stack;
if (kgdb_sstep_thread == ti) {
kgdb_sstep_thread = NULL;
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
- pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT);
+ pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL);
if (pte)
clear_page(pte);
return pte;
struct page *pte;
#ifdef CONFIG_HIGHPTE
- pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT, 0);
+ pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM, 0);
#else
- pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT, 0);
+ pte = alloc_pages(GFP_KERNEL, 0);
#endif
if (!pte)
return NULL;
{
pte_t *pte;
- pte = (pte_t *) __get_free_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO,
- PTE_ORDER);
+ pte = (pte_t *) __get_free_pages(GFP_KERNEL|__GFP_ZERO, PTE_ORDER);
return pte;
}
{
struct page *pte;
- pte = alloc_pages(GFP_KERNEL | __GFP_REPEAT, PTE_ORDER);
+ pte = alloc_pages(GFP_KERNEL, PTE_ORDER);
if (pte) {
if (!pgtable_page_ctor(pte)) {
__free_page(pte);
unsigned long address)
{
struct page *pte;
- pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT, 0);
+ pte = alloc_pages(GFP_KERNEL, 0);
if (!pte)
return NULL;
clear_page(page_address(pte));
pte_t *pte;
if (likely(mem_init_done)) {
- pte = (pte_t *) __get_free_page(GFP_KERNEL | __GFP_REPEAT);
+ pte = (pte_t *) __get_free_page(GFP_KERNEL);
} else {
pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
#if 0
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long address)
{
- pmd_t *pmd = (pmd_t *)__get_free_pages(GFP_KERNEL|__GFP_REPEAT,
- PMD_ORDER);
+ pmd_t *pmd = (pmd_t *)__get_free_pages(GFP_KERNEL, PMD_ORDER);
if (pmd)
memset(pmd, 0, PAGE_SIZE<<PMD_ORDER);
return pmd;
static inline pgtable_t
pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
- struct page *page = alloc_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ struct page *page = alloc_page(GFP_KERNEL|__GFP_ZERO);
if (!page)
return NULL;
if (!pgtable_page_ctor(page)) {
static inline pte_t *
pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)
{
- pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
return pte;
}
select IRQ_FORCED_THREADING
select HAVE_RCU_TABLE_FREE if SMP
select HAVE_SYSCALL_TRACEPOINTS
- select HAVE_CBPF_JIT
+ select HAVE_CBPF_JIT if CPU_BIG_ENDIAN
select HAVE_ARCH_JUMP_LABEL
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select ARCH_HAS_GCOV_PROFILE_ALL
static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
unsigned long address)
{
- tlb_flush_pgtable(tlb, address);
pgtable_page_dtor(table);
pgtable_free_tlb(tlb, page_address(table), 0);
}
#define HPTE_R_RPN_SHIFT 12
#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
+#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
#define HPTE_R_N ASM_CONST(0x0000000000000004)
#define HPTE_R_G ASM_CONST(0x0000000000000008)
#define HPTE_R_M ASM_CONST(0x0000000000000010)
pgtable_cache[(shift) - 1]; \
})
-#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
+#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO
extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
extern void pte_fragment_free(unsigned long *, int);
return (pgd_t *)__get_free_page(PGALLOC_GFP);
#else
struct page *page;
- page = alloc_pages(PGALLOC_GFP, 4);
+ page = alloc_pages(PGALLOC_GFP | __GFP_REPEAT, 4);
if (!page)
return NULL;
return (pgd_t *) page_address(page);
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
- GFP_KERNEL|__GFP_REPEAT);
+ return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), GFP_KERNEL);
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
unsigned long address)
{
+ /*
+ * By now all the pud entries should be none entries. So go
+ * ahead and flush the page walk cache
+ */
+ flush_tlb_pgtable(tlb, address);
pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE);
}
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
- GFP_KERNEL|__GFP_REPEAT);
+ return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), GFP_KERNEL);
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
unsigned long address)
{
+ /*
+ * By now all the pud entries should be none entries. So go
+ * ahead and flush the page walk cache
+ */
+ flush_tlb_pgtable(tlb, address);
return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX);
}
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
+ return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
unsigned long address)
{
- tlb_flush_pgtable(tlb, address);
+ /*
+ * By now all the pud entries should be none entries. So go
+ * ahead and flush the page walk cache
+ */
+ flush_tlb_pgtable(tlb, address);
pgtable_free_tlb(tlb, table, 0);
}
extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
pgprot_t flags, unsigned int psz);
+
+static inline unsigned long radix__get_tree_size(void)
+{
+ unsigned long rts_field;
+ /*
+ * we support 52 bits, hence 52-31 = 21, 0b10101
+ * RTS encoding details
+ * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
+ * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
+ */
+ rts_field = (0x5UL << 5); /* 6 - 8 bits */
+ rts_field |= (0x2UL << 61);
+
+ return rts_field;
+}
#endif /* __ASSEMBLY__ */
#endif
extern void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
extern void radix___local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
unsigned long ap, int nid);
+extern void radix__local_flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr);
extern void radix__tlb_flush(struct mmu_gather *tlb);
#ifdef CONFIG_SMP
extern void radix__flush_tlb_mm(struct mm_struct *mm);
extern void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
extern void radix___flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
unsigned long ap, int nid);
+extern void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr);
#else
#define radix__flush_tlb_mm(mm) radix__local_flush_tlb_mm(mm)
#define radix__flush_tlb_page(vma,addr) radix__local_flush_tlb_page(vma,addr)
#define radix___flush_tlb_page(mm,addr,p,i) radix___local_flush_tlb_page(mm,addr,p,i)
+#define radix__flush_tlb_pwc(tlb, addr) radix__local_flush_tlb_pwc(tlb, addr)
#endif
#endif
#define flush_tlb_mm(mm) local_flush_tlb_mm(mm)
#define flush_tlb_page(vma, addr) local_flush_tlb_page(vma, addr)
#endif /* CONFIG_SMP */
+/*
+ * flush the page walk cache for the address
+ */
+static inline void flush_tlb_pgtable(struct mmu_gather *tlb, unsigned long address)
+{
+ /*
+ * Flush the page table walk cache on freeing a page table. We already
+ * have marked the upper/higher level page table entry none by now.
+ * So it is safe to flush PWC here.
+ */
+ if (!radix_enabled())
+ return;
+ radix__flush_tlb_pwc(tlb, address);
+}
#endif /* _ASM_POWERPC_BOOK3S_64_TLBFLUSH_H */
#include <linux/mm.h>
extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
-static inline void tlb_flush_pgtable(struct mmu_gather *tlb,
- unsigned long address)
-{
-
-}
#ifdef CONFIG_PPC64
#include <asm/book3s/64/pgalloc.h>
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
- GFP_KERNEL|__GFP_REPEAT);
+ return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), GFP_KERNEL);
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
+ return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
- GFP_KERNEL|__GFP_REPEAT);
+ return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), GFP_KERNEL);
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
if (pe->type & EEH_PE_VF) {
eeh_pe_dev_traverse(pe, eeh_rmv_device, NULL);
} else {
- eeh_pe_state_clear(pe, EEH_PE_PRI_BUS);
pci_lock_rescan_remove();
pci_hp_remove_devices(bus);
pci_unlock_rescan_remove();
*/
edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
eeh_pe_traverse(pe, eeh_pe_detach_dev, NULL);
- if (pe->type & EEH_PE_VF)
+ if (pe->type & EEH_PE_VF) {
eeh_add_virt_device(edev, NULL);
- else
+ } else {
+ eeh_pe_state_clear(pe, EEH_PE_PRI_BUS);
pci_hp_add_devices(bus);
+ }
} else if (frozen_bus && rmv_data->removed) {
pr_info("EEH: Sleep 5s ahead of partial hotplug\n");
ssleep(5);
lwz r9,PACA_EXSLB+EX_CCR(r13) /* get saved CR */
mtlr r10
-BEGIN_MMU_FTR_SECTION
- b 2f
-END_MMU_FTR_SECTION_IFSET(MMU_FTR_RADIX)
andi. r10,r12,MSR_RI /* check for unrecoverable exception */
+BEGIN_MMU_FTR_SECTION
beq- 2f
+FTR_SECTION_ELSE
+ b 2f
+ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_RADIX)
.machine push
.machine "power4"
DBG_LOW(" -> hit\n");
/* Update the HPTE */
hptep->r = cpu_to_be64((be64_to_cpu(hptep->r) &
- ~(HPTE_R_PP | HPTE_R_N)) |
- (newpp & (HPTE_R_PP | HPTE_R_N |
+ ~(HPTE_R_PPP | HPTE_R_N)) |
+ (newpp & (HPTE_R_PPP | HPTE_R_N |
HPTE_R_C)));
}
native_unlock_hpte(hptep);
/* Update the HPTE */
hptep->r = cpu_to_be64((be64_to_cpu(hptep->r) &
- ~(HPTE_R_PP | HPTE_R_N)) |
- (newpp & (HPTE_R_PP | HPTE_R_N)));
+ ~(HPTE_R_PPP | HPTE_R_N)) |
+ (newpp & (HPTE_R_PPP | HPTE_R_N)));
/*
* Ensure it is out of the tlb too. Bolted entries base and
* actual page size will be same.
/*
* We can't allow hardware to update hpte bits. Hence always
* set 'R' bit and set 'C' if it is a write fault
- * Memory coherence is always enabled
*/
- rflags |= HPTE_R_R | HPTE_R_M;
+ rflags |= HPTE_R_R;
if (pteflags & _PAGE_DIRTY)
rflags |= HPTE_R_C;
if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
rflags |= HPTE_R_I;
- if ((pteflags & _PAGE_CACHE_CTL ) == _PAGE_NON_IDEMPOTENT)
+ else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
rflags |= (HPTE_R_I | HPTE_R_G);
- if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
- rflags |= (HPTE_R_I | HPTE_R_W);
+ else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
+ rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
+ else
+ /*
+ * Add memory coherence if cache inhibited is not set
+ */
+ rflags |= HPTE_R_M;
return rflags;
}
cachep = PGT_CACHE(pdshift - pshift);
#endif
- new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
+ new = kmem_cache_zalloc(cachep, GFP_KERNEL);
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
/*
* set the process table entry,
*/
- rts_field = 3ull << PPC_BITLSHIFT(2);
+ rts_field = radix__get_tree_size();
process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
return 0;
}
process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT);
/*
* Fill in the process table.
- * we support 52 bits, hence 52-28 = 24, 11000
*/
- rts_field = 3ull << PPC_BITLSHIFT(2);
+ rts_field = radix__get_tree_size();
process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
/*
* Fill in the partition table. We are suppose to use effective address
static void __init radix_init_partition_table(void)
{
unsigned long rts_field;
- /*
- * we support 52 bits, hence 52-28 = 24, 11000
- */
- rts_field = 3ull << PPC_BITLSHIFT(2);
+
+ rts_field = radix__get_tree_size();
BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 24), "Partition table size too large.");
partition_tb = early_alloc_pgtable(1UL << PATB_SIZE_SHIFT);
pte_t *pte;
if (slab_is_available()) {
- pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
} else {
pte = __va(memblock_alloc(PAGE_SIZE, PAGE_SIZE));
if (pte)
{
struct page *ptepage;
- gfp_t flags = GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO;
+ gfp_t flags = GFP_KERNEL | __GFP_ZERO;
ptepage = alloc_pages(flags, 0);
if (!ptepage)
static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
{
void *ret = NULL;
- struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
- __GFP_REPEAT | __GFP_ZERO);
+ struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
if (!page)
return NULL;
if (!kernel && !pgtable_page_ctor(page)) {
static DEFINE_RAW_SPINLOCK(native_tlbie_lock);
-static inline void __tlbiel_pid(unsigned long pid, int set)
+#define RIC_FLUSH_TLB 0
+#define RIC_FLUSH_PWC 1
+#define RIC_FLUSH_ALL 2
+
+static inline void __tlbiel_pid(unsigned long pid, int set,
+ unsigned long ric)
{
- unsigned long rb,rs,ric,prs,r;
+ unsigned long rb,rs,prs,r;
rb = PPC_BIT(53); /* IS = 1 */
rb |= set << PPC_BITLSHIFT(51);
rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* raidx format */
- ric = 2; /* invalidate all the caches */
asm volatile("ptesync": : :"memory");
asm volatile(".long 0x7c000224 | (%0 << 11) | (%1 << 16) |"
/*
* We use 128 set in radix mode and 256 set in hpt mode.
*/
-static inline void _tlbiel_pid(unsigned long pid)
+static inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
{
int set;
for (set = 0; set < POWER9_TLB_SETS_RADIX ; set++) {
- __tlbiel_pid(pid, set);
+ __tlbiel_pid(pid, set, ric);
}
return;
}
-static inline void _tlbie_pid(unsigned long pid)
+static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
{
- unsigned long rb,rs,ric,prs,r;
+ unsigned long rb,rs,prs,r;
rb = PPC_BIT(53); /* IS = 1 */
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* raidx format */
- ric = 2; /* invalidate all the caches */
asm volatile("ptesync": : :"memory");
asm volatile(".long 0x7c000264 | (%0 << 11) | (%1 << 16) |"
}
static inline void _tlbiel_va(unsigned long va, unsigned long pid,
- unsigned long ap)
+ unsigned long ap, unsigned long ric)
{
- unsigned long rb,rs,ric,prs,r;
+ unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* raidx format */
- ric = 0; /* no cluster flush yet */
asm volatile("ptesync": : :"memory");
asm volatile(".long 0x7c000224 | (%0 << 11) | (%1 << 16) |"
}
static inline void _tlbie_va(unsigned long va, unsigned long pid,
- unsigned long ap)
+ unsigned long ap, unsigned long ric)
{
- unsigned long rb,rs,ric,prs,r;
+ unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* raidx format */
- ric = 0; /* no cluster flush yet */
asm volatile("ptesync": : :"memory");
asm volatile(".long 0x7c000264 | (%0 << 11) | (%1 << 16) |"
preempt_disable();
pid = mm->context.id;
if (pid != MMU_NO_CONTEXT)
- _tlbiel_pid(pid);
+ _tlbiel_pid(pid, RIC_FLUSH_ALL);
preempt_enable();
}
EXPORT_SYMBOL(radix__local_flush_tlb_mm);
+void radix__local_flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr)
+{
+ unsigned long pid;
+ struct mm_struct *mm = tlb->mm;
+
+ preempt_disable();
+
+ pid = mm->context.id;
+ if (pid != MMU_NO_CONTEXT)
+ _tlbiel_pid(pid, RIC_FLUSH_PWC);
+
+ preempt_enable();
+}
+EXPORT_SYMBOL(radix__local_flush_tlb_pwc);
+
void radix___local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
unsigned long ap, int nid)
{
preempt_disable();
pid = mm ? mm->context.id : 0;
if (pid != MMU_NO_CONTEXT)
- _tlbiel_va(vmaddr, pid, ap);
+ _tlbiel_va(vmaddr, pid, ap, RIC_FLUSH_TLB);
preempt_enable();
}
if (lock_tlbie)
raw_spin_lock(&native_tlbie_lock);
- _tlbie_pid(pid);
+ _tlbie_pid(pid, RIC_FLUSH_ALL);
if (lock_tlbie)
raw_spin_unlock(&native_tlbie_lock);
} else
- _tlbiel_pid(pid);
+ _tlbiel_pid(pid, RIC_FLUSH_ALL);
no_context:
preempt_enable();
}
EXPORT_SYMBOL(radix__flush_tlb_mm);
+void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr)
+{
+ unsigned long pid;
+ struct mm_struct *mm = tlb->mm;
+
+ preempt_disable();
+
+ pid = mm->context.id;
+ if (unlikely(pid == MMU_NO_CONTEXT))
+ goto no_context;
+
+ if (!mm_is_core_local(mm)) {
+ int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
+
+ if (lock_tlbie)
+ raw_spin_lock(&native_tlbie_lock);
+ _tlbie_pid(pid, RIC_FLUSH_PWC);
+ if (lock_tlbie)
+ raw_spin_unlock(&native_tlbie_lock);
+ } else
+ _tlbiel_pid(pid, RIC_FLUSH_PWC);
+no_context:
+ preempt_enable();
+}
+EXPORT_SYMBOL(radix__flush_tlb_pwc);
+
void radix___flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
unsigned long ap, int nid)
{
if (lock_tlbie)
raw_spin_lock(&native_tlbie_lock);
- _tlbie_va(vmaddr, pid, ap);
+ _tlbie_va(vmaddr, pid, ap, RIC_FLUSH_TLB);
if (lock_tlbie)
raw_spin_unlock(&native_tlbie_lock);
} else
- _tlbiel_va(vmaddr, pid, ap);
+ _tlbiel_va(vmaddr, pid, ap, RIC_FLUSH_TLB);
bail:
preempt_enable();
}
if (lock_tlbie)
raw_spin_lock(&native_tlbie_lock);
- _tlbie_pid(0);
+ _tlbie_pid(0, RIC_FLUSH_ALL);
if (lock_tlbie)
raw_spin_unlock(&native_tlbie_lock);
}
/* Performance monitoring unit for s390x */
static struct pmu cpumf_pmu = {
+ .task_ctx_nr = perf_sw_context,
+ .capabilities = PERF_PMU_CAP_NO_INTERRUPT,
.pmu_enable = cpumf_pmu_enable,
.pmu_disable = cpumf_pmu_disable,
.event_init = cpumf_pmu_event_init,
goto out;
}
- /* The CPU measurement counter facility does not have overflow
- * interrupts to do sampling. Sampling must be provided by
- * external means, for example, by timers.
- */
- cpumf_pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
-
cpumf_pmu.attr_groups = cpumf_cf_event_group();
rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", PERF_TYPE_RAW);
if (rc) {
return table;
}
/* Allocate a fresh page */
- page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
+ page = alloc_page(GFP_KERNEL);
if (!page)
return NULL;
if (!pgtable_page_ctor(page)) {
pgste = pgste_get_lock(ptep);
pgstev = pgste_val(pgste);
pte = *ptep;
- if (pte_swap(pte) &&
+ if (!reset && pte_swap(pte) &&
((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED ||
(pgstev & _PGSTE_GPS_ZERO))) {
ptep_zap_swap_entry(mm, pte_to_swp_entry(pte));
{
pte_t *pte;
- pte = (pte_t *) __get_free_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO,
- PTE_ORDER);
+ pte = (pte_t *) __get_free_pages(GFP_KERNEL|__GFP_ZERO, PTE_ORDER);
return pte;
}
{
struct page *pte;
- pte = alloc_pages(GFP_KERNEL | __GFP_REPEAT, PTE_ORDER);
+ pte = alloc_pages(GFP_KERNEL, PTE_ORDER);
if (!pte)
return NULL;
clear_highpage(pte);
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- return quicklist_alloc(QUICK_PT, GFP_KERNEL | __GFP_REPEAT, NULL);
+ return quicklist_alloc(QUICK_PT, GFP_KERNEL, NULL);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
struct page *page;
void *pg;
- pg = quicklist_alloc(QUICK_PT, GFP_KERNEL | __GFP_REPEAT, NULL);
+ pg = quicklist_alloc(QUICK_PT, GFP_KERNEL, NULL);
if (!pg)
return NULL;
page = virt_to_page(pg);
#include <linux/mm.h>
#include <linux/slab.h>
-#define PGALLOC_GFP GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO
+#define PGALLOC_GFP GFP_KERNEL | __GFP_ZERO
static struct kmem_cache *pgd_cachep;
#if PAGETABLE_LEVELS > 2
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return kmem_cache_alloc(pgtable_cache,
- GFP_KERNEL|__GFP_REPEAT);
+ return kmem_cache_alloc(pgtable_cache, GFP_KERNEL);
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return kmem_cache_alloc(pgtable_cache,
- GFP_KERNEL|__GFP_REPEAT);
+ return kmem_cache_alloc(pgtable_cache, GFP_KERNEL);
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
- struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
- __GFP_REPEAT | __GFP_ZERO);
+ struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
pte_t *pte = NULL;
if (page)
pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
- struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
- __GFP_REPEAT | __GFP_ZERO);
+ struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
if (!page)
return NULL;
if (!pgtable_page_ctor(page)) {
#ifndef __ASSEMBLY__
-void arch_release_thread_info(struct thread_info *info);
+void arch_release_thread_stack(unsigned long *stack);
/* How to get the thread information struct from C. */
register unsigned long stack_pointer __asm__("sp");
/*
* Release a thread_info structure
*/
-void arch_release_thread_info(struct thread_info *info)
+void arch_release_thread_stack(unsigned long *stack)
{
+ struct thread_info *info = (void *)stack;
struct single_step_state *step_state = info->step_state;
if (step_state) {
struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
int order)
{
- gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
+ gfp_t flags = GFP_KERNEL|__GFP_ZERO;
struct page *p;
int i;
{
pte_t *pte;
- pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
return pte;
}
{
struct page *pte;
- pte = alloc_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+ pte = alloc_page(GFP_KERNEL|__GFP_ZERO);
if (!pte)
return NULL;
if (!pgtable_page_ctor(pte)) {
#define pgd_alloc(mm) get_pgd_slow(mm)
#define pgd_free(mm, pgd) free_pgd_slow(mm, pgd)
-#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
+#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO)
/*
* Allocate one PTE table.
source "drivers/pci/Kconfig"
+config ISA_BUS
+ bool "ISA-style bus support on modern systems" if EXPERT
+ select ISA_BUS_API
+ help
+ Enables ISA-style drivers on modern systems. This is necessary to
+ support PC/104 devices on X86_64 platforms.
+
+ If unsure, say N.
+
# x86_64 have no ISA slots, but can have ISA-style DMA.
config ISA_DMA_API
bool "ISA-style DMA support" if (X86_64 && EXPERT)
#define RELATIVECALL_OPCODE 0xe8
#define RELATIVE_ADDR_SIZE 4
#define MAX_STACK_SIZE 64
-#define MIN_STACK_SIZE(ADDR) \
- (((MAX_STACK_SIZE) < (((unsigned long)current_thread_info()) + \
- THREAD_SIZE - (unsigned long)(ADDR))) \
- ? (MAX_STACK_SIZE) \
- : (((unsigned long)current_thread_info()) + \
- THREAD_SIZE - (unsigned long)(ADDR)))
+#define CUR_STACK_SIZE(ADDR) \
+ (current_top_of_stack() - (unsigned long)(ADDR))
+#define MIN_STACK_SIZE(ADDR) \
+ (MAX_STACK_SIZE < CUR_STACK_SIZE(ADDR) ? \
+ MAX_STACK_SIZE : CUR_STACK_SIZE(ADDR))
#define flush_insn_slot(p) do { } while (0)
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
struct page *page;
- page = alloc_pages(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO, 0);
+ page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0);
if (!page)
return NULL;
if (!pgtable_pmd_page_ctor(page)) {
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
- return (pud_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
+ return (pud_t *)get_zeroed_page(GFP_KERNEL);
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
struct thread_info;
struct stacktrace_ops;
-typedef unsigned long (*walk_stack_t)(struct thread_info *tinfo,
+typedef unsigned long (*walk_stack_t)(struct task_struct *task,
unsigned long *stack,
unsigned long bp,
const struct stacktrace_ops *ops,
int *graph);
extern unsigned long
-print_context_stack(struct thread_info *tinfo,
+print_context_stack(struct task_struct *task,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data,
unsigned long *end, int *graph);
extern unsigned long
-print_context_stack_bp(struct thread_info *tinfo,
+print_context_stack_bp(struct task_struct *task,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data,
unsigned long *end, int *graph);
static void
print_ftrace_graph_addr(unsigned long addr, void *data,
const struct stacktrace_ops *ops,
- struct thread_info *tinfo, int *graph)
+ struct task_struct *task, int *graph)
{
- struct task_struct *task;
unsigned long ret_addr;
int index;
if (addr != (unsigned long)return_to_handler)
return;
- task = tinfo->task;
index = task->curr_ret_stack;
if (!task->ret_stack || index < *graph)
static inline void
print_ftrace_graph_addr(unsigned long addr, void *data,
const struct stacktrace_ops *ops,
- struct thread_info *tinfo, int *graph)
+ struct task_struct *task, int *graph)
{ }
#endif
* severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
*/
-static inline int valid_stack_ptr(struct thread_info *tinfo,
+static inline int valid_stack_ptr(struct task_struct *task,
void *p, unsigned int size, void *end)
{
- void *t = tinfo;
+ void *t = task_stack_page(task);
if (end) {
if (p < end && p >= (end-THREAD_SIZE))
return 1;
}
unsigned long
-print_context_stack(struct thread_info *tinfo,
+print_context_stack(struct task_struct *task,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data,
unsigned long *end, int *graph)
{
struct stack_frame *frame = (struct stack_frame *)bp;
- while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
+ while (valid_stack_ptr(task, stack, sizeof(*stack), end)) {
unsigned long addr;
addr = *stack;
} else {
ops->address(data, addr, 0);
}
- print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
+ print_ftrace_graph_addr(addr, data, ops, task, graph);
}
stack++;
}
EXPORT_SYMBOL_GPL(print_context_stack);
unsigned long
-print_context_stack_bp(struct thread_info *tinfo,
+print_context_stack_bp(struct task_struct *task,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data,
unsigned long *end, int *graph)
struct stack_frame *frame = (struct stack_frame *)bp;
unsigned long *ret_addr = &frame->return_address;
- while (valid_stack_ptr(tinfo, ret_addr, sizeof(*ret_addr), end)) {
+ while (valid_stack_ptr(task, ret_addr, sizeof(*ret_addr), end)) {
unsigned long addr = *ret_addr;
if (!__kernel_text_address(addr))
break;
frame = frame->next_frame;
ret_addr = &frame->return_address;
- print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
+ print_ftrace_graph_addr(addr, data, ops, task, graph);
}
return (unsigned long)frame;
bp = stack_frame(task, regs);
for (;;) {
- struct thread_info *context;
void *end_stack;
end_stack = is_hardirq_stack(stack, cpu);
if (!end_stack)
end_stack = is_softirq_stack(stack, cpu);
- context = task_thread_info(task);
- bp = ops->walk_stack(context, stack, bp, ops, data,
+ bp = ops->walk_stack(task, stack, bp, ops, data,
end_stack, &graph);
/* Stop if not on irq stack */
const struct stacktrace_ops *ops, void *data)
{
const unsigned cpu = get_cpu();
- struct thread_info *tinfo;
unsigned long *irq_stack = (unsigned long *)per_cpu(irq_stack_ptr, cpu);
unsigned long dummy;
unsigned used = 0;
* current stack address. If the stacks consist of nested
* exceptions
*/
- tinfo = task_thread_info(task);
while (!done) {
unsigned long *stack_end;
enum stack_type stype;
if (ops->stack(data, id) < 0)
break;
- bp = ops->walk_stack(tinfo, stack, bp, ops,
+ bp = ops->walk_stack(task, stack, bp, ops,
data, stack_end, &graph);
ops->stack(data, "<EOE>");
/*
if (ops->stack(data, "IRQ") < 0)
break;
- bp = ops->walk_stack(tinfo, stack, bp,
+ bp = ops->walk_stack(task, stack, bp,
ops, data, stack_end, &graph);
/*
* We link to the next stack (which would be
/*
* This handles the process stack:
*/
- bp = ops->walk_stack(tinfo, stack, bp, ops, data, NULL, &graph);
+ bp = ops->walk_stack(task, stack, bp, ops, data, NULL, &graph);
put_cpu();
}
EXPORT_SYMBOL(dump_trace);
# error "Need more than one PGD for the ESPFIX hack"
#endif
-#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
+#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO)
/* This contains the *bottom* address of the espfix stack */
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
void do_softirq_own_stack(void)
{
- struct thread_info *curstk;
struct irq_stack *irqstk;
u32 *isp, *prev_esp;
- curstk = current_stack();
irqstk = __this_cpu_read(softirq_stack);
/* build the stack frame on the softirq stack */
* normal page fault.
*/
regs->ip = (unsigned long)cur->addr;
+ /*
+ * Trap flag (TF) has been set here because this fault
+ * happened where the single stepping will be done.
+ * So clear it by resetting the current kprobe:
+ */
+ regs->flags &= ~X86_EFLAGS_TF;
+
+ /*
+ * If the TF flag was set before the kprobe hit,
+ * don't touch it:
+ */
regs->flags |= kcb->kprobe_old_flags;
+
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
#include <asm/fixmap.h>
#include <asm/mtrr.h>
-#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
+#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO
#ifdef CONFIG_HIGHPTE
#define PGALLOC_USER_GFP __GFP_HIGHMEM
if (efi_enabled(EFI_OLD_MEMMAP))
return 0;
- gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO;
+ gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
if (!efi_pgd)
return -ENOMEM;
/* NOTE: The loop is more greedy than the cleanup_highmap variant.
* We include the PMD passed in on _both_ boundaries. */
- for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
+ for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
pmd++, vaddr += PMD_SIZE) {
if (pmd_none(*pmd))
continue;
#endif
}
-#ifdef CONFIG_X86_32
-static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
-{
- /* If there's an existing pte, then don't allow _PAGE_RW to be set */
- if (pte_val_ma(*ptep) & _PAGE_PRESENT)
- pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
- pte_val_ma(pte));
-
- return pte;
-}
-#else /* CONFIG_X86_64 */
-static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
-{
- unsigned long pfn;
-
- if (xen_feature(XENFEAT_writable_page_tables) ||
- xen_feature(XENFEAT_auto_translated_physmap) ||
- xen_start_info->mfn_list >= __START_KERNEL_map)
- return pte;
-
- /*
- * Pages belonging to the initial p2m list mapped outside the default
- * address range must be mapped read-only. This region contains the
- * page tables for mapping the p2m list, too, and page tables MUST be
- * mapped read-only.
- */
- pfn = pte_pfn(pte);
- if (pfn >= xen_start_info->first_p2m_pfn &&
- pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
- pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW);
-
- return pte;
-}
-#endif /* CONFIG_X86_64 */
-
/*
* Init-time set_pte while constructing initial pagetables, which
* doesn't allow RO page table pages to be remapped RW.
* so always write the PTE directly and rely on Xen trapping and
* emulating any updates as necessary.
*/
-static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
+__visible pte_t xen_make_pte_init(pteval_t pte)
{
- if (pte_mfn(pte) != INVALID_P2M_ENTRY)
- pte = mask_rw_pte(ptep, pte);
- else
- pte = __pte_ma(0);
+#ifdef CONFIG_X86_64
+ unsigned long pfn;
+
+ /*
+ * Pages belonging to the initial p2m list mapped outside the default
+ * address range must be mapped read-only. This region contains the
+ * page tables for mapping the p2m list, too, and page tables MUST be
+ * mapped read-only.
+ */
+ pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
+ if (xen_start_info->mfn_list < __START_KERNEL_map &&
+ pfn >= xen_start_info->first_p2m_pfn &&
+ pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
+ pte &= ~_PAGE_RW;
+#endif
+ pte = pte_pfn_to_mfn(pte);
+ return native_make_pte(pte);
+}
+PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
+static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
+{
+#ifdef CONFIG_X86_32
+ /* If there's an existing pte, then don't allow _PAGE_RW to be set */
+ if (pte_mfn(pte) != INVALID_P2M_ENTRY
+ && pte_val_ma(*ptep) & _PAGE_PRESENT)
+ pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
+ pte_val_ma(pte));
+#endif
native_set_pte(ptep, pte);
}
pv_mmu_ops.alloc_pud = xen_alloc_pud;
pv_mmu_ops.release_pud = xen_release_pud;
#endif
+ pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
#ifdef CONFIG_X86_64
pv_mmu_ops.write_cr3 = &xen_write_cr3;
.pte_val = PV_CALLEE_SAVE(xen_pte_val),
.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
- .make_pte = PV_CALLEE_SAVE(xen_make_pte),
+ .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
#ifdef CONFIG_X86_PAE
if (unlikely(!slab_is_available()))
return alloc_bootmem_align(PAGE_SIZE, PAGE_SIZE);
- return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
+ return (void *)__get_free_page(GFP_KERNEL);
}
static void __ref free_p2m_page(void *p)
pte_t *ptep;
int i;
- ptep = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT);
+ ptep = (pte_t *)__get_free_page(GFP_KERNEL);
if (!ptep)
return NULL;
for (i = 0; i < 1024; i++)
[CRYPTO_MSG_NEWALG - CRYPTO_MSG_BASE] = MSGSIZE(crypto_user_alg),
[CRYPTO_MSG_DELALG - CRYPTO_MSG_BASE] = MSGSIZE(crypto_user_alg),
[CRYPTO_MSG_UPDATEALG - CRYPTO_MSG_BASE] = MSGSIZE(crypto_user_alg),
+ [CRYPTO_MSG_GETALG - CRYPTO_MSG_BASE] = MSGSIZE(crypto_user_alg),
[CRYPTO_MSG_DELRNG - CRYPTO_MSG_BASE] = 0,
};
/* Add the table to the namespace */
+ acpi_ex_exit_interpreter();
status = acpi_ns_load_table(table_index, parent_node);
+ acpi_ex_enter_interpreter();
if (ACPI_FAILURE(status)) {
acpi_ut_remove_reference(obj_desc);
*ddb_handle = NULL;
acpi_status acpi_hw_write(u32 value, struct acpi_generic_address *reg)
{
u64 address;
- u8 access_width;
- u32 bit_width;
- u8 bit_offset;
- u64 value64;
- u32 new_value32, old_value32;
- u8 index;
acpi_status status;
ACPI_FUNCTION_NAME(hw_write);
return (status);
}
- /* Convert access_width into number of bits based */
-
- access_width = acpi_hw_get_access_bit_width(reg, 32);
- bit_width = reg->bit_offset + reg->bit_width;
- bit_offset = reg->bit_offset;
-
/*
* Two address spaces supported: Memory or IO. PCI_Config is
* not supported here because the GAS structure is insufficient
*/
- index = 0;
- while (bit_width) {
- /*
- * Use offset style bit reads because "Index * AccessWidth" is
- * ensured to be less than 32-bits by acpi_hw_validate_register().
- */
- new_value32 = ACPI_GET_BITS(&value, index * access_width,
- ACPI_MASK_BITS_ABOVE_32
- (access_width));
-
- if (bit_offset >= access_width) {
- bit_offset -= access_width;
- } else {
- /*
- * Use offset style bit masks because access_width is ensured
- * to be less than 32-bits by acpi_hw_validate_register() and
- * bit_offset/bit_width is less than access_width here.
- */
- if (bit_offset) {
- new_value32 &= ACPI_MASK_BITS_BELOW(bit_offset);
- }
- if (bit_width < access_width) {
- new_value32 &= ACPI_MASK_BITS_ABOVE(bit_width);
- }
-
- if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
- if (bit_offset || bit_width < access_width) {
- /*
- * Read old values in order not to modify the bits that
- * are beyond the register bit_width/bit_offset setting.
- */
- status =
- acpi_os_read_memory((acpi_physical_address)
- address +
- index *
- ACPI_DIV_8
- (access_width),
- &value64,
- access_width);
- old_value32 = (u32)value64;
-
- /*
- * Use offset style bit masks because access_width is
- * ensured to be less than 32-bits by
- * acpi_hw_validate_register() and bit_offset/bit_width is
- * less than access_width here.
- */
- if (bit_offset) {
- old_value32 &=
- ACPI_MASK_BITS_ABOVE
- (bit_offset);
- bit_offset = 0;
- }
- if (bit_width < access_width) {
- old_value32 &=
- ACPI_MASK_BITS_BELOW
- (bit_width);
- }
-
- new_value32 |= old_value32;
- }
-
- value64 = (u64)new_value32;
- status =
- acpi_os_write_memory((acpi_physical_address)
- address +
- index *
- ACPI_DIV_8
- (access_width),
- value64, access_width);
- } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
-
- if (bit_offset || bit_width < access_width) {
- /*
- * Read old values in order not to modify the bits that
- * are beyond the register bit_width/bit_offset setting.
- */
- status =
- acpi_hw_read_port((acpi_io_address)
- address +
- index *
- ACPI_DIV_8
- (access_width),
- &old_value32,
- access_width);
-
- /*
- * Use offset style bit masks because access_width is
- * ensured to be less than 32-bits by
- * acpi_hw_validate_register() and bit_offset/bit_width is
- * less than access_width here.
- */
- if (bit_offset) {
- old_value32 &=
- ACPI_MASK_BITS_ABOVE
- (bit_offset);
- bit_offset = 0;
- }
- if (bit_width < access_width) {
- old_value32 &=
- ACPI_MASK_BITS_BELOW
- (bit_width);
- }
-
- new_value32 |= old_value32;
- }
-
- status = acpi_hw_write_port((acpi_io_address)
- address +
- index *
- ACPI_DIV_8
- (access_width),
- new_value32,
- access_width);
- }
- }
-
- /*
- * Index * access_width is ensured to be less than 32-bits by
- * acpi_hw_validate_register().
- */
- bit_width -=
- bit_width > access_width ? access_width : bit_width;
- index++;
+ if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
+ status = acpi_os_write_memory((acpi_physical_address)
+ address, (u64)value,
+ reg->bit_width);
+ } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
+
+ status = acpi_hw_write_port((acpi_io_address)
+ address, value, reg->bit_width);
}
ACPI_DEBUG_PRINT((ACPI_DB_IO,
"Wrote: %8.8X width %2d to %8.8X%8.8X (%s)\n",
- value, access_width, ACPI_FORMAT_UINT64(address),
+ value, reg->bit_width, ACPI_FORMAT_UINT64(address),
acpi_ut_get_region_name(reg->space_id)));
return (status);
#include "acparser.h"
#include "acdispat.h"
#include "actables.h"
+#include "acinterp.h"
#define _COMPONENT ACPI_NAMESPACE
ACPI_MODULE_NAME("nsparse")
ACPI_FUNCTION_TRACE(ns_parse_table);
+ acpi_ex_enter_interpreter();
+
/*
* AML Parse, pass 1
*
status = acpi_ns_one_complete_parse(ACPI_IMODE_LOAD_PASS1,
table_index, start_node);
if (ACPI_FAILURE(status)) {
- return_ACPI_STATUS(status);
+ goto error_exit;
}
/*
status = acpi_ns_one_complete_parse(ACPI_IMODE_LOAD_PASS2,
table_index, start_node);
if (ACPI_FAILURE(status)) {
- return_ACPI_STATUS(status);
+ goto error_exit;
}
+error_exit:
+ acpi_ex_exit_interpreter();
return_ACPI_STATUS(status);
}
ata_scsi_port_error_handler(host, ap);
/* finish or retry handled scmd's and clean up */
- WARN_ON(host->host_failed || !list_empty(&eh_work_q));
+ WARN_ON(!list_empty(&eh_work_q));
DPRINTK("EXIT\n");
}
obj-y += power/
obj-$(CONFIG_HAS_DMA) += dma-mapping.o
obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o
-obj-$(CONFIG_ISA) += isa.o
+obj-$(CONFIG_ISA_BUS_API) += isa.o
obj-$(CONFIG_FW_LOADER) += firmware_class.o
obj-$(CONFIG_NUMA) += node.o
obj-$(CONFIG_MEMORY_HOTPLUG_SPARSE) += memory.o
return error;
}
-device_initcall(isa_bus_init);
+postcore_initcall(isa_bus_init);
static void module_create_drivers_dir(struct module_kobject *mk)
{
- if (!mk || mk->drivers_dir)
- return;
+ static DEFINE_MUTEX(drivers_dir_mutex);
- mk->drivers_dir = kobject_create_and_add("drivers", &mk->kobj);
+ mutex_lock(&drivers_dir_mutex);
+ if (mk && !mk->drivers_dir)
+ mk->drivers_dir = kobject_create_and_add("drivers", &mk->kobj);
+ mutex_unlock(&drivers_dir_mutex);
}
void module_add_driver(struct module *mod, struct device_driver *drv)
}
/* Mark opp-table as multiple CPUs are sharing it now */
- opp_table->shared_opp = true;
+ opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
}
unlock:
mutex_unlock(&opp_table_lock);
*
* This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
*
- * Returns -ENODEV if OPP table isn't already present.
+ * Returns -ENODEV if OPP table isn't already present and -EINVAL if the OPP
+ * table's status is access-unknown.
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
goto unlock;
}
+ if (opp_table->shared_opp == OPP_TABLE_ACCESS_UNKNOWN) {
+ ret = -EINVAL;
+ goto unlock;
+ }
+
cpumask_clear(cpumask);
- if (opp_table->shared_opp) {
+ if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
list_for_each_entry(opp_dev, &opp_table->dev_list, node)
cpumask_set_cpu(opp_dev->dev->id, cpumask);
} else {
* But the OPPs will be considered as shared only if the
* OPP table contains a "opp-shared" property.
*/
- return opp_table->shared_opp ? opp_table : NULL;
+ if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED)
+ return opp_table;
+
+ return NULL;
}
}
}
opp_table->np = opp_np;
- opp_table->shared_opp = of_property_read_bool(opp_np, "opp-shared");
+ if (of_property_read_bool(opp_np, "opp-shared"))
+ opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
+ else
+ opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
mutex_unlock(&opp_table_lock);
#endif
};
+enum opp_table_access {
+ OPP_TABLE_ACCESS_UNKNOWN = 0,
+ OPP_TABLE_ACCESS_EXCLUSIVE = 1,
+ OPP_TABLE_ACCESS_SHARED = 2,
+};
+
/**
* struct opp_table - Device opp structure
* @node: table node - contains the devices with OPPs that
/* For backward compatibility with v1 bindings */
unsigned int voltage_tolerance_v1;
- bool shared_opp;
+ enum opp_table_access shared_opp;
struct dev_pm_opp *suspend_opp;
unsigned int *supported_hw;
int ret;
/* get_zeroed_page returns page with ref count 1 */
- p = (void *) get_zeroed_page(GFP_KERNEL | __GFP_REPEAT);
+ p = (void *) get_zeroed_page(GFP_KERNEL);
if (!p)
return -ENOMEM;
empty_page = virt_to_page(p);
return acpi_ppc;
}
-/*
- * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
- * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
- * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
- * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
- * target ratio 0x17. The _PSS control value stores in a format which can be
- * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
- * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
- * This function converts the _PSS control value to intel pstate driver format
- * for comparison and assignment.
- */
-static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
-{
- return cpu->acpi_perf_data.states[index].control >> 8;
-}
-
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
- int turbo_pss_ctl;
int ret;
int i;
* max frequency, which will cause a reduced performance as
* this driver uses real max turbo frequency as the max
* frequency. So correct this frequency in _PSS table to
- * correct max turbo frequency based on the turbo ratio.
+ * correct max turbo frequency based on the turbo state.
* Also need to convert to MHz as _PSS freq is in MHz.
*/
- turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
- if (turbo_pss_ctl > cpu->pstate.max_pstate)
+ if (!limits->turbo_disabled)
cpu->acpi_perf_data.states[0].core_frequency =
policy->cpuinfo.max_freq / 1000;
cpu->valid_pss_table = true;
doorbell.space_id = reg_resource->space_id;
doorbell.bit_width = reg_resource->bit_width;
doorbell.bit_offset = reg_resource->bit_offset;
- doorbell.access_width = 64;
+ doorbell.access_width = 4;
doorbell.address = reg_resource->address;
pr_debug("probe: doorbell: space_id is %d, bit_width is %d, "
&device_data->state);
memmove(req_ctx->state.buffer,
device_data->state.buffer,
- HASH_BLOCK_SIZE / sizeof(u32));
+ HASH_BLOCK_SIZE);
if (ret) {
dev_err(device_data->dev,
"%s: hash_resume_state() failed!\n",
memmove(device_data->state.buffer,
req_ctx->state.buffer,
- HASH_BLOCK_SIZE / sizeof(u32));
+ HASH_BLOCK_SIZE);
if (ret) {
dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
__func__);
.cra_name = "cbc(aes)",
.cra_driver_name = "p8_aes_cbc",
.cra_module = THIS_MODULE,
- .cra_priority = 1000,
+ .cra_priority = 2000,
.cra_type = &crypto_blkcipher_type,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_NEED_FALLBACK,
.cra_alignmask = 0,
.cra_name = "ctr(aes)",
.cra_driver_name = "p8_aes_ctr",
.cra_module = THIS_MODULE,
- .cra_priority = 1000,
+ .cra_priority = 2000,
.cra_type = &crypto_blkcipher_type,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_NEED_FALLBACK,
.cra_alignmask = 0,
# Some ABIs specify vrsave, special-purpose register #256, as reserved
# for system use.
-my $no_vrsave = ($flavour =~ /aix|linux64le/);
+my $no_vrsave = ($flavour =~ /linux-ppc64le/);
my $mtspr = sub {
my ($f,$idx,$ra) = @_;
if ($idx == 256 && $no_vrsave) {
devfreq_notify_transition(devfreq, &freqs, DEVFREQ_PRECHANGE);
err = devfreq->profile->target(devfreq->dev.parent, &freq, flags);
- if (err)
+ if (err) {
+ freqs.new = cur_freq;
+ devfreq_notify_transition(devfreq, &freqs, DEVFREQ_POSTCHANGE);
return err;
+ }
freqs.new = freq;
devfreq_notify_transition(devfreq, &freqs, DEVFREQ_POSTCHANGE);
devfreq->profile = profile;
strncpy(devfreq->governor_name, governor_name, DEVFREQ_NAME_LEN);
devfreq->previous_freq = profile->initial_freq;
+ devfreq->last_status.current_frequency = profile->initial_freq;
devfreq->data = data;
devfreq->nb.notifier_call = devfreq_notifier_call;
mutex_lock(&devfreq->lock);
}
- devfreq->trans_table = devm_kzalloc(dev, sizeof(unsigned int) *
- devfreq->profile->max_state *
- devfreq->profile->max_state,
- GFP_KERNEL);
- devfreq->time_in_state = devm_kzalloc(dev, sizeof(unsigned long) *
- devfreq->profile->max_state,
- GFP_KERNEL);
- devfreq->last_stat_updated = jiffies;
-
dev_set_name(&devfreq->dev, "%s", dev_name(dev));
err = device_register(&devfreq->dev);
if (err) {
- put_device(&devfreq->dev);
mutex_unlock(&devfreq->lock);
goto err_out;
}
+ devfreq->trans_table = devm_kzalloc(&devfreq->dev, sizeof(unsigned int) *
+ devfreq->profile->max_state *
+ devfreq->profile->max_state,
+ GFP_KERNEL);
+ devfreq->time_in_state = devm_kzalloc(&devfreq->dev, sizeof(unsigned long) *
+ devfreq->profile->max_state,
+ GFP_KERNEL);
+ devfreq->last_stat_updated = jiffies;
+
srcu_init_notifier_head(&devfreq->transition_notifier_list);
mutex_unlock(&devfreq->lock);
err_init:
list_del(&devfreq->node);
device_unregister(&devfreq->dev);
- kfree(devfreq);
err_out:
return ERR_PTR(err);
}
return -EINVAL;
device_unregister(&devfreq->dev);
- put_device(&devfreq->dev);
return 0;
}
/* Maps the memory mapped IO to control nocp register */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- if (IS_ERR(res))
- return PTR_ERR(res);
-
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
u32 mbr_dus; /* Destination Microblock Stride Register */
};
-
+/* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
struct at_xdmac_desc {
struct at_xdmac_lld lld;
enum dma_transfer_direction direction;
unsigned int xfer_size;
struct list_head descs_list;
struct list_head xfer_node;
-};
+} __aligned(sizeof(u64));
static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
{
u32 cur_nda, check_nda, cur_ubc, mask, value;
u8 dwidth = 0;
unsigned long flags;
+ bool initd;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE)
residue = desc->xfer_size;
/*
* Flush FIFO: only relevant when the transfer is source peripheral
- * synchronized.
+ * synchronized. Flush is needed before reading CUBC because data in
+ * the FIFO are not reported by CUBC. Reporting a residue of the
+ * transfer length while we have data in FIFO can cause issue.
+ * Usecase: atmel USART has a timeout which means I have received
+ * characters but there is no more character received for a while. On
+ * timeout, it requests the residue. If the data are in the DMA FIFO,
+ * we will return a residue of the transfer length. It means no data
+ * received. If an application is waiting for these data, it will hang
+ * since we won't have another USART timeout without receiving new
+ * data.
*/
mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
}
/*
- * When processing the residue, we need to read two registers but we
- * can't do it in an atomic way. AT_XDMAC_CNDA is used to find where
- * we stand in the descriptor list and AT_XDMAC_CUBC is used
- * to know how many data are remaining for the current descriptor.
- * Since the dma channel is not paused to not loose data, between the
- * AT_XDMAC_CNDA and AT_XDMAC_CUBC read, we may have change of
- * descriptor.
- * For that reason, after reading AT_XDMAC_CUBC, we check if we are
- * still using the same descriptor by reading a second time
- * AT_XDMAC_CNDA. If AT_XDMAC_CNDA has changed, it means we have to
- * read again AT_XDMAC_CUBC.
+ * The easiest way to compute the residue should be to pause the DMA
+ * but doing this can lead to miss some data as some devices don't
+ * have FIFO.
+ * We need to read several registers because:
+ * - DMA is running therefore a descriptor change is possible while
+ * reading these registers
+ * - When the block transfer is done, the value of the CUBC register
+ * is set to its initial value until the fetch of the next descriptor.
+ * This value will corrupt the residue calculation so we have to skip
+ * it.
+ *
+ * INITD -------- ------------
+ * |____________________|
+ * _______________________ _______________
+ * NDA @desc2 \/ @desc3
+ * _______________________/\_______________
+ * __________ ___________ _______________
+ * CUBC 0 \/ MAX desc1 \/ MAX desc2
+ * __________/\___________/\_______________
+ *
+ * Since descriptors are aligned on 64 bits, we can assume that
+ * the update of NDA and CUBC is atomic.
* Memory barriers are used to ensure the read order of the registers.
- * A max number of retries is set because unlikely it can never ends if
- * we are transferring a lot of data with small buffers.
+ * A max number of retries is set because unlikely it could never ends.
*/
- cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
- rmb();
- cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
- rmb();
check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
-
- if (likely(cur_nda == check_nda))
- break;
-
- cur_nda = check_nda;
+ rmb();
+ initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
rmb();
cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
+ rmb();
+ cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
+ rmb();
+
+ if ((check_nda == cur_nda) && initd)
+ break;
}
if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
}
/*
+ * Flush FIFO: only relevant when the transfer is source peripheral
+ * synchronized. Another flush is needed here because CUBC is updated
+ * when the controller sends the data write command. It can lead to
+ * report data that are not written in the memory or the device. The
+ * FIFO flush ensures that data are really written.
+ */
+ if ((desc->lld.mbr_cfg & mask) == value) {
+ at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
+ while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
+ cpu_relax();
+ }
+
+ /*
* Remove size of all microblocks already transferred and the current
* one. Then add the remaining size to transfer of the current
* microblock.
goto free_resources;
}
- src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src), 0,
- PAGE_SIZE, DMA_TO_DEVICE);
+ src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src),
+ (size_t)src & ~PAGE_MASK, PAGE_SIZE,
+ DMA_TO_DEVICE);
unmap->addr[0] = src_dma;
ret = dma_mapping_error(dma_chan->device->dev, src_dma);
}
unmap->to_cnt = 1;
- dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest), 0,
- PAGE_SIZE, DMA_FROM_DEVICE);
+ dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest),
+ (size_t)dest & ~PAGE_MASK, PAGE_SIZE,
+ DMA_FROM_DEVICE);
unmap->addr[1] = dest_dma;
ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
palmas_enable_irq(palmas_usb);
/* perform initial detection */
+ if (palmas_usb->enable_gpio_vbus_detection)
+ palmas_vbus_irq_handler(palmas_usb->gpio_vbus_irq, palmas_usb);
palmas_gpio_id_detect(&palmas_usb->wq_detectid.work);
device_set_wakeup_capable(&pdev->dev, true);
return 0;
config GPIO_104_DIO_48E
tristate "ACCES 104-DIO-48E GPIO support"
- depends on ISA
+ depends on ISA_BUS_API
select GPIOLIB_IRQCHIP
help
Enables GPIO support for the ACCES 104-DIO-48E series (104-DIO-48E,
config GPIO_104_IDIO_16
tristate "ACCES 104-IDIO-16 GPIO support"
- depends on ISA
+ depends on ISA_BUS_API
select GPIOLIB_IRQCHIP
help
Enables GPIO support for the ACCES 104-IDIO-16 family (104-IDIO-16,
config GPIO_104_IDI_48
tristate "ACCES 104-IDI-48 GPIO support"
- depends on ISA
+ depends on ISA_BUS_API
select GPIOLIB_IRQCHIP
help
Enables GPIO support for the ACCES 104-IDI-48 family (104-IDI-48A,
config GPIO_WS16C48
tristate "WinSystems WS16C48 GPIO support"
- depends on ISA
+ depends on ISA_BUS_API
select GPIOLIB_IRQCHIP
help
Enables GPIO support for the WinSystems WS16C48. The base port
idi48gpio->irq = irq[id];
spin_lock_init(&idi48gpio->lock);
+ spin_lock_init(&idi48gpio->ack_lock);
dev_set_drvdata(dev, idi48gpio);
#define VALIDATE_DESC(desc) do { \
if (!desc) \
return 0; \
+ if (IS_ERR(desc)) { \
+ pr_warn("%s: invalid GPIO (errorpointer)\n", __func__); \
+ return PTR_ERR(desc); \
+ } \
if (!desc->gdev) { \
- pr_warn("%s: invalid GPIO\n", __func__); \
+ pr_warn("%s: invalid GPIO (no device)\n", __func__); \
return -EINVAL; \
} \
if ( !desc->gdev->chip ) { \
#define VALIDATE_DESC_VOID(desc) do { \
if (!desc) \
return; \
+ if (IS_ERR(desc)) { \
+ pr_warn("%s: invalid GPIO (errorpointer)\n", __func__); \
+ return; \
+ } \
if (!desc->gdev) { \
- pr_warn("%s: invalid GPIO\n", __func__); \
+ pr_warn("%s: invalid GPIO (no device)\n", __func__); \
return; \
} \
if (!desc->gdev->chip) { \
struct gpio_chip *chip;
int offset;
- VALIDATE_DESC(desc);
+ /*
+ * Cannot VALIDATE_DESC() here as gpiod_to_irq() consumer semantics
+ * requires this function to not return zero on an invalid descriptor
+ * but rather a negative error number.
+ */
+ if (!desc || IS_ERR(desc) || !desc->gdev || !desc->gdev->chip)
+ return -EINVAL;
+
chip = desc->gdev->chip;
offset = gpio_chip_hwgpio(desc);
if (chip->to_irq) {
struct cgs_acpi_method_argument *argument = NULL;
uint32_t i, count;
acpi_status status;
- int result;
+ int result = 0;
uint32_t func_no = 0xFFFFFFFF;
handle = ACPI_HANDLE(&adev->pdev->dev);
/* Post card if necessary */
if (!amdgpu_card_posted(adev) ||
(adev->virtualization.is_virtual &&
- !adev->virtualization.caps & AMDGPU_VIRT_CAPS_SRIOV_EN)) {
+ !(adev->virtualization.caps & AMDGPU_VIRT_CAPS_SRIOV_EN))) {
if (!adev->bios) {
dev_err(adev->dev, "Card not posted and no BIOS - ignoring\n");
return -EINVAL;
dev_info.max_memory_clock = adev->pm.default_mclk * 10;
}
dev_info.enabled_rb_pipes_mask = adev->gfx.config.backend_enable_mask;
- dev_info.num_rb_pipes = adev->gfx.config.num_rbs;
+ dev_info.num_rb_pipes = adev->gfx.config.max_backends_per_se *
+ adev->gfx.config.max_shader_engines;
dev_info.num_hw_gfx_contexts = adev->gfx.config.max_hw_contexts;
dev_info._pad = 0;
dev_info.ids_flags = 0;
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_pm_state_type state = 0;
- long idx;
+ unsigned long idx;
int ret;
if (strlen(buf) == 1)
adev->pp_force_state_enabled = false;
- else {
- ret = kstrtol(buf, 0, &idx);
+ else if (adev->pp_enabled) {
+ struct pp_states_info data;
- if (ret) {
+ ret = kstrtoul(buf, 0, &idx);
+ if (ret || idx >= ARRAY_SIZE(data.states)) {
count = -EINVAL;
goto fail;
}
- if (adev->pp_enabled) {
- struct pp_states_info data;
- amdgpu_dpm_get_pp_num_states(adev, &data);
- state = data.states[idx];
- /* only set user selected power states */
- if (state != POWER_STATE_TYPE_INTERNAL_BOOT &&
- state != POWER_STATE_TYPE_DEFAULT) {
- amdgpu_dpm_dispatch_task(adev,
- AMD_PP_EVENT_ENABLE_USER_STATE, &state, NULL);
- adev->pp_force_state_enabled = true;
- }
+ amdgpu_dpm_get_pp_num_states(adev, &data);
+ state = data.states[idx];
+ /* only set user selected power states */
+ if (state != POWER_STATE_TYPE_INTERNAL_BOOT &&
+ state != POWER_STATE_TYPE_DEFAULT) {
+ amdgpu_dpm_dispatch_task(adev,
+ AMD_PP_EVENT_ENABLE_USER_STATE, &state, NULL);
+ adev->pp_force_state_enabled = true;
}
}
fail:
static const u32 golden_settings_polaris10_a11[] =
{
mmATC_MISC_CG, 0x000c0fc0, 0x000c0200,
- mmCB_HW_CONTROL, 0xfffdf3cf, 0x00006208,
+ mmCB_HW_CONTROL, 0xfffdf3cf, 0x00007208,
+ mmCB_HW_CONTROL_2, 0, 0x0f000000,
mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
ULONG ulReserved[12];
}ATOM_ASIC_PROFILING_INFO_V3_5;
+/* for Polars10/11 AVFS parameters */
+typedef struct _ATOM_ASIC_PROFILING_INFO_V3_6
+{
+ ATOM_COMMON_TABLE_HEADER asHeader;
+ ULONG ulMaxVddc;
+ ULONG ulMinVddc;
+ USHORT usLkgEuseIndex;
+ UCHAR ucLkgEfuseBitLSB;
+ UCHAR ucLkgEfuseLength;
+ ULONG ulLkgEncodeLn_MaxDivMin;
+ ULONG ulLkgEncodeMax;
+ ULONG ulLkgEncodeMin;
+ EFUSE_LINEAR_FUNC_PARAM sRoFuse;
+ ULONG ulEvvDefaultVddc;
+ ULONG ulEvvNoCalcVddc;
+ ULONG ulSpeed_Model;
+ ULONG ulSM_A0;
+ ULONG ulSM_A1;
+ ULONG ulSM_A2;
+ ULONG ulSM_A3;
+ ULONG ulSM_A4;
+ ULONG ulSM_A5;
+ ULONG ulSM_A6;
+ ULONG ulSM_A7;
+ UCHAR ucSM_A0_sign;
+ UCHAR ucSM_A1_sign;
+ UCHAR ucSM_A2_sign;
+ UCHAR ucSM_A3_sign;
+ UCHAR ucSM_A4_sign;
+ UCHAR ucSM_A5_sign;
+ UCHAR ucSM_A6_sign;
+ UCHAR ucSM_A7_sign;
+ ULONG ulMargin_RO_a;
+ ULONG ulMargin_RO_b;
+ ULONG ulMargin_RO_c;
+ ULONG ulMargin_fixed;
+ ULONG ulMargin_Fmax_mean;
+ ULONG ulMargin_plat_mean;
+ ULONG ulMargin_Fmax_sigma;
+ ULONG ulMargin_plat_sigma;
+ ULONG ulMargin_DC_sigma;
+ ULONG ulLoadLineSlop;
+ ULONG ulaTDClimitPerDPM[8];
+ ULONG ulaNoCalcVddcPerDPM[8];
+ ULONG ulAVFS_meanNsigma_Acontant0;
+ ULONG ulAVFS_meanNsigma_Acontant1;
+ ULONG ulAVFS_meanNsigma_Acontant2;
+ USHORT usAVFS_meanNsigma_DC_tol_sigma;
+ USHORT usAVFS_meanNsigma_Platform_mean;
+ USHORT usAVFS_meanNsigma_Platform_sigma;
+ ULONG ulGB_VDROOP_TABLE_CKSOFF_a0;
+ ULONG ulGB_VDROOP_TABLE_CKSOFF_a1;
+ ULONG ulGB_VDROOP_TABLE_CKSOFF_a2;
+ ULONG ulGB_VDROOP_TABLE_CKSON_a0;
+ ULONG ulGB_VDROOP_TABLE_CKSON_a1;
+ ULONG ulGB_VDROOP_TABLE_CKSON_a2;
+ ULONG ulAVFSGB_FUSE_TABLE_CKSOFF_m1;
+ USHORT usAVFSGB_FUSE_TABLE_CKSOFF_m2;
+ ULONG ulAVFSGB_FUSE_TABLE_CKSOFF_b;
+ ULONG ulAVFSGB_FUSE_TABLE_CKSON_m1;
+ USHORT usAVFSGB_FUSE_TABLE_CKSON_m2;
+ ULONG ulAVFSGB_FUSE_TABLE_CKSON_b;
+ USHORT usMaxVoltage_0_25mv;
+ UCHAR ucEnableGB_VDROOP_TABLE_CKSOFF;
+ UCHAR ucEnableGB_VDROOP_TABLE_CKSON;
+ UCHAR ucEnableGB_FUSE_TABLE_CKSOFF;
+ UCHAR ucEnableGB_FUSE_TABLE_CKSON;
+ USHORT usPSM_Age_ComFactor;
+ UCHAR ucEnableApplyAVFS_CKS_OFF_Voltage;
+ UCHAR ucReserved;
+}ATOM_ASIC_PROFILING_INFO_V3_6;
+
typedef struct _ATOM_SCLK_FCW_RANGE_ENTRY_V1{
ULONG ulMaxSclkFreq;
data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
+ data->force_pcie_gen = PP_PCIEGenInvalid;
+
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
{
PHM_FUNC_CHECK(hwmgr);
- if (hwmgr->hwmgr_func->store_cc6_data == NULL)
+ if (display_config == NULL)
return -EINVAL;
hwmgr->display_config = *display_config;
+
+ if (hwmgr->hwmgr_func->store_cc6_data == NULL)
+ return -EINVAL;
+
/* to do pass other display configuration in furture */
if (hwmgr->hwmgr_func->store_cc6_data)
}
mem_level->MclkFrequency = clock;
- mem_level->StutterEnable = 0;
mem_level->EnabledForThrottle = 1;
mem_level->EnabledForActivity = 0;
mem_level->UpHyst = 0;
mem_level->VoltageDownHyst = 0;
mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
mem_level->StutterEnable = false;
-
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
data->display_timing.num_existing_displays = info.display_count;
* a higher state by default such that we are not effected by
* up threshold or and MCLK DPM latency.
*/
- levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
+ levels[0].ActivityLevel = 0x1f;
CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
data->smc_state_table.MemoryDpmLevelCount =
static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
- uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
- volt_with_cks, value;
- uint16_t clock_freq_u16;
+ uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
- uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
- volt_offset = 0;
+ uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
*/
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
- ixSMU_EFUSE_0 + (146 * 4));
- efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
- ixSMU_EFUSE_0 + (148 * 4));
+ ixSMU_EFUSE_0 + (67 * 4));
efuse &= 0xFF000000;
efuse = efuse >> 24;
- efuse2 &= 0xF;
-
- if (efuse2 == 1)
- ro = (2300 - 1350) * efuse / 255 + 1350;
- else
- ro = (2500 - 1000) * efuse / 255 + 1000;
- if (ro >= 1660)
- type = 0;
- else
- type = 1;
+ if (hwmgr->chip_id == CHIP_POLARIS10) {
+ min = 1000;
+ max = 2300;
+ } else {
+ min = 1100;
+ max = 2100;
+ }
- /* Populate Stretch amount */
- data->smc_state_table.ClockStretcherAmount = stretch_amount;
+ ro = efuse * (max -min)/255 + min;
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
for (i = 0; i < sclk_table->count; i++) {
data->smc_state_table.Sclk_CKS_masterEn0_7 |=
sclk_table->entries[i].cks_enable << i;
- volt_without_cks = (uint32_t)((14041 *
- (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
- (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
- volt_with_cks = (uint32_t)((13946 *
- (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
- (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
+
+ volt_without_cks = (uint32_t)(((ro - 40) * 1000 - 2753594 - sclk_table->entries[i].clk/100 * 136418 /1000) / \
+ (sclk_table->entries[i].clk/100 * 1132925 /10000 - 242418)/100);
+
+ volt_with_cks = (uint32_t)((ro * 1000 -2396351 - sclk_table->entries[i].clk/100 * 329021/1000) / \
+ (sclk_table->entries[i].clk/10000 * 649434 /1000 - 18005)/10);
+
if (volt_without_cks >= volt_with_cks)
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
+
data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
}
- PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
- STRETCH_ENABLE, 0x0);
- PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
- masterReset, 0x1);
- /* PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); */
- PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
- masterReset, 0x0);
-
/* Populate CKS Lookup Table */
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
stretch_amount2 = 0;
return -EINVAL);
}
- value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
- ixPWR_CKS_CNTL);
- value &= 0xFFC2FF87;
- data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
- polaris10_clock_stretcher_lookup_table[stretch_amount2][0];
- data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
- polaris10_clock_stretcher_lookup_table[stretch_amount2][1];
- clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
- GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].SclkSetting.SclkFrequency) / 100);
- if (polaris10_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16
- && polaris10_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) {
- /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
- value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
- /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
- value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
- /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
- value |= (polaris10_clock_stretch_amount_conversion
- [polaris10_clock_stretcher_lookup_table[stretch_amount2][3]]
- [stretch_amount]) << 3;
- }
- CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq);
- CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq);
- data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
- polaris10_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
- data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
- (polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
-
- cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
- ixPWR_CKS_CNTL, value);
-
- /* Populate DDT Lookup Table */
- for (i = 0; i < 4; i++) {
- /* Assign the minimum and maximum VID stored
- * in the last row of Clock Stretcher Voltage Table.
- */
- data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].minVID =
- (uint8_t) polaris10_clock_stretcher_ddt_table[type][i][2];
- data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].maxVID =
- (uint8_t) polaris10_clock_stretcher_ddt_table[type][i][3];
- /* Loop through each SCLK and check the frequency
- * to see if it lies within the frequency for clock stretcher.
- */
- for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
- cks_setting = 0;
- clock_freq = PP_SMC_TO_HOST_UL(
- data->smc_state_table.GraphicsLevel[j].SclkSetting.SclkFrequency);
- /* Check the allowed frequency against the sclk level[j].
- * Sclk's endianness has already been converted,
- * and it's in 10Khz unit,
- * as opposed to Data table, which is in Mhz unit.
- */
- if (clock_freq >= (polaris10_clock_stretcher_ddt_table[type][i][0]) * 100) {
- cks_setting |= 0x2;
- if (clock_freq < (polaris10_clock_stretcher_ddt_table[type][i][1]) * 100)
- cks_setting |= 0x1;
- }
- data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting
- |= cks_setting << (j * 2);
- }
- CONVERT_FROM_HOST_TO_SMC_US(
- data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting);
- }
-
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
value &= 0xFFFFFFFE;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
return 0;
}
+
+int polaris10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
+{
+ struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
+ SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
+ int result = 0;
+ struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
+ AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
+ AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
+ uint32_t tmp, i;
+ struct pp_smumgr *smumgr = hwmgr->smumgr;
+ struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
+
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)hwmgr->pptable;
+ struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
+ table_info->vdd_dep_on_sclk;
+
+
+ if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
+ return result;
+
+ result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
+
+ if (0 == result) {
+ table->BTCGB_VDROOP_TABLE[0].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
+ table->BTCGB_VDROOP_TABLE[0].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
+ table->BTCGB_VDROOP_TABLE[0].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
+ table->BTCGB_VDROOP_TABLE[1].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
+ table->BTCGB_VDROOP_TABLE[1].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
+ table->BTCGB_VDROOP_TABLE[1].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
+ table->AVFSGB_VDROOP_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
+ table->AVFSGB_VDROOP_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
+ table->AVFSGB_VDROOP_TABLE[0].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
+ table->AVFSGB_VDROOP_TABLE[0].m1_shift = 24;
+ table->AVFSGB_VDROOP_TABLE[0].m2_shift = 12;
+ table->AVFSGB_VDROOP_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
+ table->AVFSGB_VDROOP_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
+ table->AVFSGB_VDROOP_TABLE[1].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
+ table->AVFSGB_VDROOP_TABLE[1].m1_shift = 24;
+ table->AVFSGB_VDROOP_TABLE[1].m2_shift = 12;
+ table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
+ AVFS_meanNsigma.Aconstant[0] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
+ AVFS_meanNsigma.Aconstant[1] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
+ AVFS_meanNsigma.Aconstant[2] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
+ AVFS_meanNsigma.DC_tol_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
+ AVFS_meanNsigma.Platform_mean = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
+ AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
+ AVFS_meanNsigma.Platform_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
+
+ for (i = 0; i < NUM_VFT_COLUMNS; i++) {
+ AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
+ AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t)(sclk_table->entries[i].sclk_offset) / 100);
+ }
+
+ result = polaris10_read_smc_sram_dword(smumgr,
+ SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsMeanNSigma),
+ &tmp, data->sram_end);
+
+ polaris10_copy_bytes_to_smc(smumgr,
+ tmp,
+ (uint8_t *)&AVFS_meanNsigma,
+ sizeof(AVFS_meanNsigma_t),
+ data->sram_end);
+
+ result = polaris10_read_smc_sram_dword(smumgr,
+ SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable),
+ &tmp, data->sram_end);
+ polaris10_copy_bytes_to_smc(smumgr,
+ tmp,
+ (uint8_t *)&AVFS_SclkOffset,
+ sizeof(AVFS_Sclk_Offset_t),
+ data->sram_end);
+
+ data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
+ (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
+ (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
+ (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
+ data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
+ }
+ return result;
+}
+
+
/**
* Initializes the SMC table and uploads it
*
"Failed to populate Clock Stretcher Data Table!",
return result);
}
+
+ result = polaris10_populate_avfs_parameters(hwmgr);
+ PP_ASSERT_WITH_CODE(0 == result, "Failed to populate AVFS Parameters!", return result;);
+
table->CurrSclkPllRange = 0xff;
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
static int polaris10_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
+ uint32_t soft_register_value = 0;
+ uint32_t handshake_disables_offset = data->soft_regs_start
+ + offsetof(SMU74_SoftRegisters, HandshakeDisables);
/* enable SCLK dpm */
if (!data->sclk_dpm_key_disabled)
/* enable MCLK dpm */
if (0 == data->mclk_dpm_key_disabled) {
+/* Disable UVD - SMU handshake for MCLK. */
+ soft_register_value = cgs_read_ind_register(hwmgr->device,
+ CGS_IND_REG__SMC, handshake_disables_offset);
+ soft_register_value |= SMU7_UVD_MCLK_HANDSHAKE_DISABLE;
+ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ handshake_disables_offset, soft_register_value);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
"Failed to enable MCLK DPM during DPM Start Function!",
return -1);
-
PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_FanSpeedInTableIsRPM);
+
if (hwmgr->chip_id == CHIP_POLARIS11)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SPLLShutdownSupport);
data->vddci_control = POLARIS10_VOLTAGE_CONTROL_NONE;
data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_NONE;
+ data->enable_tdc_limit_feature = true;
+ data->enable_pkg_pwr_tracking_feature = true;
+ data->force_pcie_gen = PP_PCIEGenInvalid;
+ data->mclk_stutter_mode_threshold = 40000;
+
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
data->voltage_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
}
+ if (table_info->cac_dtp_table->usClockStretchAmount != 0)
+ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_ClockStretcher);
+
polaris10_set_features_platform_caps(hwmgr);
polaris10_init_dpm_defaults(hwmgr);
/* soft pptable for re-uploading into smu */
void *soft_pp_table;
+
+ uint32_t avfs_vdroop_override_setting;
+ bool apply_avfs_cks_off_voltage;
};
/* To convert to Q8.8 format for firmware */
int ret;
struct pp_smumgr *smumgr = (struct pp_smumgr *)(hwmgr->smumgr);
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);
+ struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
- if (smu_data->avfs.avfs_btc_status != AVFS_BTC_ENABLEAVFS)
+ if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
return 0;
+ ret = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
+ PPSMC_MSG_SetGBDroopSettings, data->avfs_vdroop_override_setting);
+
ret = (smum_send_msg_to_smc(smumgr, PPSMC_MSG_EnableAvfs) == 0) ?
0 : -1;
return result == 0 ? (output_buf.function_bits & (1 << (index - 1))) != 0 : false;
}
+bool acpi_atcs_notify_pcie_device_ready(void *device)
+{
+ int32_t temp_buffer = 1;
+
+ return cgs_call_acpi_method(device, CGS_ACPI_METHOD_ATCS,
+ ATCS_FUNCTION_PCIE_DEVICE_READY_NOTIFICATION,
+ &temp_buffer,
+ NULL,
+ 0,
+ sizeof(temp_buffer),
+ 0);
+}
+
+
int acpi_pcie_perf_request(void *device, uint8_t perf_req, bool advertise)
{
struct atcs_pref_req_input atcs_input;
int result;
struct cgs_system_info info = {0};
- if (!acpi_atcs_functions_supported(device, ATCS_FUNCTION_PCIE_PERFORMANCE_REQUEST))
+ if( 0 != acpi_atcs_notify_pcie_device_ready(device))
return -EINVAL;
info.size = sizeof(struct cgs_system_info);
ATCS_FUNCTION_PCIE_PERFORMANCE_REQUEST,
&atcs_input,
&atcs_output,
- 0,
+ 1,
sizeof(atcs_input),
sizeof(atcs_output));
if (result != 0)
return 0;
}
+
+int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl__avfs_parameters *param)
+{
+ ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
+
+ if (param == NULL)
+ return -EINVAL;
+
+ profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
+ cgs_atom_get_data_table(hwmgr->device,
+ GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
+ NULL, NULL, NULL);
+ if (!profile)
+ return -1;
+
+ param->ulAVFS_meanNsigma_Acontant0 = profile->ulAVFS_meanNsigma_Acontant0;
+ param->ulAVFS_meanNsigma_Acontant1 = profile->ulAVFS_meanNsigma_Acontant1;
+ param->ulAVFS_meanNsigma_Acontant2 = profile->ulAVFS_meanNsigma_Acontant2;
+ param->usAVFS_meanNsigma_DC_tol_sigma = profile->usAVFS_meanNsigma_DC_tol_sigma;
+ param->usAVFS_meanNsigma_Platform_mean = profile->usAVFS_meanNsigma_Platform_mean;
+ param->usAVFS_meanNsigma_Platform_sigma = profile->usAVFS_meanNsigma_Platform_sigma;
+ param->ulGB_VDROOP_TABLE_CKSOFF_a0 = profile->ulGB_VDROOP_TABLE_CKSOFF_a0;
+ param->ulGB_VDROOP_TABLE_CKSOFF_a1 = profile->ulGB_VDROOP_TABLE_CKSOFF_a1;
+ param->ulGB_VDROOP_TABLE_CKSOFF_a2 = profile->ulGB_VDROOP_TABLE_CKSOFF_a2;
+ param->ulGB_VDROOP_TABLE_CKSON_a0 = profile->ulGB_VDROOP_TABLE_CKSON_a0;
+ param->ulGB_VDROOP_TABLE_CKSON_a1 = profile->ulGB_VDROOP_TABLE_CKSON_a1;
+ param->ulGB_VDROOP_TABLE_CKSON_a2 = profile->ulGB_VDROOP_TABLE_CKSON_a2;
+ param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1;
+ param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2;
+ param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b;
+ param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSON_m1;
+ param->usAVFSGB_FUSE_TABLE_CKSON_m2 = profile->usAVFSGB_FUSE_TABLE_CKSON_m2;
+ param->ulAVFSGB_FUSE_TABLE_CKSON_b = profile->ulAVFSGB_FUSE_TABLE_CKSON_b;
+ param->usMaxVoltage_0_25mv = profile->usMaxVoltage_0_25mv;
+ param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
+ param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
+ param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
+ param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
+ param->usPSM_Age_ComFactor = profile->usPSM_Age_ComFactor;
+ param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
+
+ return 0;
+}
};
typedef struct pp_atomctrl_gpio_pin_assignment pp_atomctrl_gpio_pin_assignment;
+struct pp_atom_ctrl__avfs_parameters {
+ uint32_t ulAVFS_meanNsigma_Acontant0;
+ uint32_t ulAVFS_meanNsigma_Acontant1;
+ uint32_t ulAVFS_meanNsigma_Acontant2;
+ uint16_t usAVFS_meanNsigma_DC_tol_sigma;
+ uint16_t usAVFS_meanNsigma_Platform_mean;
+ uint16_t usAVFS_meanNsigma_Platform_sigma;
+ uint32_t ulGB_VDROOP_TABLE_CKSOFF_a0;
+ uint32_t ulGB_VDROOP_TABLE_CKSOFF_a1;
+ uint32_t ulGB_VDROOP_TABLE_CKSOFF_a2;
+ uint32_t ulGB_VDROOP_TABLE_CKSON_a0;
+ uint32_t ulGB_VDROOP_TABLE_CKSON_a1;
+ uint32_t ulGB_VDROOP_TABLE_CKSON_a2;
+ uint32_t ulAVFSGB_FUSE_TABLE_CKSOFF_m1;
+ uint16_t usAVFSGB_FUSE_TABLE_CKSOFF_m2;
+ uint32_t ulAVFSGB_FUSE_TABLE_CKSOFF_b;
+ uint32_t ulAVFSGB_FUSE_TABLE_CKSON_m1;
+ uint16_t usAVFSGB_FUSE_TABLE_CKSON_m2;
+ uint32_t ulAVFSGB_FUSE_TABLE_CKSON_b;
+ uint16_t usMaxVoltage_0_25mv;
+ uint8_t ucEnableGB_VDROOP_TABLE_CKSOFF;
+ uint8_t ucEnableGB_VDROOP_TABLE_CKSON;
+ uint8_t ucEnableGB_FUSE_TABLE_CKSOFF;
+ uint8_t ucEnableGB_FUSE_TABLE_CKSON;
+ uint16_t usPSM_Age_ComFactor;
+ uint8_t ucEnableApplyAVFS_CKS_OFF_Voltage;
+ uint8_t ucReserved;
+};
+
extern bool atomctrl_get_pp_assign_pin(struct pp_hwmgr *hwmgr, const uint32_t pinId, pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment);
extern int atomctrl_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage);
extern uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr);
extern int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage);
extern int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table);
+
+extern int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl__avfs_parameters *param);
+
#endif
data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
+ data->force_pcie_gen = PP_PCIEGenInvalid;
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
#pragma pack(push, 1)
+#define PPSMC_MSG_SetGBDroopSettings ((uint16_t) 0x305)
#define PPSMC_SWSTATE_FLAG_DC 0x01
#define PPSMC_SWSTATE_FLAG_UVD 0x02
extern int acpi_pcie_perf_request(void *device,
uint8_t perf_req,
bool advertise);
+extern bool acpi_atcs_notify_pcie_device_ready(void *device);
#define SMU__NUM_LCLK_DPM_LEVELS 8
#define SMU__NUM_PCIE_DPM_LEVELS 8
+#define EXP_M1 35
+#define EXP_M2 92821
+#define EXP_B 66629747
+
+#define EXP_M1_1 365
+#define EXP_M2_1 658700
+#define EXP_B_1 305506134
+
+#define EXP_M1_2 189
+#define EXP_M2_2 379692
+#define EXP_B_2 194609469
+
+#define EXP_M1_3 99
+#define EXP_M2_3 217915
+#define EXP_B_3 122255994
+
+#define EXP_M1_4 51
+#define EXP_M2_4 122643
+#define EXP_B_4 74893384
+
+#define EXP_M1_5 423
+#define EXP_M2_5 1103326
+#define EXP_B_5 728122621
+
enum SID_OPTION {
SID_OPTION_HI,
SID_OPTION_LO,
uint32_t CacConfigTable;
uint32_t CacStatusTable;
-
uint32_t mcRegisterTable;
-
uint32_t mcArbDramTimingTable;
-
-
-
uint32_t PmFuseTable;
uint32_t Globals;
uint32_t ClockStretcherTable;
uint32_t VftTable;
- uint32_t Reserved[21];
+ uint32_t Reserved1;
+ uint32_t AvfsTable;
+ uint32_t AvfsCksOffGbvTable;
+ uint32_t AvfsMeanNSigma;
+ uint32_t AvfsSclkOffsetTable;
+ uint32_t Reserved[16];
uint32_t Signature;
};
struct SMU_ClockStretcherDataTableEntry {
uint8_t minVID;
uint8_t maxVID;
-
-
uint16_t setting;
};
typedef struct SMU_ClockStretcherDataTableEntry SMU_ClockStretcherDataTableEntry;
typedef struct VFT_TABLE_t VFT_TABLE_t;
+/* Total margin, root mean square of Fmax + DC + Platform */
+struct AVFS_Margin_t {
+ VFT_CELL_t Cell[NUM_VFT_COLUMNS];
+};
+typedef struct AVFS_Margin_t AVFS_Margin_t;
+
+#define BTCGB_VDROOP_TABLE_MAX_ENTRIES 2
+#define AVFSGB_VDROOP_TABLE_MAX_ENTRIES 2
+
+struct GB_VDROOP_TABLE_t {
+ int32_t a0;
+ int32_t a1;
+ int32_t a2;
+ uint32_t spare;
+};
+typedef struct GB_VDROOP_TABLE_t GB_VDROOP_TABLE_t;
+
+struct AVFS_CksOff_Gbv_t {
+ VFT_CELL_t Cell[NUM_VFT_COLUMNS];
+};
+typedef struct AVFS_CksOff_Gbv_t AVFS_CksOff_Gbv_t;
+
+struct AVFS_meanNsigma_t {
+ uint32_t Aconstant[3];
+ uint16_t DC_tol_sigma;
+ uint16_t Platform_mean;
+ uint16_t Platform_sigma;
+ uint16_t PSM_Age_CompFactor;
+ uint8_t Static_Voltage_Offset[NUM_VFT_COLUMNS];
+};
+typedef struct AVFS_meanNsigma_t AVFS_meanNsigma_t;
+
+struct AVFS_Sclk_Offset_t {
+ uint16_t Sclk_Offset[8];
+};
+typedef struct AVFS_Sclk_Offset_t AVFS_Sclk_Offset_t;
+
#endif
typedef struct SMU74_Discrete_StateInfo SMU74_Discrete_StateInfo;
+struct SMU_QuadraticCoeffs {
+ int32_t m1;
+ uint32_t b;
+
+ int16_t m2;
+ uint8_t m1_shift;
+ uint8_t m2_shift;
+};
+typedef struct SMU_QuadraticCoeffs SMU_QuadraticCoeffs;
+
struct SMU74_Discrete_DpmTable {
SMU74_PIDController GraphicsPIDController;
uint8_t ThermOutPolarity;
uint8_t ThermOutMode;
uint8_t BootPhases;
- uint32_t Reserved[4];
+
+ uint8_t VRHotLevel;
+ uint8_t Reserved1[3];
+ uint16_t FanStartTemperature;
+ uint16_t FanStopTemperature;
+ uint16_t MaxVoltage;
+ uint16_t Reserved2;
+ uint32_t Reserved[1];
SMU74_Discrete_GraphicsLevel GraphicsLevel[SMU74_MAX_LEVELS_GRAPHICS];
SMU74_Discrete_MemoryLevel MemoryACPILevel;
uint32_t CurrSclkPllRange;
sclkFcwRange_t SclkFcwRangeTable[NUM_SCLK_RANGE];
+ GB_VDROOP_TABLE_t BTCGB_VDROOP_TABLE[BTCGB_VDROOP_TABLE_MAX_ENTRIES];
+ SMU_QuadraticCoeffs AVFSGB_VDROOP_TABLE[AVFSGB_VDROOP_TABLE_MAX_ENTRIES];
};
typedef struct SMU74_Discrete_DpmTable SMU74_Discrete_DpmTable;
typedef struct SMU7_AcpiScoreboard SMU7_AcpiScoreboard;
-struct SMU_QuadraticCoeffs {
- int32_t m1;
- uint32_t b;
-
- int16_t m2;
- uint8_t m1_shift;
- uint8_t m2_shift;
-};
-typedef struct SMU_QuadraticCoeffs SMU_QuadraticCoeffs;
-
struct SMU74_Discrete_PmFuses {
uint8_t BapmVddCVidHiSidd[8];
uint8_t BapmVddCVidLoSidd[8];
#define DB_PCC_SHIFT 26
#define DB_EDC_SHIFT 27
+#define BTCGB0_Vdroop_Enable_MASK 0x1
+#define BTCGB1_Vdroop_Enable_MASK 0x2
+#define AVFSGB0_Vdroop_Enable_MASK 0x4
+#define AVFSGB1_Vdroop_Enable_MASK 0x8
+
+#define BTCGB0_Vdroop_Enable_SHIFT 0
+#define BTCGB1_Vdroop_Enable_SHIFT 1
+#define AVFSGB0_Vdroop_Enable_SHIFT 2
+#define AVFSGB1_Vdroop_Enable_SHIFT 3
+
+
#pragma pack(pop)
static const SMU74_Discrete_GraphicsLevel avfs_graphics_level_polaris10[8] = {
/* Min pcie DeepSleep Activity CgSpll CgSpll CcPwr CcPwr Sclk Enabled Enabled Voltage Power */
/* Voltage, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, DynRm, DynRm1 Did, Padding,ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
- { 0x3c0fd047, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0, 0, 0x16, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0x30750000, 0, 0, 0, 0, 0, 0, 0 } },
- { 0xa00fd047, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0, 0, 0x16, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0x409c0000, 0, 0, 0, 0, 0, 0, 0 } },
- { 0x0410d047, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0, 0, 0x0e, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0x50c30000, 0, 0, 0, 0, 0, 0, 0 } },
- { 0x6810d047, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0, 0, 0x0c, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0x60ea0000, 0, 0, 0, 0, 0, 0, 0 } },
- { 0xcc10d047, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0, 0, 0x0c, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0xe8fd0000, 0, 0, 0, 0, 0, 0, 0 } },
- { 0x3011d047, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0, 0, 0x0c, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0x70110100, 0, 0, 0, 0, 0, 0, 0 } },
- { 0x9411d047, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0, 0, 0x0c, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0xf8240100, 0, 0, 0, 0, 0, 0, 0 } },
- { 0xf811d047, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0, 0, 0x0c, 0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, { 0x80380100, 0, 0, 0, 0, 0, 0, 0 } }
+ { 0x100ea446, 0x00, 0x03, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x30750000, 0x3000, 0, 0x2600, 0, 0, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } },
+ { 0x400ea446, 0x01, 0x04, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x409c0000, 0x2000, 0, 0x1e00, 1, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } },
+ { 0x740ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x50c30000, 0x2800, 0, 0x2000, 1, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } },
+ { 0xa40ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x60ea0000, 0x3000, 0, 0x2600, 1, 1, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } },
+ { 0xd80ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x70110100, 0x3800, 0, 0x2c00, 1, 1, 0x0004, 0x1203, 0xffff, 0x3600, 0xc9e2, 0x2e00 } },
+ { 0x3c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x80380100, 0x2000, 0, 0x1e00, 2, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } },
+ { 0x6c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x905f0100, 0x2400, 0, 0x1e00, 2, 1, 0x0004, 0x8901, 0xffff, 0x2300, 0x314c, 0x1d00 } },
+ { 0xa00fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0xa0860100, 0x2800, 0, 0x2000, 2, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } }
};
static const SMU74_Discrete_MemoryLevel avfs_memory_level_polaris10 =
- {0x50140000, 0x50140000, 0x00320000, 0x00, 0x00,
- 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x0000, 0x00, 0x00};
+ {0x100ea446, 0, 0x30750000, 0x01, 0x01, 0x01, 0x00, 0x00, 0x64, 0x00, 0x00, 0x1f00, 0x00, 0x00};
/**
* Set the address for reading/writing the SMC SRAM space.
&& (0x20100 <= cgs_read_ind_register(smumgr->device, CGS_IND_REG__SMC, ixSMC_PC_C)));
}
+static bool polaris10_is_hw_avfs_present(struct pp_smumgr *smumgr)
+{
+ uint32_t efuse;
+
+ efuse = cgs_read_ind_register(smumgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (49*4));
+ efuse &= 0x00000001;
+ if (efuse)
+ return true;
+
+ return false;
+}
+
/**
* Send a message to the SMC, and wait for its response.
*
*/
int polaris10_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg)
{
+ int ret;
+
if (!polaris10_is_smc_ram_running(smumgr))
return -1;
+
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
- if (1 != SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP))
- printk("Failed to send Previous Message.\n");
+ ret = SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP);
+ if (ret != 1)
+ printk("\n failed to send pre message %x ret is %d \n", msg, ret);
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
- if (1 != SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP))
- printk("Failed to send Message.\n");
+ ret = SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP);
+
+ if (ret != 1)
+ printk("\n failed to send message %x ret is %d \n", msg, ret);
return 0;
}
(cgs_handle_t)smu_data->smu_buffer.handle);
return -1;);
+ if (polaris10_is_hw_avfs_present(smumgr))
+ smu_data->avfs.avfs_btc_status = AVFS_BTC_BOOT;
+ else
+ smu_data->avfs.avfs_btc_status = AVFS_BTC_NOTSUPPORTED;
+
return 0;
}
if (!ret)
ret = atmel_hlcdc_check_endpoint(dev, &ep);
- of_node_put(ep_np);
- if (ret)
+ if (ret) {
+ of_node_put(ep_np);
return ret;
+ }
}
for_each_endpoint_of_node(dev->dev->of_node, ep_np) {
if (!ret)
ret = atmel_hlcdc_attach_endpoint(dev, &ep);
- of_node_put(ep_np);
- if (ret)
+ if (ret) {
+ of_node_put(ep_np);
return ret;
+ }
}
return 0;
atmel_hlcdc_layer_update_cfg(&plane->layer, 13, 0xffffffff,
factor_reg);
+ } else {
+ atmel_hlcdc_layer_update_cfg(&plane->layer, 13, 0xffffffff, 0);
}
}
*/
void drm_atomic_legacy_backoff(struct drm_atomic_state *state)
{
+ struct drm_device *dev = state->dev;
+ unsigned crtc_mask = 0;
+ struct drm_crtc *crtc;
int ret;
+ bool global = false;
+
+ drm_for_each_crtc(crtc, dev) {
+ if (crtc->acquire_ctx != state->acquire_ctx)
+ continue;
+
+ crtc_mask |= drm_crtc_mask(crtc);
+ crtc->acquire_ctx = NULL;
+ }
+
+ if (WARN_ON(dev->mode_config.acquire_ctx == state->acquire_ctx)) {
+ global = true;
+
+ dev->mode_config.acquire_ctx = NULL;
+ }
retry:
drm_modeset_backoff(state->acquire_ctx);
- ret = drm_modeset_lock_all_ctx(state->dev, state->acquire_ctx);
+ ret = drm_modeset_lock_all_ctx(dev, state->acquire_ctx);
if (ret)
goto retry;
+
+ drm_for_each_crtc(crtc, dev)
+ if (drm_crtc_mask(crtc) & crtc_mask)
+ crtc->acquire_ctx = state->acquire_ctx;
+
+ if (global)
+ dev->mode_config.acquire_ctx = state->acquire_ctx;
}
EXPORT_SYMBOL(drm_atomic_legacy_backoff);
#include "exynos_drm_plane.h"
#include "exynos_drm_drv.h"
#include "exynos_drm_fb.h"
-#include "exynos_drm_fbdev.h"
#include "exynos_drm_iommu.h"
/*
struct exynos_dp_device {
struct drm_encoder encoder;
- struct drm_connector connector;
+ struct drm_connector *connector;
struct drm_bridge *ptn_bridge;
struct drm_device *drm_dev;
struct device *dev;
static int exynos_dp_get_modes(struct analogix_dp_plat_data *plat_data)
{
struct exynos_dp_device *dp = to_dp(plat_data);
- struct drm_connector *connector = &dp->connector;
+ struct drm_connector *connector = dp->connector;
struct drm_display_mode *mode;
int num_modes = 0;
int ret;
drm_connector_register(connector);
+ dp->connector = connector;
/* Pre-empt DP connector creation if there's a bridge */
if (dp->ptn_bridge) {
#include <drm/drmP.h>
#include "exynos_drm_drv.h"
#include "exynos_drm_crtc.h"
-#include "exynos_drm_fbdev.h"
static LIST_HEAD(exynos_drm_subdrv_list);
#include "exynos_drm_drv.h"
#include "exynos_drm_fb.h"
-#include "exynos_drm_fbdev.h"
#include "exynos_drm_crtc.h"
#include "exynos_drm_plane.h"
#include "exynos_drm_iommu.h"
.timing_base = 0x0,
.has_clksel = 1,
.has_limited_fmt = 1,
- .has_hw_trigger = 1,
};
static struct fimd_driver_data exynos3_fimd_driver_data = {
.lcdblk_vt_shift = 24,
.lcdblk_bypass_shift = 15,
.lcdblk_mic_bypass_shift = 11,
- .trg_type = I80_HW_TRG,
.has_shadowcon = 1,
.has_vidoutcon = 1,
.has_vtsel = 1,
.has_mic_bypass = 1,
.has_dp_clk = 1,
- .has_hw_trigger = 1,
- .has_trigger_per_te = 1,
};
struct fimd_context {
/* registers for base address */
#define G2D_SRC_BASE_ADDR 0x0304
-#define G2D_SRC_STRIDE_REG 0x0308
+#define G2D_SRC_STRIDE 0x0308
#define G2D_SRC_COLOR_MODE 0x030C
#define G2D_SRC_LEFT_TOP 0x0310
#define G2D_SRC_RIGHT_BOTTOM 0x0314
#define G2D_SRC_PLANE2_BASE_ADDR 0x0318
#define G2D_DST_BASE_ADDR 0x0404
-#define G2D_DST_STRIDE_REG 0x0408
+#define G2D_DST_STRIDE 0x0408
#define G2D_DST_COLOR_MODE 0x040C
#define G2D_DST_LEFT_TOP 0x0410
#define G2D_DST_RIGHT_BOTTOM 0x0414
switch (reg_offset) {
case G2D_SRC_BASE_ADDR:
- case G2D_SRC_STRIDE_REG:
+ case G2D_SRC_STRIDE:
case G2D_SRC_COLOR_MODE:
case G2D_SRC_LEFT_TOP:
case G2D_SRC_RIGHT_BOTTOM:
reg_type = REG_TYPE_SRC_PLANE2;
break;
case G2D_DST_BASE_ADDR:
- case G2D_DST_STRIDE_REG:
+ case G2D_DST_STRIDE:
case G2D_DST_COLOR_MODE:
case G2D_DST_LEFT_TOP:
case G2D_DST_RIGHT_BOTTOM:
} else
buf_info->types[reg_type] = BUF_TYPE_GEM;
break;
- case G2D_SRC_STRIDE_REG:
- case G2D_DST_STRIDE_REG:
+ case G2D_SRC_STRIDE:
+ case G2D_DST_STRIDE:
if (for_addr)
goto err;
state->v_ratio == (1 << 15))
height_ok = true;
- if (width_ok & height_ok)
+ if (width_ok && height_ok)
return 0;
DRM_DEBUG_KMS("scaling mode is not supported");
intel_display_power_get(dev_priv, power_domain);
if (long_hpd) {
- /* indicate that we need to restart link training */
- intel_dp->train_set_valid = false;
-
intel_dp_long_pulse(intel_dp->attached_connector);
if (intel_dp->is_mst)
ret = IRQ_HANDLED;
intel_dp_reset_link_train(struct intel_dp *intel_dp,
uint8_t dp_train_pat)
{
- if (!intel_dp->train_set_valid)
- memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
+ memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp_set_signal_levels(intel_dp);
return intel_dp_set_link_train(intel_dp, dp_train_pat);
}
break;
}
- /*
- * if we used previously trained voltage and pre-emphasis values
- * and we don't get clock recovery, reset link training values
- */
- if (intel_dp->train_set_valid) {
- DRM_DEBUG_KMS("clock recovery not ok, reset");
- /* clear the flag as we are not reusing train set */
- intel_dp->train_set_valid = false;
- if (!intel_dp_reset_link_train(intel_dp,
- DP_TRAINING_PATTERN_1 |
- DP_LINK_SCRAMBLING_DISABLE)) {
- DRM_ERROR("failed to enable link training\n");
- return;
- }
- continue;
- }
-
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
/* Make sure clock is still ok */
if (!drm_dp_clock_recovery_ok(link_status,
intel_dp->lane_count)) {
- intel_dp->train_set_valid = false;
intel_dp_link_training_clock_recovery(intel_dp);
intel_dp_set_link_train(intel_dp,
training_pattern |
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
- intel_dp->train_set_valid = false;
intel_dp_link_training_clock_recovery(intel_dp);
intel_dp_set_link_train(intel_dp,
training_pattern |
intel_dp_set_idle_link_train(intel_dp);
- if (channel_eq) {
- intel_dp->train_set_valid = true;
+ if (channel_eq)
DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
- }
}
void intel_dp_stop_link_train(struct intel_dp *intel_dp)
/* This is called before a link training is starterd */
void (*prepare_link_retrain)(struct intel_dp *intel_dp);
- bool train_set_valid;
-
/* Displayport compliance testing */
unsigned long compliance_test_type;
unsigned long compliance_test_data;
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
- bool enable_by_default = IS_HASWELL(dev_priv) ||
- IS_BROADWELL(dev_priv);
+ bool enable_by_default = IS_BROADWELL(dev_priv);
if (intel_vgpu_active(dev_priv->dev)) {
fbc->no_fbc_reason = "VGPU is active";
if (ret)
goto fini;
- fbcon->helper.fbdev->pixmap.buf_align = 4;
+ if (fbcon->helper.fbdev)
+ fbcon->helper.fbdev->pixmap.buf_align = 4;
return 0;
fini:
config DRM_SUN4I
tristate "DRM Support for Allwinner A10 Display Engine"
- depends on DRM && ARM
+ depends on DRM && ARM && COMMON_CLK
depends on ARCH_SUNXI || COMPILE_TEST
select DRM_GEM_CMA_HELPER
select DRM_KMS_HELPER
/* Get the physical address of the buffer in memory */
gem = drm_fb_cma_get_gem_obj(fb, 0);
- DRM_DEBUG_DRIVER("Using GEM @ 0x%x\n", gem->paddr);
+ DRM_DEBUG_DRIVER("Using GEM @ %pad\n", &gem->paddr);
/* Compute the start of the displayed memory */
bpp = drm_format_plane_cpp(fb->pixel_format, 0);
paddr += (state->src_x >> 16) * bpp;
paddr += (state->src_y >> 16) * fb->pitches[0];
- DRM_DEBUG_DRIVER("Setting buffer address to 0x%x\n", paddr);
+ DRM_DEBUG_DRIVER("Setting buffer address to %pad\n", &paddr);
/* Write the 32 lower bits of the address (in bits) */
lo_paddr = paddr << 3;
static long sun4i_dclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
- return *parent_rate / DIV_ROUND_CLOSEST(*parent_rate, rate);
+ unsigned long best_parent = 0;
+ u8 best_div = 1;
+ int i;
+
+ for (i = 6; i < 127; i++) {
+ unsigned long ideal = rate * i;
+ unsigned long rounded;
+
+ rounded = clk_hw_round_rate(clk_hw_get_parent(hw),
+ ideal);
+
+ if (rounded == ideal) {
+ best_parent = rounded;
+ best_div = i;
+ goto out;
+ }
+
+ if ((rounded < ideal) && (rounded > best_parent)) {
+ best_parent = rounded;
+ best_div = i;
+ }
+ }
+
+out:
+ *parent_rate = best_parent;
+
+ return best_parent / best_div;
}
static int sun4i_dclk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct sun4i_dclk *dclk = hw_to_dclk(hw);
- int div = DIV_ROUND_CLOSEST(parent_rate, rate);
+ u8 div = parent_rate / rate;
return regmap_update_bits(dclk->regmap, SUN4I_TCON0_DCLK_REG,
GENMASK(6, 0), div);
const char *clk_name, *parent_name;
struct clk_init_data init;
struct sun4i_dclk *dclk;
+ int ret;
parent_name = __clk_get_name(tcon->sclk0);
- of_property_read_string_index(dev->of_node, "clock-output-names", 0,
- &clk_name);
+ ret = of_property_read_string_index(dev->of_node,
+ "clock-output-names", 0,
+ &clk_name);
+ if (ret)
+ return ret;
dclk = devm_kzalloc(dev, sizeof(*dclk), GFP_KERNEL);
if (!dclk)
init.ops = &sun4i_dclk_ops;
init.parent_names = &parent_name;
init.num_parents = 1;
+ init.flags = CLK_SET_RATE_PARENT;
dclk->regmap = tcon->regs;
dclk->hw.init = &init;
#include "sun4i_layer.h"
#include "sun4i_tcon.h"
-static int sun4i_drv_connector_plug_all(struct drm_device *drm)
-{
- struct drm_connector *connector, *failed;
- int ret;
-
- mutex_lock(&drm->mode_config.mutex);
- list_for_each_entry(connector, &drm->mode_config.connector_list, head) {
- ret = drm_connector_register(connector);
- if (ret) {
- failed = connector;
- goto err;
- }
- }
- mutex_unlock(&drm->mode_config.mutex);
- return 0;
-
-err:
- list_for_each_entry(connector, &drm->mode_config.connector_list, head) {
- if (failed == connector)
- break;
-
- drm_connector_unregister(connector);
- }
- mutex_unlock(&drm->mode_config.mutex);
-
- return ret;
-}
-
static int sun4i_drv_enable_vblank(struct drm_device *drm, unsigned int pipe)
{
struct sun4i_drv *drv = drm->dev_private;
.disable_vblank = sun4i_drv_disable_vblank,
};
+static void sun4i_remove_framebuffers(void)
+{
+ struct apertures_struct *ap;
+
+ ap = alloc_apertures(1);
+ if (!ap)
+ return;
+
+ /* The framebuffer can be located anywhere in RAM */
+ ap->ranges[0].base = 0;
+ ap->ranges[0].size = ~0;
+
+ remove_conflicting_framebuffers(ap, "sun4i-drm-fb", false);
+ kfree(ap);
+}
+
static int sun4i_drv_bind(struct device *dev)
{
struct drm_device *drm;
}
drm->irq_enabled = true;
+ /* Remove early framebuffers (ie. simplefb) */
+ sun4i_remove_framebuffers();
+
/* Create our framebuffer */
drv->fbdev = sun4i_framebuffer_init(drm);
if (IS_ERR(drv->fbdev)) {
if (ret)
goto free_drm;
- ret = sun4i_drv_connector_plug_all(drm);
+ ret = drm_connector_register_all(drm);
if (ret)
goto unregister_drm;
{
struct drm_device *drm = dev_get_drvdata(dev);
+ drm_connector_unregister_all(drm);
drm_dev_unregister(drm);
drm_kms_helper_poll_fini(drm);
sun4i_framebuffer_free(drm);
static int sun4i_rgb_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
+ struct sun4i_rgb *rgb = drm_connector_to_sun4i_rgb(connector);
+ struct sun4i_drv *drv = rgb->drv;
+ struct sun4i_tcon *tcon = drv->tcon;
u32 hsync = mode->hsync_end - mode->hsync_start;
u32 vsync = mode->vsync_end - mode->vsync_start;
+ unsigned long rate = mode->clock * 1000;
+ long rounded_rate;
DRM_DEBUG_DRIVER("Validating modes...\n");
DRM_DEBUG_DRIVER("Vertical parameters OK\n");
+ rounded_rate = clk_round_rate(tcon->dclk, rate);
+ if (rounded_rate < rate)
+ return MODE_CLOCK_LOW;
+
+ if (rounded_rate > rate)
+ return MODE_CLOCK_HIGH;
+
+ DRM_DEBUG_DRIVER("Clock rate OK\n");
+
return MODE_OK;
}
int ret;
/* If we don't have a panel, there's no point in going on */
- if (!tcon->panel)
+ if (IS_ERR(tcon->panel))
return -ENODEV;
rgb = devm_kzalloc(drm->dev, sizeof(*rgb), GFP_KERNEL);
remote = of_graph_get_remote_port_parent(end_node);
if (!remote) {
- DRM_DEBUG_DRIVER("Enable to parse remote node\n");
+ DRM_DEBUG_DRIVER("Unable to parse remote node\n");
return ERR_PTR(-EINVAL);
}
- return of_drm_find_panel(remote);
+ return of_drm_find_panel(remote) ?: ERR_PTR(-EPROBE_DEFER);
}
static int sun4i_tcon_bind(struct device *dev, struct device *master,
return 0;
}
- return sun4i_rgb_init(drm);
+ ret = sun4i_rgb_init(drm);
+ if (ret < 0)
+ goto err_free_clocks;
+
+ return 0;
err_free_clocks:
sun4i_tcon_free_clocks(tcon);
* Defer the probe.
*/
panel = sun4i_tcon_find_panel(node);
- if (IS_ERR(panel)) {
- /*
- * If we don't have a panel endpoint, just go on
- */
- if (PTR_ERR(panel) != -ENODEV)
- return -EPROBE_DEFER;
+
+ /*
+ * If we don't have a panel endpoint, just go on
+ */
+ if (PTR_ERR(panel) == -EPROBE_DEFER) {
+ DRM_DEBUG_DRIVER("Still waiting for our panel. Deferring...\n");
+ return -EPROBE_DEFER;
}
return component_add(&pdev->dev, &sun4i_tcon_ops);
standard sensors.
Select this config option for custom/generic sensor support.
+config HID_ALPS
+ tristate "Alps HID device support"
+ depends on HID
+ ---help---
+ Support for Alps I2C HID touchpads and StickPointer.
+ Say Y here if you have a Alps touchpads over i2c-hid or usbhid
+ and want support for its special functionalities.
+
endmenu
endif # HID
hid-wiimote-$(CONFIG_DEBUG_FS) += hid-wiimote-debug.o
obj-$(CONFIG_HID_A4TECH) += hid-a4tech.o
+obj-$(CONFIG_HID_ALPS) += hid-alps.o
obj-$(CONFIG_HID_ACRUX) += hid-axff.o
obj-$(CONFIG_HID_APPLE) += hid-apple.o
obj-$(CONFIG_HID_APPLEIR) += hid-appleir.o
--- /dev/null
+/*
+ * Copyright (c) 2016 Masaki Ota <masaki.ota@jp.alps.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the Free
+ * Software Foundation; either version 2 of the License, or (at your option)
+ * any later version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/hid.h>
+#include <linux/input.h>
+#include <linux/input/mt.h>
+#include <linux/module.h>
+#include <asm/unaligned.h>
+#include "hid-ids.h"
+
+/* ALPS Device Product ID */
+#define HID_PRODUCT_ID_T3_BTNLESS 0xD0C0
+#define HID_PRODUCT_ID_COSMO 0x1202
+#define HID_PRODUCT_ID_U1_PTP_1 0x1207
+#define HID_PRODUCT_ID_U1 0x1209
+#define HID_PRODUCT_ID_U1_PTP_2 0x120A
+#define HID_PRODUCT_ID_U1_DUAL 0x120B
+#define HID_PRODUCT_ID_T4_BTNLESS 0x120C
+
+#define DEV_SINGLEPOINT 0x01
+#define DEV_DUALPOINT 0x02
+
+#define U1_MOUSE_REPORT_ID 0x01 /* Mouse data ReportID */
+#define U1_ABSOLUTE_REPORT_ID 0x03 /* Absolute data ReportID */
+#define U1_FEATURE_REPORT_ID 0x05 /* Feature ReportID */
+#define U1_SP_ABSOLUTE_REPORT_ID 0x06 /* Feature ReportID */
+
+#define U1_FEATURE_REPORT_LEN 0x08 /* Feature Report Length */
+#define U1_FEATURE_REPORT_LEN_ALL 0x0A
+#define U1_CMD_REGISTER_READ 0xD1
+#define U1_CMD_REGISTER_WRITE 0xD2
+
+#define U1_DEVTYPE_SP_SUPPORT 0x10 /* SP Support */
+#define U1_DISABLE_DEV 0x01
+#define U1_TP_ABS_MODE 0x02
+#define U1_SP_ABS_MODE 0x80
+
+#define ADDRESS_U1_DEV_CTRL_1 0x00800040
+#define ADDRESS_U1_DEVICE_TYP 0x00800043
+#define ADDRESS_U1_NUM_SENS_X 0x00800047
+#define ADDRESS_U1_NUM_SENS_Y 0x00800048
+#define ADDRESS_U1_PITCH_SENS_X 0x00800049
+#define ADDRESS_U1_PITCH_SENS_Y 0x0080004A
+#define ADDRESS_U1_RESO_DWN_ABS 0x0080004E
+#define ADDRESS_U1_PAD_BTN 0x00800052
+#define ADDRESS_U1_SP_BTN 0x0080009F
+
+#define MAX_TOUCHES 5
+
+/**
+ * struct u1_data
+ *
+ * @input: pointer to the kernel input device
+ * @input2: pointer to the kernel input2 device
+ * @hdev: pointer to the struct hid_device
+ *
+ * @dev_ctrl: device control parameter
+ * @dev_type: device type
+ * @sen_line_num_x: number of sensor line of X
+ * @sen_line_num_y: number of sensor line of Y
+ * @pitch_x: sensor pitch of X
+ * @pitch_y: sensor pitch of Y
+ * @resolution: resolution
+ * @btn_info: button information
+ * @x_active_len_mm: active area length of X (mm)
+ * @y_active_len_mm: active area length of Y (mm)
+ * @x_max: maximum x coordinate value
+ * @y_max: maximum y coordinate value
+ * @btn_cnt: number of buttons
+ * @sp_btn_cnt: number of stick buttons
+ */
+struct u1_dev {
+ struct input_dev *input;
+ struct input_dev *input2;
+ struct hid_device *hdev;
+
+ u8 dev_ctrl;
+ u8 dev_type;
+ u8 sen_line_num_x;
+ u8 sen_line_num_y;
+ u8 pitch_x;
+ u8 pitch_y;
+ u8 resolution;
+ u8 btn_info;
+ u8 sp_btn_info;
+ u32 x_active_len_mm;
+ u32 y_active_len_mm;
+ u32 x_max;
+ u32 y_max;
+ u32 btn_cnt;
+ u32 sp_btn_cnt;
+};
+
+static int u1_read_write_register(struct hid_device *hdev, u32 address,
+ u8 *read_val, u8 write_val, bool read_flag)
+{
+ int ret, i;
+ u8 check_sum;
+ u8 *input;
+ u8 *readbuf;
+
+ input = kzalloc(U1_FEATURE_REPORT_LEN, GFP_KERNEL);
+ if (!input)
+ return -ENOMEM;
+
+ input[0] = U1_FEATURE_REPORT_ID;
+ if (read_flag) {
+ input[1] = U1_CMD_REGISTER_READ;
+ input[6] = 0x00;
+ } else {
+ input[1] = U1_CMD_REGISTER_WRITE;
+ input[6] = write_val;
+ }
+
+ put_unaligned_le32(address, input + 2);
+
+ /* Calculate the checksum */
+ check_sum = U1_FEATURE_REPORT_LEN_ALL;
+ for (i = 0; i < U1_FEATURE_REPORT_LEN - 1; i++)
+ check_sum += input[i];
+
+ input[7] = check_sum;
+ ret = hid_hw_raw_request(hdev, U1_FEATURE_REPORT_ID, input,
+ U1_FEATURE_REPORT_LEN,
+ HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
+
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed to read command (%d)\n", ret);
+ goto exit;
+ }
+
+ if (read_flag) {
+ readbuf = kzalloc(U1_FEATURE_REPORT_LEN, GFP_KERNEL);
+ if (!readbuf) {
+ kfree(input);
+ return -ENOMEM;
+ }
+
+ ret = hid_hw_raw_request(hdev, U1_FEATURE_REPORT_ID, readbuf,
+ U1_FEATURE_REPORT_LEN,
+ HID_FEATURE_REPORT, HID_REQ_GET_REPORT);
+
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed read register (%d)\n", ret);
+ goto exit;
+ }
+
+ *read_val = readbuf[6];
+
+ kfree(readbuf);
+ }
+
+ ret = 0;
+
+exit:
+ kfree(input);
+ return ret;
+}
+
+static int alps_raw_event(struct hid_device *hdev,
+ struct hid_report *report, u8 *data, int size)
+{
+ unsigned int x, y, z;
+ int i;
+ short sp_x, sp_y;
+ struct u1_dev *hdata = hid_get_drvdata(hdev);
+
+ switch (data[0]) {
+ case U1_MOUSE_REPORT_ID:
+ break;
+ case U1_FEATURE_REPORT_ID:
+ break;
+ case U1_ABSOLUTE_REPORT_ID:
+ for (i = 0; i < MAX_TOUCHES; i++) {
+ u8 *contact = &data[i * 5];
+
+ x = get_unaligned_le16(contact + 3);
+ y = get_unaligned_le16(contact + 5);
+ z = contact[7] & 0x7F;
+
+ input_mt_slot(hdata->input, i);
+
+ if (z != 0) {
+ input_mt_report_slot_state(hdata->input,
+ MT_TOOL_FINGER, 1);
+ } else {
+ input_mt_report_slot_state(hdata->input,
+ MT_TOOL_FINGER, 0);
+ break;
+ }
+
+ input_report_abs(hdata->input, ABS_MT_POSITION_X, x);
+ input_report_abs(hdata->input, ABS_MT_POSITION_Y, y);
+ input_report_abs(hdata->input, ABS_MT_PRESSURE, z);
+
+ }
+
+ input_mt_sync_frame(hdata->input);
+
+ input_report_key(hdata->input, BTN_LEFT,
+ data[1] & 0x1);
+ input_report_key(hdata->input, BTN_RIGHT,
+ (data[1] & 0x2));
+ input_report_key(hdata->input, BTN_MIDDLE,
+ (data[1] & 0x4));
+
+ input_sync(hdata->input);
+
+ return 1;
+
+ case U1_SP_ABSOLUTE_REPORT_ID:
+ sp_x = get_unaligned_le16(data+2);
+ sp_y = get_unaligned_le16(data+4);
+
+ sp_x = sp_x / 8;
+ sp_y = sp_y / 8;
+
+ input_report_rel(hdata->input2, REL_X, sp_x);
+ input_report_rel(hdata->input2, REL_Y, sp_y);
+
+ input_report_key(hdata->input2, BTN_LEFT,
+ data[1] & 0x1);
+ input_report_key(hdata->input2, BTN_RIGHT,
+ (data[1] & 0x2));
+ input_report_key(hdata->input2, BTN_MIDDLE,
+ (data[1] & 0x4));
+
+ input_sync(hdata->input2);
+
+ return 1;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int alps_post_reset(struct hid_device *hdev)
+{
+ return u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
+ NULL, U1_TP_ABS_MODE, false);
+}
+
+static int alps_post_resume(struct hid_device *hdev)
+{
+ return u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
+ NULL, U1_TP_ABS_MODE, false);
+}
+#endif /* CONFIG_PM */
+
+static int alps_input_configured(struct hid_device *hdev, struct hid_input *hi)
+{
+ struct u1_dev *data = hid_get_drvdata(hdev);
+ struct input_dev *input = hi->input, *input2;
+ struct u1_dev devInfo;
+ int ret;
+ int res_x, res_y, i;
+
+ data->input = input;
+
+ hid_dbg(hdev, "Opening low level driver\n");
+ ret = hid_hw_open(hdev);
+ if (ret)
+ return ret;
+
+ /* Allow incoming hid reports */
+ hid_device_io_start(hdev);
+
+ /* Device initialization */
+ ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
+ &devInfo.dev_ctrl, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_DEV_CTRL_1 (%d)\n", ret);
+ goto exit;
+ }
+
+ devInfo.dev_ctrl &= ~U1_DISABLE_DEV;
+ devInfo.dev_ctrl |= U1_TP_ABS_MODE;
+ ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
+ NULL, devInfo.dev_ctrl, false);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed to change TP mode (%d)\n", ret);
+ goto exit;
+ }
+
+ ret = u1_read_write_register(hdev, ADDRESS_U1_NUM_SENS_X,
+ &devInfo.sen_line_num_x, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_NUM_SENS_X (%d)\n", ret);
+ goto exit;
+ }
+
+ ret = u1_read_write_register(hdev, ADDRESS_U1_NUM_SENS_Y,
+ &devInfo.sen_line_num_y, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_NUM_SENS_Y (%d)\n", ret);
+ goto exit;
+ }
+
+ ret = u1_read_write_register(hdev, ADDRESS_U1_PITCH_SENS_X,
+ &devInfo.pitch_x, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_PITCH_SENS_X (%d)\n", ret);
+ goto exit;
+ }
+
+ ret = u1_read_write_register(hdev, ADDRESS_U1_PITCH_SENS_Y,
+ &devInfo.pitch_y, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_PITCH_SENS_Y (%d)\n", ret);
+ goto exit;
+ }
+
+ ret = u1_read_write_register(hdev, ADDRESS_U1_RESO_DWN_ABS,
+ &devInfo.resolution, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_RESO_DWN_ABS (%d)\n", ret);
+ goto exit;
+ }
+
+ ret = u1_read_write_register(hdev, ADDRESS_U1_PAD_BTN,
+ &devInfo.btn_info, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_PAD_BTN (%d)\n", ret);
+ goto exit;
+ }
+
+ /* Check StickPointer device */
+ ret = u1_read_write_register(hdev, ADDRESS_U1_DEVICE_TYP,
+ &devInfo.dev_type, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_DEVICE_TYP (%d)\n", ret);
+ goto exit;
+ }
+
+ devInfo.x_active_len_mm =
+ (devInfo.pitch_x * (devInfo.sen_line_num_x - 1)) / 10;
+ devInfo.y_active_len_mm =
+ (devInfo.pitch_y * (devInfo.sen_line_num_y - 1)) / 10;
+
+ devInfo.x_max =
+ (devInfo.resolution << 2) * (devInfo.sen_line_num_x - 1);
+ devInfo.y_max =
+ (devInfo.resolution << 2) * (devInfo.sen_line_num_y - 1);
+
+ __set_bit(EV_ABS, input->evbit);
+ input_set_abs_params(input, ABS_MT_POSITION_X, 1, devInfo.x_max, 0, 0);
+ input_set_abs_params(input, ABS_MT_POSITION_Y, 1, devInfo.y_max, 0, 0);
+
+ if (devInfo.x_active_len_mm && devInfo.y_active_len_mm) {
+ res_x = (devInfo.x_max - 1) / devInfo.x_active_len_mm;
+ res_y = (devInfo.y_max - 1) / devInfo.y_active_len_mm;
+
+ input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
+ input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
+ }
+
+ input_set_abs_params(input, ABS_MT_PRESSURE, 0, 64, 0, 0);
+
+ input_mt_init_slots(input, MAX_TOUCHES, INPUT_MT_POINTER);
+
+ __set_bit(EV_KEY, input->evbit);
+ if ((devInfo.btn_info & 0x0F) == (devInfo.btn_info & 0xF0) >> 4) {
+ devInfo.btn_cnt = (devInfo.btn_info & 0x0F);
+ } else {
+ /* Button pad */
+ devInfo.btn_cnt = 1;
+ __set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
+ }
+
+ for (i = 0; i < devInfo.btn_cnt; i++)
+ __set_bit(BTN_LEFT + i, input->keybit);
+
+
+ /* Stick device initialization */
+ if (devInfo.dev_type & U1_DEVTYPE_SP_SUPPORT) {
+
+ input2 = input_allocate_device();
+ if (!input2) {
+ input_free_device(input2);
+ goto exit;
+ }
+
+ data->input2 = input2;
+
+ devInfo.dev_ctrl |= U1_SP_ABS_MODE;
+ ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1,
+ NULL, devInfo.dev_ctrl, false);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed SP mode (%d)\n", ret);
+ input_free_device(input2);
+ goto exit;
+ }
+
+ ret = u1_read_write_register(hdev, ADDRESS_U1_SP_BTN,
+ &devInfo.sp_btn_info, 0, true);
+ if (ret < 0) {
+ dev_err(&hdev->dev, "failed U1_SP_BTN (%d)\n", ret);
+ input_free_device(input2);
+ goto exit;
+ }
+
+ input2->phys = input->phys;
+ input2->name = "DualPoint Stick";
+ input2->id.bustype = BUS_I2C;
+ input2->id.vendor = input->id.vendor;
+ input2->id.product = input->id.product;
+ input2->id.version = input->id.version;
+ input2->dev.parent = input->dev.parent;
+
+ __set_bit(EV_KEY, input2->evbit);
+ devInfo.sp_btn_cnt = (devInfo.sp_btn_info & 0x0F);
+ for (i = 0; i < devInfo.sp_btn_cnt; i++)
+ __set_bit(BTN_LEFT + i, input2->keybit);
+
+ __set_bit(EV_REL, input2->evbit);
+ __set_bit(REL_X, input2->relbit);
+ __set_bit(REL_Y, input2->relbit);
+ __set_bit(INPUT_PROP_POINTER, input2->propbit);
+ __set_bit(INPUT_PROP_POINTING_STICK, input2->propbit);
+
+ if (input_register_device(data->input2)) {
+ input_free_device(input2);
+ goto exit;
+ }
+ }
+
+exit:
+ hid_device_io_stop(hdev);
+ hid_hw_close(hdev);
+ return ret;
+}
+
+static int alps_input_mapping(struct hid_device *hdev,
+ struct hid_input *hi, struct hid_field *field,
+ struct hid_usage *usage, unsigned long **bit, int *max)
+{
+ return -1;
+}
+
+static int alps_probe(struct hid_device *hdev, const struct hid_device_id *id)
+{
+ struct u1_dev *data = NULL;
+ int ret;
+
+ data = devm_kzalloc(&hdev->dev, sizeof(struct u1_dev), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ data->hdev = hdev;
+ hid_set_drvdata(hdev, data);
+
+ hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
+
+ ret = hid_parse(hdev);
+ if (ret) {
+ hid_err(hdev, "parse failed\n");
+ return ret;
+ }
+
+ ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
+ if (ret) {
+ hid_err(hdev, "hw start failed\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static void alps_remove(struct hid_device *hdev)
+{
+ hid_hw_stop(hdev);
+}
+
+static const struct hid_device_id alps_id[] = {
+ { HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY,
+ USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_U1_DUAL) },
+ { }
+};
+MODULE_DEVICE_TABLE(hid, alps_id);
+
+static struct hid_driver alps_driver = {
+ .name = "hid-alps",
+ .id_table = alps_id,
+ .probe = alps_probe,
+ .remove = alps_remove,
+ .raw_event = alps_raw_event,
+ .input_mapping = alps_input_mapping,
+ .input_configured = alps_input_configured,
+#ifdef CONFIG_PM
+ .resume = alps_post_resume,
+ .reset_resume = alps_post_reset,
+#endif
+};
+
+module_hid_driver(alps_driver);
+
+MODULE_AUTHOR("Masaki Ota <masaki.ota@jp.alps.com>");
+MODULE_DESCRIPTION("ALPS HID driver");
+MODULE_LICENSE("GPL");
.driver_data = APPLE_NUMLOCK_EMULATION | APPLE_HAS_FN },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS),
.driver_data = APPLE_NUMLOCK_EMULATION | APPLE_HAS_FN },
+ { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGIC_KEYBOARD_ANSI),
+ .driver_data = APPLE_HAS_FN },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI),
.driver_data = APPLE_HAS_FN },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO),
{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0xf705) },
+ { HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY, USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_U1_DUAL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_JIS) },
+ { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGIC_KEYBOARD_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
{ HID_I2C_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_NOTEBOOK_KEYBOARD) },
#define USB_VENDOR_ID_ALPS 0x0433
#define USB_DEVICE_ID_IBM_GAMEPAD 0x1101
+#define USB_VENDOR_ID_ALPS_JP 0x044E
+#define HID_DEVICE_ID_ALPS_U1_DUAL 0x120B
+
#define USB_VENDOR_ID_ANTON 0x1130
#define USB_DEVICE_ID_ANTON_TOUCH_PAD 0x3101
#define USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI 0x0255
#define USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO 0x0256
#define USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_JIS 0x0257
+#define USB_DEVICE_ID_APPLE_MAGIC_KEYBOARD_ANSI 0x0267
#define USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI 0x0290
#define USB_DEVICE_ID_APPLE_WELLSPRING8_ISO 0x0291
#define USB_DEVICE_ID_APPLE_WELLSPRING8_JIS 0x0292
#define MT_QUIRK_ALWAYS_VALID (1 << 4)
#define MT_QUIRK_VALID_IS_INRANGE (1 << 5)
#define MT_QUIRK_VALID_IS_CONFIDENCE (1 << 6)
+#define MT_QUIRK_CONFIDENCE (1 << 7)
#define MT_QUIRK_SLOT_IS_CONTACTID_MINUS_ONE (1 << 8)
#define MT_QUIRK_NO_AREA (1 << 9)
#define MT_QUIRK_IGNORE_DUPLICATES (1 << 10)
__s32 contactid; /* the device ContactID assigned to this slot */
bool touch_state; /* is the touch valid? */
bool inrange_state; /* is the finger in proximity of the sensor? */
+ bool confidence_state; /* is the touch made by a finger? */
};
struct mt_class {
return 1;
case HID_DG_CONFIDENCE:
if (cls->name == MT_CLS_WIN_8 &&
- field->application == HID_DG_TOUCHPAD) {
- cls->quirks &= ~MT_QUIRK_ALWAYS_VALID;
- cls->quirks |= MT_QUIRK_VALID_IS_CONFIDENCE;
- }
+ field->application == HID_DG_TOUCHPAD)
+ cls->quirks |= MT_QUIRK_CONFIDENCE;
mt_store_field(usage, td, hi);
return 1;
case HID_DG_TIPSWITCH:
return;
if (td->curvalid || (td->mtclass.quirks & MT_QUIRK_ALWAYS_VALID)) {
+ int active;
int slotnum = mt_compute_slot(td, input);
struct mt_slot *s = &td->curdata;
struct input_mt *mt = input->mt;
return;
}
+ if (!(td->mtclass.quirks & MT_QUIRK_CONFIDENCE))
+ s->confidence_state = 1;
+ active = (s->touch_state || s->inrange_state) &&
+ s->confidence_state;
+
input_mt_slot(input, slotnum);
- input_mt_report_slot_state(input, MT_TOOL_FINGER,
- s->touch_state || s->inrange_state);
- if (s->touch_state || s->inrange_state) {
+ input_mt_report_slot_state(input, MT_TOOL_FINGER, active);
+ if (active) {
/* this finger is in proximity of the sensor */
int wide = (s->w > s->h);
/* divided by two to match visual scale of touch */
td->curdata.touch_state = value;
break;
case HID_DG_CONFIDENCE:
+ if (quirks & MT_QUIRK_CONFIDENCE)
+ td->curdata.confidence_state = value;
if (quirks & MT_QUIRK_VALID_IS_CONFIDENCE)
td->curvalid = value;
break;
pm_runtime_get_noresume(&client->dev);
pm_runtime_set_active(&client->dev);
pm_runtime_enable(&client->dev);
+ device_enable_async_suspend(&client->dev);
ret = i2c_hid_fetch_hid_descriptor(ihid);
if (ret < 0)
return 0;
}
+static void i2c_hid_shutdown(struct i2c_client *client)
+{
+ struct i2c_hid *ihid = i2c_get_clientdata(client);
+
+ i2c_hid_set_power(client, I2C_HID_PWR_SLEEP);
+ free_irq(client->irq, ihid);
+}
+
#ifdef CONFIG_PM_SLEEP
static int i2c_hid_suspend(struct device *dev)
{
.probe = i2c_hid_probe,
.remove = i2c_hid_remove,
-
+ .shutdown = i2c_hid_shutdown,
.id_table = i2c_hid_id_table,
};
u32 report_id;
u32 report_type;
struct uhid_event report_buf;
+ struct work_struct worker;
};
static struct miscdevice uhid_misc;
+static void uhid_device_add_worker(struct work_struct *work)
+{
+ struct uhid_device *uhid = container_of(work, struct uhid_device, worker);
+ int ret;
+
+ ret = hid_add_device(uhid->hid);
+ if (ret) {
+ hid_err(uhid->hid, "Cannot register HID device: error %d\n", ret);
+
+ hid_destroy_device(uhid->hid);
+ uhid->hid = NULL;
+ uhid->running = false;
+ }
+}
+
static void uhid_queue(struct uhid_device *uhid, struct uhid_event *ev)
{
__u8 newhead;
uhid->hid = hid;
uhid->running = true;
- ret = hid_add_device(hid);
- if (ret) {
- hid_err(hid, "Cannot register HID device\n");
- goto err_hid;
- }
+ /* Adding of a HID device is done through a worker, to allow HID drivers
+ * which use feature requests during .probe to work, without they would
+ * be blocked on devlock, which is held by uhid_char_write.
+ */
+ schedule_work(&uhid->worker);
return 0;
-err_hid:
- hid_destroy_device(hid);
- uhid->hid = NULL;
- uhid->running = false;
err_free:
kfree(uhid->rd_data);
uhid->rd_data = NULL;
uhid->running = false;
wake_up_interruptible(&uhid->report_wait);
+ cancel_work_sync(&uhid->worker);
+
hid_destroy_device(uhid->hid);
kfree(uhid->rd_data);
init_waitqueue_head(&uhid->waitq);
init_waitqueue_head(&uhid->report_wait);
uhid->running = false;
+ INIT_WORK(&uhid->worker, uhid_device_add_worker);
file->private_data = uhid;
nonseekable_open(inode, file);
goto inval;
} else if (uref->usage_index >= field->report_count)
goto inval;
-
- else if ((cmd == HIDIOCGUSAGES || cmd == HIDIOCSUSAGES) &&
- (uref_multi->num_values > HID_MAX_MULTI_USAGES ||
- uref->usage_index + uref_multi->num_values > field->report_count))
- goto inval;
}
+ if ((cmd == HIDIOCGUSAGES || cmd == HIDIOCSUSAGES) &&
+ (uref_multi->num_values > HID_MAX_MULTI_USAGES ||
+ uref->usage_index + uref_multi->num_values > field->report_count))
+ goto inval;
+
switch (cmd) {
case HIDIOCGUSAGE:
uref->value = field->value[uref->usage_index];
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/sched.h>
+#include <linux/ctype.h>
#include <linux/i8k.h>
static DEFINE_MUTEX(i8k_mutex);
static char bios_version[4];
+static char bios_machineid[16];
static struct device *i8k_hwmon_dev;
static u32 i8k_hwmon_flags;
static uint i8k_fan_mult = I8K_FAN_MULT;
static uint i8k_pwm_mult;
static uint i8k_fan_max = I8K_FAN_HIGH;
+static bool disallow_fan_type_call;
#define I8K_HWMON_HAVE_TEMP1 (1 << 0)
#define I8K_HWMON_HAVE_TEMP2 (1 << 1)
MODULE_PARM_DESC(ignore_dmi, "Continue probing hardware even if DMI data does not match");
#if IS_ENABLED(CONFIG_I8K)
-static bool restricted;
+static bool restricted = true;
module_param(restricted, bool, 0);
-MODULE_PARM_DESC(restricted, "Allow fan control if SYS_ADMIN capability set");
+MODULE_PARM_DESC(restricted, "Restrict fan control and serial number to CAP_SYS_ADMIN (default: 1)");
static bool power_status;
module_param(power_status, bool, 0600);
-MODULE_PARM_DESC(power_status, "Report power status in /proc/i8k");
+MODULE_PARM_DESC(power_status, "Report power status in /proc/i8k (default: 0)");
#endif
static uint fan_mult;
/*
* Read the fan type.
*/
-static int i8k_get_fan_type(int fan)
+static int _i8k_get_fan_type(int fan)
{
struct smm_regs regs = { .eax = I8K_SMM_GET_FAN_TYPE, };
+ if (disallow_fan_type_call)
+ return -EINVAL;
+
regs.ebx = fan & 0xff;
return i8k_smm(®s) ? : regs.eax & 0xff;
}
+static int i8k_get_fan_type(int fan)
+{
+ /* I8K_SMM_GET_FAN_TYPE SMM call is expensive, so cache values */
+ static int types[2] = { INT_MIN, INT_MIN };
+
+ if (types[fan] == INT_MIN)
+ types[fan] = _i8k_get_fan_type(fan);
+
+ return types[fan];
+}
+
/*
* Read the fan nominal rpm for specific fan speed.
*/
switch (cmd) {
case I8K_BIOS_VERSION:
+ if (!isdigit(bios_version[0]) || !isdigit(bios_version[1]) ||
+ !isdigit(bios_version[2]))
+ return -EINVAL;
+
val = (bios_version[0] << 16) |
(bios_version[1] << 8) | bios_version[2];
break;
case I8K_MACHINE_ID:
- memset(buff, 0, 16);
- strlcpy(buff, i8k_get_dmi_data(DMI_PRODUCT_SERIAL),
- sizeof(buff));
+ if (restricted && !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ memset(buff, 0, sizeof(buff));
+ strlcpy(buff, bios_machineid, sizeof(buff));
break;
case I8K_FN_STATUS:
seq_printf(seq, "%s %s %s %d %d %d %d %d %d %d\n",
I8K_PROC_FMT,
bios_version,
- i8k_get_dmi_data(DMI_PRODUCT_SERIAL),
+ (restricted && !capable(CAP_SYS_ADMIN)) ? "-1" : bios_machineid,
cpu_temp,
left_fan, right_fan, left_speed, right_speed,
ac_power, fn_key);
static umode_t i8k_is_visible(struct kobject *kobj, struct attribute *attr,
int index)
{
+ if (disallow_fan_type_call &&
+ (index == 9 || index == 12))
+ return 0;
if (index >= 0 && index <= 1 &&
!(i8k_hwmon_flags & I8K_HWMON_HAVE_TEMP1))
return 0;
if (err >= 0)
i8k_hwmon_flags |= I8K_HWMON_HAVE_TEMP4;
- /* First fan attributes, if fan type is OK */
- err = i8k_get_fan_type(0);
+ /* First fan attributes, if fan status or type is OK */
+ err = i8k_get_fan_status(0);
+ if (err < 0)
+ err = i8k_get_fan_type(0);
if (err >= 0)
i8k_hwmon_flags |= I8K_HWMON_HAVE_FAN1;
- /* Second fan attributes, if fan type is OK */
- err = i8k_get_fan_type(1);
+ /* Second fan attributes, if fan status or type is OK */
+ err = i8k_get_fan_status(1);
+ if (err < 0)
+ err = i8k_get_fan_type(1);
if (err >= 0)
i8k_hwmon_flags |= I8K_HWMON_HAVE_FAN2;
MODULE_DEVICE_TABLE(dmi, i8k_dmi_table);
-static struct dmi_system_id i8k_blacklist_dmi_table[] __initdata = {
+/*
+ * On some machines once I8K_SMM_GET_FAN_TYPE is issued then CPU fan speed
+ * randomly going up and down due to bug in Dell SMM or BIOS. Here is blacklist
+ * of affected Dell machines for which we disallow I8K_SMM_GET_FAN_TYPE call.
+ * See bug: https://bugzilla.kernel.org/show_bug.cgi?id=100121
+ */
+static struct dmi_system_id i8k_blacklist_fan_type_dmi_table[] __initdata = {
{
- /*
- * CPU fan speed going up and down on Dell Studio XPS 8000
- * for unknown reasons.
- */
.ident = "Dell Studio XPS 8000",
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
},
},
{
- /*
- * CPU fan speed going up and down on Dell Studio XPS 8100
- * for unknown reasons.
- */
.ident = "Dell Studio XPS 8100",
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Studio XPS 8100"),
},
},
+ {
+ .ident = "Dell Inspiron 580",
+ .matches = {
+ DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
+ DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Inspiron 580 "),
+ },
+ },
{ }
};
/*
* Get DMI information
*/
- if (!dmi_check_system(i8k_dmi_table) ||
- dmi_check_system(i8k_blacklist_dmi_table)) {
+ if (!dmi_check_system(i8k_dmi_table)) {
if (!ignore_dmi && !force)
return -ENODEV;
i8k_get_dmi_data(DMI_BIOS_VERSION));
}
+ if (dmi_check_system(i8k_blacklist_fan_type_dmi_table))
+ disallow_fan_type_call = true;
+
strlcpy(bios_version, i8k_get_dmi_data(DMI_BIOS_VERSION),
sizeof(bios_version));
+ strlcpy(bios_machineid, i8k_get_dmi_data(DMI_PRODUCT_SERIAL),
+ sizeof(bios_machineid));
/*
* Get SMM Dell signature
if (local_read(&drvdata->mode) == CS_MODE_SYSFS) {
/*
* The trace run will continue with the same allocated trace
- * buffer. As such zero-out the buffer so that we don't end
- * up with stale data.
- *
- * Since the tracer is still enabled drvdata::buf
- * can't be NULL.
+ * buffer. The trace buffer is cleared in tmc_etr_enable_hw(),
+ * so we don't have to explicitly clear it. Also, since the
+ * tracer is still enabled drvdata::buf can't be NULL.
*/
- memset(drvdata->buf, 0, drvdata->size);
tmc_etr_enable_hw(drvdata);
} else {
/*
*/
vaddr = drvdata->vaddr;
paddr = drvdata->paddr;
- drvdata->buf = NULL;
+ drvdata->buf = drvdata->vaddr = NULL;
}
drvdata->reading = false;
int i;
bool found = false;
struct coresight_node *node;
- struct coresight_connection *conn;
/* An activated sink has been found. Enqueue the element */
if ((csdev->type == CORESIGHT_DEV_TYPE_SINK ||
/* Not a sink - recursively explore each port found on this element */
for (i = 0; i < csdev->nr_outport; i++) {
- conn = &csdev->conns[i];
- if (_coresight_build_path(conn->child_dev, path) == 0) {
+ struct coresight_device *child_dev = csdev->conns[i].child_dev;
+
+ if (child_dev && _coresight_build_path(child_dev, path) == 0) {
found = true;
break;
}
struct list_head *coresight_build_path(struct coresight_device *csdev)
{
struct list_head *path;
+ int rc;
path = kzalloc(sizeof(struct list_head), GFP_KERNEL);
if (!path)
INIT_LIST_HEAD(path);
- if (_coresight_build_path(csdev, path)) {
+ rc = _coresight_build_path(csdev, path);
+ if (rc) {
kfree(path);
- path = NULL;
+ return ERR_PTR(rc);
}
return path;
goto out;
path = coresight_build_path(csdev);
- if (!path) {
+ if (IS_ERR(path)) {
pr_err("building path(s) failed\n");
+ ret = PTR_ERR(path);
goto out;
}
int st_accel_allocate_ring(struct iio_dev *indio_dev)
{
- return iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
+ return iio_triggered_buffer_setup(indio_dev, NULL,
&st_sensors_trigger_handler, &st_accel_buffer_setup_ops);
}
static const struct iio_trigger_ops st_accel_trigger_ops = {
.owner = THIS_MODULE,
.set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
+ .validate_device = st_sensors_validate_device,
};
#define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
#else
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct st_sensor_data *sdata = iio_priv(indio_dev);
+ s64 timestamp;
- /* If we have a status register, check if this IRQ came from us */
- if (sdata->sensor_settings->drdy_irq.addr_stat_drdy) {
- u8 status;
-
- len = sdata->tf->read_byte(&sdata->tb, sdata->dev,
- sdata->sensor_settings->drdy_irq.addr_stat_drdy,
- &status);
- if (len < 0)
- dev_err(sdata->dev, "could not read channel status\n");
-
- /*
- * If this was not caused by any channels on this sensor,
- * return IRQ_NONE
- */
- if (!(status & (u8)indio_dev->active_scan_mask[0]))
- return IRQ_NONE;
- }
+ /* If we do timetamping here, do it before reading the values */
+ if (sdata->hw_irq_trigger)
+ timestamp = sdata->hw_timestamp;
+ else
+ timestamp = iio_get_time_ns();
len = st_sensors_get_buffer_element(indio_dev, sdata->buffer_data);
if (len < 0)
goto st_sensors_get_buffer_element_error;
iio_push_to_buffers_with_timestamp(indio_dev, sdata->buffer_data,
- pf->timestamp);
+ timestamp);
st_sensors_get_buffer_element_error:
iio_trigger_notify_done(indio_dev->trig);
if (err < 0)
return err;
+ /* Disable DRDY, this might be still be enabled after reboot. */
+ err = st_sensors_set_dataready_irq(indio_dev, false);
+ if (err < 0)
+ return err;
+
if (sdata->current_fullscale) {
err = st_sensors_set_fullscale(indio_dev,
sdata->current_fullscale->num);
else
drdy_mask = sdata->sensor_settings->drdy_irq.mask_int2;
+ /* Flag to the poll function that the hardware trigger is in use */
+ sdata->hw_irq_trigger = enable;
+
/* Enable/Disable the interrupt generator for data ready. */
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->drdy_irq.addr,
#include <linux/iio/common/st_sensors.h>
#include "st_sensors_core.h"
+/**
+ * st_sensors_irq_handler() - top half of the IRQ-based triggers
+ * @irq: irq number
+ * @p: private handler data
+ */
+irqreturn_t st_sensors_irq_handler(int irq, void *p)
+{
+ struct iio_trigger *trig = p;
+ struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
+ struct st_sensor_data *sdata = iio_priv(indio_dev);
+
+ /* Get the time stamp as close in time as possible */
+ sdata->hw_timestamp = iio_get_time_ns();
+ return IRQ_WAKE_THREAD;
+}
+
+/**
+ * st_sensors_irq_thread() - bottom half of the IRQ-based triggers
+ * @irq: irq number
+ * @p: private handler data
+ */
+irqreturn_t st_sensors_irq_thread(int irq, void *p)
+{
+ struct iio_trigger *trig = p;
+ struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
+ struct st_sensor_data *sdata = iio_priv(indio_dev);
+ int ret;
+
+ /*
+ * If this trigger is backed by a hardware interrupt and we have a
+ * status register, check if this IRQ came from us
+ */
+ if (sdata->sensor_settings->drdy_irq.addr_stat_drdy) {
+ u8 status;
+
+ ret = sdata->tf->read_byte(&sdata->tb, sdata->dev,
+ sdata->sensor_settings->drdy_irq.addr_stat_drdy,
+ &status);
+ if (ret < 0) {
+ dev_err(sdata->dev, "could not read channel status\n");
+ goto out_poll;
+ }
+ /*
+ * the lower bits of .active_scan_mask[0] is directly mapped
+ * to the channels on the sensor: either bit 0 for
+ * one-dimensional sensors, or e.g. x,y,z for accelerometers,
+ * gyroscopes or magnetometers. No sensor use more than 3
+ * channels, so cut the other status bits here.
+ */
+ status &= 0x07;
+
+ /*
+ * If this was not caused by any channels on this sensor,
+ * return IRQ_NONE
+ */
+ if (!indio_dev->active_scan_mask)
+ return IRQ_NONE;
+ if (!(status & (u8)indio_dev->active_scan_mask[0]))
+ return IRQ_NONE;
+ }
+
+out_poll:
+ /* It's our IRQ: proceed to handle the register polling */
+ iio_trigger_poll_chained(p);
+ return IRQ_HANDLED;
+}
+
int st_sensors_allocate_trigger(struct iio_dev *indio_dev,
const struct iio_trigger_ops *trigger_ops)
{
return -ENOMEM;
}
+ iio_trigger_set_drvdata(sdata->trig, indio_dev);
+ sdata->trig->ops = trigger_ops;
+ sdata->trig->dev.parent = sdata->dev;
+
irq = sdata->get_irq_data_ready(indio_dev);
irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
/*
sdata->sensor_settings->drdy_irq.addr_stat_drdy)
irq_trig |= IRQF_SHARED;
- err = request_threaded_irq(irq,
- iio_trigger_generic_data_rdy_poll,
- NULL,
+ /* Let's create an interrupt thread masking the hard IRQ here */
+ irq_trig |= IRQF_ONESHOT;
+
+ err = request_threaded_irq(sdata->get_irq_data_ready(indio_dev),
+ st_sensors_irq_handler,
+ st_sensors_irq_thread,
irq_trig,
sdata->trig->name,
sdata->trig);
goto iio_trigger_free;
}
- iio_trigger_set_drvdata(sdata->trig, indio_dev);
- sdata->trig->ops = trigger_ops;
- sdata->trig->dev.parent = sdata->dev;
-
err = iio_trigger_register(sdata->trig);
if (err < 0) {
dev_err(&indio_dev->dev, "failed to register iio trigger.\n");
}
EXPORT_SYMBOL(st_sensors_deallocate_trigger);
+int st_sensors_validate_device(struct iio_trigger *trig,
+ struct iio_dev *indio_dev)
+{
+ struct iio_dev *indio = iio_trigger_get_drvdata(trig);
+
+ if (indio != indio_dev)
+ return -EINVAL;
+
+ return 0;
+}
+EXPORT_SYMBOL(st_sensors_validate_device);
+
MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics ST-sensors trigger");
MODULE_LICENSE("GPL v2");
config STX104
tristate "Apex Embedded Systems STX104 DAC driver"
- depends on X86 && ISA
+ depends on X86 && ISA_BUS_API
help
Say yes here to build support for the 2-channel DAC on the Apex
Embedded Systems STX104 integrated analog PC/104 card. The base port
device_for_each_child_node(st->dev, child) {
ret = fwnode_property_read_u32(child, "reg", ®);
- if (ret || reg > ARRAY_SIZE(st->channel_modes))
+ if (ret || reg >= ARRAY_SIZE(st->channel_modes))
continue;
ret = fwnode_property_read_u32(child, "adi,mode", &tmp);
int st_gyro_allocate_ring(struct iio_dev *indio_dev)
{
- return iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
+ return iio_triggered_buffer_setup(indio_dev, NULL,
&st_sensors_trigger_handler, &st_gyro_buffer_setup_ops);
}
static const struct iio_trigger_ops st_gyro_trigger_ops = {
.owner = THIS_MODULE,
.set_trigger_state = ST_GYRO_TRIGGER_SET_STATE,
+ .validate_device = st_sensors_validate_device,
};
#define ST_GYRO_TRIGGER_OPS (&st_gyro_trigger_ops)
#else
struct am2315_sensor_data sensor_data;
ret = am2315_read_data(data, &sensor_data);
- if (ret < 0) {
- mutex_unlock(&data->lock);
+ if (ret < 0)
goto err;
- }
mutex_lock(&data->lock);
if (*(indio_dev->active_scan_mask) == AM2315_ALL_CHANNEL_MASK) {
},
{ /* IIO_HUMIDITYRELATIVE channel */
.shift = 8,
- .mask = 2,
+ .mask = 3,
},
};
dev_err(&client->dev, "cannot read high byte measurement");
return ret;
}
- val = ret << 6;
+ val = ret << 8;
ret = i2c_smbus_read_byte(client);
if (ret < 0) {
dev_err(&client->dev, "cannot read low byte measurement");
return ret;
}
- val |= ret >> 2;
+ val |= ret;
return val;
}
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_TEMP) {
- *val = 165;
- *val2 = 65536 >> 2;
+ *val = 165000;
+ *val2 = 65536;
return IIO_VAL_FRACTIONAL;
} else {
- *val = 0;
- *val2 = 10000;
- return IIO_VAL_INT_PLUS_MICRO;
+ *val = 100;
+ *val2 = 65536;
+ return IIO_VAL_FRACTIONAL;
}
break;
case IIO_CHAN_INFO_OFFSET:
- *val = -3971;
- *val2 = 879096;
+ *val = -15887;
+ *val2 = 515151;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
};
static const struct bmi160_odr bmi160_accel_odr[] = {
- {0x01, 0, 78125},
- {0x02, 1, 5625},
- {0x03, 3, 125},
- {0x04, 6, 25},
- {0x05, 12, 5},
+ {0x01, 0, 781250},
+ {0x02, 1, 562500},
+ {0x03, 3, 125000},
+ {0x04, 6, 250000},
+ {0x05, 12, 500000},
{0x06, 25, 0},
{0x07, 50, 0},
{0x08, 100, 0},
{0x08, 100, 0},
{0x09, 200, 0},
{0x0A, 400, 0},
- {0x0B, 8000, 0},
+ {0x0B, 800, 0},
{0x0C, 1600, 0},
{0x0D, 3200, 0},
};
return regmap_update_bits(data->regmap,
bmi160_regs[t].config,
- bmi160_odr_table[t].tbl[i].bits,
- bmi160_regs[t].config_odr_mask);
+ bmi160_regs[t].config_odr_mask,
+ bmi160_odr_table[t].tbl[i].bits);
}
static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
/* Prevent the module from being removed whilst attached to a trigger */
__module_get(pf->indio_dev->info->driver_module);
+
+ /* Get irq number */
pf->irq = iio_trigger_get_irq(trig);
+ if (pf->irq < 0)
+ goto out_put_module;
+
+ /* Request irq */
ret = request_threaded_irq(pf->irq, pf->h, pf->thread,
pf->type, pf->name,
pf);
- if (ret < 0) {
- module_put(pf->indio_dev->info->driver_module);
- return ret;
- }
+ if (ret < 0)
+ goto out_put_irq;
+ /* Enable trigger in driver */
if (trig->ops && trig->ops->set_trigger_state && notinuse) {
ret = trig->ops->set_trigger_state(trig, true);
if (ret < 0)
- module_put(pf->indio_dev->info->driver_module);
+ goto out_free_irq;
}
return ret;
+
+out_free_irq:
+ free_irq(pf->irq, pf);
+out_put_irq:
+ iio_trigger_put_irq(trig, pf->irq);
+out_put_module:
+ module_put(pf->indio_dev->info->driver_module);
+ return ret;
}
static int iio_trigger_detach_poll_func(struct iio_trigger *trig,
iio_device_attach_buffer(indio_dev, buffer);
+ indio_dev->dev.parent = &client->dev;
indio_dev->info = &apds9960_info;
indio_dev->name = APDS9960_DRV_NAME;
indio_dev->channels = apds9960_channels;
int ret;
if (!readval)
- bh1780_write(bh1780, (u8)reg, (u8)writeval);
+ return bh1780_write(bh1780, (u8)reg, (u8)writeval);
ret = bh1780_read(bh1780, (u8)reg);
if (ret < 0)
indio_dev->dev.parent = &client->dev;
indio_dev->info = &bh1780_info;
- indio_dev->name = id->name;
+ indio_dev->name = "bh1780";
indio_dev->channels = bh1780_channels;
indio_dev->num_channels = ARRAY_SIZE(bh1780_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
static int bh1780_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
- struct bh1780_data *bh1780 = i2c_get_clientdata(client);
+ struct iio_dev *indio_dev = i2c_get_clientdata(client);
+ struct bh1780_data *bh1780 = iio_priv(indio_dev);
int ret;
ret = bh1780_write(bh1780, BH1780_REG_CONTROL, BH1780_POFF);
static int bh1780_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
- struct bh1780_data *bh1780 = i2c_get_clientdata(client);
+ struct iio_dev *indio_dev = i2c_get_clientdata(client);
+ struct bh1780_data *bh1780 = iio_priv(indio_dev);
int ret;
ret = bh1780_write(bh1780, BH1780_REG_CONTROL, BH1780_PON);
{
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
- .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
.scan_index = MAX44000_SCAN_INDEX_PRX,
.scan_type = {
.sign = 'u',
int st_magn_allocate_ring(struct iio_dev *indio_dev)
{
- return iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
+ return iio_triggered_buffer_setup(indio_dev, NULL,
&st_sensors_trigger_handler, &st_magn_buffer_setup_ops);
}
static const struct iio_trigger_ops st_magn_trigger_ops = {
.owner = THIS_MODULE,
.set_trigger_state = ST_MAGN_TRIGGER_SET_STATE,
+ .validate_device = st_sensors_validate_device,
};
#define ST_MAGN_TRIGGER_OPS (&st_magn_trigger_ops)
#else
if (ret < 0)
return ret;
if (chip_id != id->driver_data) {
- dev_err(&client->dev, "bad chip id. expected %x got %x\n",
- BMP280_CHIP_ID, chip_id);
+ dev_err(&client->dev, "bad chip id. expected %lx got %x\n",
+ id->driver_data, chip_id);
return -EINVAL;
}
int st_press_allocate_ring(struct iio_dev *indio_dev)
{
- return iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
+ return iio_triggered_buffer_setup(indio_dev, NULL,
&st_sensors_trigger_handler, &st_press_buffer_setup_ops);
}
#include <linux/iio/common/st_sensors.h>
#include "st_pressure.h"
+#define MCELSIUS_PER_CELSIUS 1000
+
+/* Default pressure sensitivity */
#define ST_PRESS_LSB_PER_MBAR 4096UL
#define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \
ST_PRESS_LSB_PER_MBAR)
+
+/* Default temperature sensitivity */
#define ST_PRESS_LSB_PER_CELSIUS 480UL
-#define ST_PRESS_CELSIUS_NANO_SCALE (1000000000UL / \
- ST_PRESS_LSB_PER_CELSIUS)
+#define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL
+
#define ST_PRESS_NUMBER_DATA_CHANNELS 1
/* FULLSCALE */
+#define ST_PRESS_FS_AVL_1100MB 1100
#define ST_PRESS_FS_AVL_1260MB 1260
#define ST_PRESS_1_OUT_XL_ADDR 0x28
#define ST_PRESS_LPS331AP_PW_MASK 0x80
#define ST_PRESS_LPS331AP_FS_ADDR 0x23
#define ST_PRESS_LPS331AP_FS_MASK 0x30
-#define ST_PRESS_LPS331AP_FS_AVL_1260_VAL 0x00
-#define ST_PRESS_LPS331AP_FS_AVL_1260_GAIN ST_PRESS_KPASCAL_NANO_SCALE
-#define ST_PRESS_LPS331AP_FS_AVL_TEMP_GAIN ST_PRESS_CELSIUS_NANO_SCALE
#define ST_PRESS_LPS331AP_BDU_ADDR 0x20
#define ST_PRESS_LPS331AP_BDU_MASK 0x04
#define ST_PRESS_LPS331AP_DRDY_IRQ_ADDR 0x22
#define ST_PRESS_LPS331AP_OD_IRQ_ADDR 0x22
#define ST_PRESS_LPS331AP_OD_IRQ_MASK 0x40
#define ST_PRESS_LPS331AP_MULTIREAD_BIT true
-#define ST_PRESS_LPS331AP_TEMP_OFFSET 42500
/* CUSTOM VALUES FOR LPS001WP SENSOR */
+
+/* LPS001WP pressure resolution */
+#define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL
+/* LPS001WP temperature resolution */
+#define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL
+
#define ST_PRESS_LPS001WP_WAI_EXP 0xba
#define ST_PRESS_LPS001WP_ODR_ADDR 0x20
#define ST_PRESS_LPS001WP_ODR_MASK 0x30
#define ST_PRESS_LPS001WP_ODR_AVL_13HZ_VAL 0x03
#define ST_PRESS_LPS001WP_PW_ADDR 0x20
#define ST_PRESS_LPS001WP_PW_MASK 0x40
+#define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
+ (100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
#define ST_PRESS_LPS001WP_BDU_ADDR 0x20
#define ST_PRESS_LPS001WP_BDU_MASK 0x04
#define ST_PRESS_LPS001WP_MULTIREAD_BIT true
#define ST_PRESS_LPS25H_ODR_AVL_25HZ_VAL 0x04
#define ST_PRESS_LPS25H_PW_ADDR 0x20
#define ST_PRESS_LPS25H_PW_MASK 0x80
-#define ST_PRESS_LPS25H_FS_ADDR 0x00
-#define ST_PRESS_LPS25H_FS_MASK 0x00
-#define ST_PRESS_LPS25H_FS_AVL_1260_VAL 0x00
-#define ST_PRESS_LPS25H_FS_AVL_1260_GAIN ST_PRESS_KPASCAL_NANO_SCALE
-#define ST_PRESS_LPS25H_FS_AVL_TEMP_GAIN ST_PRESS_CELSIUS_NANO_SCALE
#define ST_PRESS_LPS25H_BDU_ADDR 0x20
#define ST_PRESS_LPS25H_BDU_MASK 0x04
#define ST_PRESS_LPS25H_DRDY_IRQ_ADDR 0x23
#define ST_PRESS_LPS25H_OD_IRQ_ADDR 0x22
#define ST_PRESS_LPS25H_OD_IRQ_MASK 0x40
#define ST_PRESS_LPS25H_MULTIREAD_BIT true
-#define ST_PRESS_LPS25H_TEMP_OFFSET 42500
#define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28
#define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b
.storagebits = 16,
.endianness = IIO_LE,
},
- .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ .info_mask_separate =
+ BIT(IIO_CHAN_INFO_RAW) |
+ BIT(IIO_CHAN_INFO_SCALE),
.modified = 0,
},
{
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
- BIT(IIO_CHAN_INFO_OFFSET),
+ BIT(IIO_CHAN_INFO_SCALE),
.modified = 0,
},
IIO_CHAN_SOFT_TIMESTAMP(1)
.addr = ST_PRESS_LPS331AP_FS_ADDR,
.mask = ST_PRESS_LPS331AP_FS_MASK,
.fs_avl = {
+ /*
+ * Pressure and temperature sensitivity values
+ * as defined in table 3 of LPS331AP datasheet.
+ */
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
- .value = ST_PRESS_LPS331AP_FS_AVL_1260_VAL,
- .gain = ST_PRESS_LPS331AP_FS_AVL_1260_GAIN,
- .gain2 = ST_PRESS_LPS331AP_FS_AVL_TEMP_GAIN,
+ .gain = ST_PRESS_KPASCAL_NANO_SCALE,
+ .gain2 = ST_PRESS_LSB_PER_CELSIUS,
},
},
},
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
- .addr = 0,
+ .fs_avl = {
+ /*
+ * Pressure and temperature resolution values
+ * as defined in table 3 of LPS001WP datasheet.
+ */
+ [0] = {
+ .num = ST_PRESS_FS_AVL_1100MB,
+ .gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
+ .gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
+ },
+ },
},
.bdu = {
.addr = ST_PRESS_LPS001WP_BDU_ADDR,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
- .addr = ST_PRESS_LPS25H_FS_ADDR,
- .mask = ST_PRESS_LPS25H_FS_MASK,
.fs_avl = {
+ /*
+ * Pressure and temperature sensitivity values
+ * as defined in table 3 of LPS25H datasheet.
+ */
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
- .value = ST_PRESS_LPS25H_FS_AVL_1260_VAL,
- .gain = ST_PRESS_LPS25H_FS_AVL_1260_GAIN,
- .gain2 = ST_PRESS_LPS25H_FS_AVL_TEMP_GAIN,
+ .gain = ST_PRESS_KPASCAL_NANO_SCALE,
+ .gain2 = ST_PRESS_LSB_PER_CELSIUS,
},
},
},
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
- *val = 0;
-
switch (ch->type) {
case IIO_PRESSURE:
+ *val = 0;
*val2 = press_data->current_fullscale->gain;
- break;
+ return IIO_VAL_INT_PLUS_NANO;
case IIO_TEMP:
+ *val = MCELSIUS_PER_CELSIUS;
*val2 = press_data->current_fullscale->gain2;
- break;
+ return IIO_VAL_FRACTIONAL;
default:
err = -EINVAL;
goto read_error;
}
- return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OFFSET:
switch (ch->type) {
case IIO_TEMP:
- *val = 425;
- *val2 = 10;
+ *val = ST_PRESS_MILLI_CELSIUS_OFFSET *
+ press_data->current_fullscale->gain2;
+ *val2 = MCELSIUS_PER_CELSIUS;
break;
default:
err = -EINVAL;
static const struct iio_trigger_ops st_press_trigger_ops = {
.owner = THIS_MODULE,
.set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
+ .validate_device = st_sensors_validate_device,
};
#define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
#else
struct delayed_work work;
u32 tune_cap;
+ u8 buffer[16]; /* 8-bit data + 56-bit padding + 64-bit timestamp */
u8 buf[2] ____cacheline_aligned;
};
.type = IIO_PROXIMITY,
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
- BIT(IIO_CHAN_INFO_PROCESSED),
+ BIT(IIO_CHAN_INFO_PROCESSED) |
+ BIT(IIO_CHAN_INFO_SCALE),
.scan_index = 0,
.scan_type = {
.sign = 'u',
/* storm out of range */
if (*val == AS3935_DATA_MASK)
return -EINVAL;
- *val *= 1000;
+
+ if (m == IIO_CHAN_INFO_PROCESSED)
+ *val *= 1000;
+ break;
+ case IIO_CHAN_INFO_SCALE:
+ *val = 1000;
break;
default:
return -EINVAL;
ret = as3935_read(st, AS3935_DATA, &val);
if (ret)
goto err_read;
- val &= AS3935_DATA_MASK;
- val *= 1000;
- iio_push_to_buffers_with_timestamp(indio_dev, &val, pf->timestamp);
+ st->buffer[0] = val & AS3935_DATA_MASK;
+ iio_push_to_buffers_with_timestamp(indio_dev, &st->buffer,
+ pf->timestamp);
err_read:
iio_trigger_notify_done(indio_dev->trig);
for (ix = 0; ix < table->sz; ix++)
if (table->data_vec[ix].attr.ndev == ndev)
- if (!del_gid(ib_dev, port, table, ix, false))
+ if (!del_gid(ib_dev, port, table, ix,
+ !!(table->data_vec[ix].props &
+ GID_TABLE_ENTRY_DEFAULT)))
deleted = true;
write_unlock_irq(&table->rwlock);
complete(&id_priv->comp);
}
-static int cma_disable_callback(struct rdma_id_private *id_priv,
- enum rdma_cm_state state)
-{
- mutex_lock(&id_priv->handler_mutex);
- if (id_priv->state != state) {
- mutex_unlock(&id_priv->handler_mutex);
- return -EINVAL;
- }
- return 0;
-}
-
struct rdma_cm_id *rdma_create_id(struct net *net,
rdma_cm_event_handler event_handler,
void *context, enum rdma_port_space ps,
struct rdma_cm_event event;
int ret = 0;
+ mutex_lock(&id_priv->handler_mutex);
if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
- cma_disable_callback(id_priv, RDMA_CM_CONNECT)) ||
+ id_priv->state != RDMA_CM_CONNECT) ||
(ib_event->event == IB_CM_TIMEWAIT_EXIT &&
- cma_disable_callback(id_priv, RDMA_CM_DISCONNECT)))
- return 0;
+ id_priv->state != RDMA_CM_DISCONNECT))
+ goto out;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event)
{
- struct rdma_id_private *listen_id, *conn_id;
+ struct rdma_id_private *listen_id, *conn_id = NULL;
struct rdma_cm_event event;
struct net_device *net_dev;
int offset, ret;
goto net_dev_put;
}
- if (cma_disable_callback(listen_id, RDMA_CM_LISTEN)) {
+ mutex_lock(&listen_id->handler_mutex);
+ if (listen_id->state != RDMA_CM_LISTEN) {
ret = -ECONNABORTED;
- goto net_dev_put;
+ goto err1;
}
memset(&event, 0, sizeof event);
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
- if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
- return 0;
+ mutex_lock(&id_priv->handler_mutex);
+ if (id_priv->state != RDMA_CM_CONNECT)
+ goto out;
memset(&event, 0, sizeof event);
switch (iw_event->event) {
return ret;
}
+out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
struct rdma_cm_id *new_cm_id;
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event;
- int ret;
+ int ret = -ECONNABORTED;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
listen_id = cm_id->context;
- if (cma_disable_callback(listen_id, RDMA_CM_LISTEN))
- return -ECONNABORTED;
+
+ mutex_lock(&listen_id->handler_mutex);
+ if (listen_id->state != RDMA_CM_LISTEN)
+ goto out;
/* Create a new RDMA id for the new IW CM ID */
new_cm_id = rdma_create_id(listen_id->id.route.addr.dev_addr.net,
struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd;
int ret = 0;
- if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
- return 0;
+ mutex_lock(&id_priv->handler_mutex);
+ if (id_priv->state != RDMA_CM_CONNECT)
+ goto out;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
struct rdma_id_private *id_priv;
struct cma_multicast *mc = multicast->context;
struct rdma_cm_event event;
- int ret;
+ int ret = 0;
id_priv = mc->id_priv;
- if (cma_disable_callback(id_priv, RDMA_CM_ADDR_BOUND) &&
- cma_disable_callback(id_priv, RDMA_CM_ADDR_RESOLVED))
- return 0;
+ mutex_lock(&id_priv->handler_mutex);
+ if (id_priv->state != RDMA_CM_ADDR_BOUND &&
+ id_priv->state != RDMA_CM_ADDR_RESOLVED)
+ goto out;
if (!status)
status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
return 0;
}
+out:
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(id_priv->cma_dev->device)];
if (addr->sa_family == AF_INET) {
- if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
+ if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
+ mc->multicast.ib->rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
err = cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid,
true);
- if (!err) {
- mc->igmp_joined = true;
- mc->multicast.ib->rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
+ if (!err)
+ mc->igmp_joined = true;
}
} else {
if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
struct ib_srq *srq = NULL;
struct ib_qp *qp;
char *buf;
- struct ib_qp_init_attr attr;
+ struct ib_qp_init_attr attr = {};
struct ib_uverbs_ex_create_qp_resp resp;
int ret;
ah_attr->grh.dgid = sgid;
if (!rdma_cap_eth_ah(device, port_num)) {
- ret = ib_find_cached_gid_by_port(device, &dgid,
- IB_GID_TYPE_IB,
- port_num, NULL,
- &gid_index);
- if (ret)
- return ret;
+ if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
+ ret = ib_find_cached_gid_by_port(device, &dgid,
+ IB_GID_TYPE_IB,
+ port_num, NULL,
+ &gid_index);
+ if (ret)
+ return ret;
+ } else {
+ gid_index = 0;
+ }
}
ah_attr->grh.sgid_index = (u8) gid_index;
static void dc_start(struct hfi1_devdata *);
static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
unsigned int *np);
-static void remove_full_mgmt_pkey(struct hfi1_pportdata *ppd);
+static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
/*
* Error interrupt table entry. This is used as input to the interrupt
}
reset_neighbor_info(ppd);
- if (ppd->mgmt_allowed)
- remove_full_mgmt_pkey(ppd);
/* disable the port */
clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
__func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
ppd->pkeys[2] = FULL_MGMT_P_KEY;
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
+ hfi1_event_pkey_change(ppd->dd, ppd->port);
}
-static void remove_full_mgmt_pkey(struct hfi1_pportdata *ppd)
+static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
{
- ppd->pkeys[2] = 0;
- (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
+ if (ppd->pkeys[2] != 0) {
+ ppd->pkeys[2] = 0;
+ (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
+ hfi1_event_pkey_change(ppd->dd, ppd->port);
+ }
}
/*
return 0;
}
+ /*
+ * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
+ * pkey table can be configured properly if the HFI unit is connected
+ * to switch port with MgmtAllowed=NO
+ */
+ clear_full_mgmt_pkey(ppd);
+
return set_link_state(ppd, HLS_DN_POLL);
}
u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
& SEND_LEN_CHECK1_LEN_VL15_MASK) <<
SEND_LEN_CHECK1_LEN_VL15_SHIFT;
- int i;
+ int i, j;
u32 thres;
for (i = 0; i < ppd->vls_supported; i++) {
sc_mtu_to_threshold(dd->vld[i].sc,
dd->vld[i].mtu,
dd->rcd[0]->rcvhdrqentsize));
- sc_set_cr_threshold(dd->vld[i].sc, thres);
+ for (j = 0; j < INIT_SC_PER_VL; j++)
+ sc_set_cr_threshold(
+ pio_select_send_context_vl(dd, j, i),
+ thres);
}
thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
sc_mtu_to_threshold(dd->vld[15].sc,
switch (cmd) {
case HFI1_IOCTL_ASSIGN_CTXT:
+ if (uctxt)
+ return -EINVAL;
+
if (copy_from_user(&uinfo,
(struct hfi1_user_info __user *)arg,
sizeof(uinfo)))
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret = 0, j, pidx, initfail;
- struct hfi1_devdata *dd = NULL;
+ struct hfi1_devdata *dd = ERR_PTR(-EINVAL);
struct hfi1_pportdata *ppd;
/* First, lock the non-writable module parameters */
memset(data, 0, size);
}
+void hfi1_event_pkey_change(struct hfi1_devdata *dd, u8 port)
+{
+ struct ib_event event;
+
+ event.event = IB_EVENT_PKEY_CHANGE;
+ event.device = &dd->verbs_dev.rdi.ibdev;
+ event.element.port_num = port;
+ ib_dispatch_event(&event);
+}
+
static void send_trap(struct hfi1_ibport *ibp, void *data, unsigned len)
{
struct ib_mad_send_buf *send_buf;
}
if (changed) {
- struct ib_event event;
-
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
-
- event.event = IB_EVENT_PKEY_CHANGE;
- event.device = &dd->verbs_dev.rdi.ibdev;
- event.element.port_num = port;
- ib_dispatch_event(&event);
+ hfi1_event_pkey_change(dd, port);
}
+
return 0;
}
COUNTER_MASK(1, 3) | \
COUNTER_MASK(1, 4))
+void hfi1_event_pkey_change(struct hfi1_devdata *dd, u8 port);
+
#endif /* _HFI1_MAD_H */
/* counter is reset if occupancy count changes */
if (reg != reg_prev)
loop = 0;
- if (loop > 500) {
+ if (loop > 50000) {
/* timed out - bounce the link */
dd_dev_err(dd,
"%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
}
/*
+ * Set credit return threshold for the kernel send context
+ */
+static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
+{
+ u32 thres;
+
+ thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
+ 50),
+ sc_mtu_to_threshold(dd->kernel_send_context[scontext],
+ dd->vld[i].mtu,
+ dd->rcd[0]->rcvhdrqentsize));
+ sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
+}
+
+/*
* pio_map_init - called when #vls change
* @dd: hfi1_devdata
* @port: port number
if (!newmap->map[i])
goto bail;
newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
- /* assign send contexts */
+ /*
+ * assign send contexts and
+ * adjust credit return threshold
+ */
for (j = 0; j < sz; j++) {
- if (dd->kernel_send_context[scontext])
+ if (dd->kernel_send_context[scontext]) {
newmap->map[i]->ksc[j] =
dd->kernel_send_context[scontext];
+ set_threshold(dd, scontext, i);
+ }
if (++scontext >= first_scontext +
vl_scontexts[i])
/* wrap back to first send context */
if (ppd->qsfp_info.cache_valid) {
if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS]))
- sprintf(lenstr, "%dM ", cache[QSFP_MOD_LEN_OFFS]);
+ snprintf(lenstr, sizeof(lenstr), "%dM ",
+ cache[QSFP_MOD_LEN_OFFS]);
power_byte = cache[QSFP_MOD_PWR_OFFS];
sofar += scnprintf(buf + sofar, len - sofar, "PWR:%.3sW\n",
struct verbs_txreq *__get_txreq(struct hfi1_ibdev *dev,
struct rvt_qp *qp)
+ __must_hold(&qp->s_lock)
{
struct verbs_txreq *tx = ERR_PTR(-EBUSY);
- unsigned long flags;
- spin_lock_irqsave(&qp->s_lock, flags);
write_seqlock(&dev->iowait_lock);
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
struct hfi1_qp_priv *priv;
}
out:
write_sequnlock(&dev->iowait_lock);
- spin_unlock_irqrestore(&qp->s_lock, flags);
return tx;
}
static inline struct verbs_txreq *get_txreq(struct hfi1_ibdev *dev,
struct rvt_qp *qp)
+ __must_hold(&qp->slock)
{
struct verbs_txreq *tx;
struct hfi1_qp_priv *priv = qp->priv;
#define IW_HMC_OBJ_TYPE_NUM ARRAY_SIZE(iw_hmc_obj_types)
#define IW_CFG_FPM_QP_COUNT 32768
+#define I40IW_MAX_PAGES_PER_FMR 512
+#define I40IW_MIN_PAGES_PER_FMR 1
#define I40IW_MTU_TO_MSS 40
#define I40IW_DEFAULT_MSS 1460
props->max_qp_init_rd_atom = props->max_qp_rd_atom;
props->atomic_cap = IB_ATOMIC_NONE;
props->max_map_per_fmr = 1;
+ props->max_fast_reg_page_list_len = I40IW_MAX_PAGES_PER_FMR;
return 0;
}
mutex_lock(&iwdev->pbl_mutex);
status = i40iw_get_pble(&iwdev->sc_dev, iwdev->pble_rsrc, palloc, iwmr->page_cnt);
mutex_unlock(&iwdev->pbl_mutex);
- if (!status)
+ if (status)
goto err1;
if (palloc->level != I40IW_LEVEL_1)
struct i40iw_sc_dev *dev = &iwqp->iwdev->sc_dev;
struct i40iw_fast_reg_stag_info info;
+ memset(&info, 0, sizeof(info));
info.access_rights = I40IW_ACCESS_FLAGS_LOCALREAD;
info.access_rights |= i40iw_get_user_access(flags);
info.stag_key = reg_wr(ib_wr)->key & 0xff;
info.addr_type = I40IW_ADDR_TYPE_VA_BASED;
info.va = (void *)(uintptr_t)iwmr->ibmr.iova;
info.total_len = iwmr->ibmr.length;
+ info.reg_addr_pa = *(u64 *)palloc->level1.addr;
info.first_pm_pbl_index = palloc->level1.idx;
info.local_fence = ib_wr->send_flags & IB_SEND_FENCE;
info.signaled = ib_wr->send_flags & IB_SEND_SIGNALED;
+ if (iwmr->npages > I40IW_MIN_PAGES_PER_FMR)
+ info.chunk_size = 1;
+
if (page_shift == 21)
info.page_size = 1; /* 2M page */
{
struct i40iw_cq *iwcq;
struct i40iw_cq_uk *ukcq;
- enum i40iw_completion_notify cq_notify = IW_CQ_COMPL_SOLICITED;
+ unsigned long flags;
+ enum i40iw_completion_notify cq_notify = IW_CQ_COMPL_EVENT;
iwcq = (struct i40iw_cq *)ibcq;
ukcq = &iwcq->sc_cq.cq_uk;
- if (notify_flags == IB_CQ_NEXT_COMP)
- cq_notify = IW_CQ_COMPL_EVENT;
+ if (notify_flags == IB_CQ_SOLICITED)
+ cq_notify = IW_CQ_COMPL_SOLICITED;
+ spin_lock_irqsave(&iwcq->lock, flags);
ukcq->ops.iw_cq_request_notification(ukcq, cq_notify);
+ spin_unlock_irqrestore(&iwcq->lock, flags);
return 0;
}
ah->av.ib.port_pd = cpu_to_be32(to_mpd(pd)->pdn | (ah_attr->port_num << 24));
ah->av.ib.g_slid = ah_attr->src_path_bits;
+ ah->av.ib.sl_tclass_flowlabel = cpu_to_be32(ah_attr->sl << 28);
if (ah_attr->ah_flags & IB_AH_GRH) {
ah->av.ib.g_slid |= 0x80;
ah->av.ib.gid_index = ah_attr->grh.sgid_index;
!(1 << ah->av.ib.stat_rate & dev->caps.stat_rate_support))
--ah->av.ib.stat_rate;
}
- ah->av.ib.sl_tclass_flowlabel = cpu_to_be32(ah_attr->sl << 28);
return &ah->ibah;
}
tun_tx_ix = (++tun_qp->tx_ix_head) & (MLX4_NUM_TUNNEL_BUFS - 1);
spin_unlock(&tun_qp->tx_lock);
if (ret)
- goto out;
+ goto end;
tun_mad = (struct mlx4_rcv_tunnel_mad *) (tun_qp->tx_ring[tun_tx_ix].buf.addr);
if (tun_qp->tx_ring[tun_tx_ix].ah)
wr.wr.send_flags = IB_SEND_SIGNALED;
ret = ib_post_send(src_qp, &wr.wr, &bad_wr);
-out:
- if (ret)
- ib_destroy_ah(ah);
+ if (!ret)
+ return 0;
+ out:
+ spin_lock(&tun_qp->tx_lock);
+ tun_qp->tx_ix_tail++;
+ spin_unlock(&tun_qp->tx_lock);
+ tun_qp->tx_ring[tun_tx_ix].ah = NULL;
+end:
+ ib_destroy_ah(ah);
return ret;
}
ret = ib_post_send(send_qp, &wr.wr, &bad_wr);
+ if (!ret)
+ return 0;
+
+ spin_lock(&sqp->tx_lock);
+ sqp->tx_ix_tail++;
+ spin_unlock(&sqp->tx_lock);
+ sqp->tx_ring[wire_tx_ix].ah = NULL;
out:
- if (ret)
- ib_destroy_ah(ah);
+ ib_destroy_ah(ah);
return ret;
}
struct mlx4_dev *dev = (to_mdev(qp->device))->dev;
int is_bonded = mlx4_is_bonded(dev);
+ if (flow_attr->port < 1 || flow_attr->port > qp->device->phys_port_cnt)
+ return ERR_PTR(-EINVAL);
+
if ((flow_attr->flags & IB_FLOW_ATTR_FLAGS_DONT_TRAP) &&
(flow_attr->type != IB_FLOW_ATTR_NORMAL))
return ERR_PTR(-EOPNOTSUPP);
u32 max_pages;
struct mlx4_mr mmr;
struct ib_umem *umem;
- void *pages_alloc;
+ size_t page_map_size;
};
struct mlx4_ib_mw {
struct mlx4_ib_mr *mr,
int max_pages)
{
- int size = max_pages * sizeof(u64);
- int add_size;
int ret;
- add_size = max_t(int, MLX4_MR_PAGES_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
+ /* Ensure that size is aligned to DMA cacheline
+ * requirements.
+ * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
+ * so page_map_size will never cross PAGE_SIZE.
+ */
+ mr->page_map_size = roundup(max_pages * sizeof(u64),
+ MLX4_MR_PAGES_ALIGN);
- mr->pages_alloc = kzalloc(size + add_size, GFP_KERNEL);
- if (!mr->pages_alloc)
+ /* Prevent cross page boundary allocation. */
+ mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
+ if (!mr->pages)
return -ENOMEM;
- mr->pages = PTR_ALIGN(mr->pages_alloc, MLX4_MR_PAGES_ALIGN);
-
mr->page_map = dma_map_single(device->dma_device, mr->pages,
- size, DMA_TO_DEVICE);
+ mr->page_map_size, DMA_TO_DEVICE);
if (dma_mapping_error(device->dma_device, mr->page_map)) {
ret = -ENOMEM;
}
return 0;
-err:
- kfree(mr->pages_alloc);
+err:
+ free_page((unsigned long)mr->pages);
return ret;
}
{
if (mr->pages) {
struct ib_device *device = mr->ibmr.device;
- int size = mr->max_pages * sizeof(u64);
dma_unmap_single(device->dma_device, mr->page_map,
- size, DMA_TO_DEVICE);
- kfree(mr->pages_alloc);
+ mr->page_map_size, DMA_TO_DEVICE);
+ free_page((unsigned long)mr->pages);
mr->pages = NULL;
}
}
mr->npages = 0;
ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
- sizeof(u64) * mr->max_pages,
- DMA_TO_DEVICE);
+ mr->page_map_size, DMA_TO_DEVICE);
rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
- sizeof(u64) * mr->max_pages,
- DMA_TO_DEVICE);
+ mr->page_map_size, DMA_TO_DEVICE);
return rc;
}
sizeof (struct mlx4_wqe_raddr_seg);
case MLX4_IB_QPT_RC:
return sizeof (struct mlx4_wqe_ctrl_seg) +
- sizeof (struct mlx4_wqe_atomic_seg) +
+ sizeof (struct mlx4_wqe_masked_atomic_seg) +
sizeof (struct mlx4_wqe_raddr_seg);
case MLX4_IB_QPT_SMI:
case MLX4_IB_QPT_GSI:
{
err = create_qp_common(to_mdev(pd->device), pd, init_attr,
udata, 0, &qp, gfp);
- if (err)
+ if (err) {
+ kfree(qp);
return ERR_PTR(err);
+ }
qp->ibqp.qp_num = qp->mqp.qpn;
qp->xrcdn = xrcdn;
pma_cnt_ext->port_xmit_data =
cpu_to_be64(MLX5_SUM_CNT(out, transmitted_ib_unicast.octets,
transmitted_ib_multicast.octets) >> 2);
- pma_cnt_ext->port_xmit_data =
+ pma_cnt_ext->port_rcv_data =
cpu_to_be64(MLX5_SUM_CNT(out, received_ib_unicast.octets,
received_ib_multicast.octets) >> 2);
pma_cnt_ext->port_xmit_packets =
return MLX5_FENCE_MODE_SMALL_AND_FENCE;
else
return fence;
-
- } else {
- return 0;
+ } else if (unlikely(wr->send_flags & IB_SEND_FENCE)) {
+ return MLX5_FENCE_MODE_FENCE;
}
+
+ return 0;
}
static int begin_wqe(struct mlx5_ib_qp *qp, void **seg,
switch (cmd.type) {
case QIB_CMD_ASSIGN_CTXT:
+ if (rcd) {
+ ret = -EINVAL;
+ goto bail;
+ }
+
ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
if (ret)
goto bail;
/* wrap to first map page, invert bit 0 */
offset = qpt->incr | ((offset & 1) ^ 1);
}
- /* there can be no bits at shift and below */
- WARN_ON(offset & (rdi->dparms.qos_shift - 1));
+ /* there can be no set bits in low-order QoS bits */
+ WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
qpn = mk_qpn(qpt, map, offset);
}
qp->s_ssn = 1;
qp->s_lsn = 0;
qp->s_mig_state = IB_MIG_MIGRATED;
- if (qp->s_ack_queue)
- memset(
- qp->s_ack_queue,
- 0,
- rvt_max_atomic(rdi) *
- sizeof(*qp->s_ack_queue));
qp->r_head_ack_queue = 0;
qp->s_tail_ack_queue = 0;
qp->s_num_rd_atomic = 0;
* initialization that is needed.
*/
priv = rdi->driver_f.qp_priv_alloc(rdi, qp, gfp);
- if (!priv)
+ if (IS_ERR(priv)) {
+ ret = priv;
goto bail_qp;
+ }
qp->priv = priv;
qp->timeout_jiffies =
usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
!rdi->driver_f.quiesce_qp ||
!rdi->driver_f.notify_error_qp ||
!rdi->driver_f.mtu_from_qp ||
- !rdi->driver_f.mtu_to_path_mtu ||
- !rdi->driver_f.shut_down_port ||
- !rdi->driver_f.cap_mask_chg)
+ !rdi->driver_f.mtu_to_path_mtu)
return -EINVAL;
break;
*/
qp_init->cap.max_send_wr = srp_sq_size / 2;
qp_init->cap.max_rdma_ctxs = srp_sq_size / 2;
- qp_init->cap.max_send_sge = max(sdev->device->attrs.max_sge_rd,
- sdev->device->attrs.max_sge);
+ qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
qp_init->port_num = ch->sport->port;
ch->qp = ib_create_qp(sdev->pd, qp_init);
SRP_LOGIN_RSP_MULTICHAN_MAINTAINED = 0x2,
SRPT_DEF_SG_TABLESIZE = 128,
+ SRPT_DEF_SG_PER_WQE = 16,
MIN_SRPT_SQ_SIZE = 16,
DEF_SRPT_SQ_SIZE = 4096,
case XTYPE_XBOXONE:
packet->data[0] = 0x09; /* activate rumble */
- packet->data[1] = 0x08;
+ packet->data[1] = 0x00;
packet->data[2] = xpad->odata_serial++;
- packet->data[3] = 0x08; /* continuous effect */
- packet->data[4] = 0x00; /* simple rumble mode */
- packet->data[5] = 0x03; /* L and R actuator only */
- packet->data[6] = 0x00; /* TODO: LT actuator */
- packet->data[7] = 0x00; /* TODO: RT actuator */
+ packet->data[3] = 0x09;
+ packet->data[4] = 0x00;
+ packet->data[5] = 0x0F;
+ packet->data[6] = 0x00;
+ packet->data[7] = 0x00;
packet->data[8] = strong / 512; /* left actuator */
packet->data[9] = weak / 512; /* right actuator */
- packet->data[10] = 0x80; /* length of pulse */
- packet->data[11] = 0x00; /* stop period of pulse */
+ packet->data[10] = 0xFF;
+ packet->data[11] = 0x00;
packet->data[12] = 0x00;
packet->len = 13;
packet->pending = true;
break;
}
- if (xpad_device[i].xtype == XTYPE_XBOXONE &&
- intf->cur_altsetting->desc.bInterfaceNumber != 0) {
- /*
- * The Xbox One controller lists three interfaces all with the
- * same interface class, subclass and protocol. Differentiate by
- * interface number.
- */
- return -ENODEV;
- }
-
xpad = kzalloc(sizeof(struct usb_xpad), GFP_KERNEL);
if (!xpad)
return -ENOMEM;
if (intf->cur_altsetting->desc.bInterfaceClass == USB_CLASS_VENDOR_SPEC) {
if (intf->cur_altsetting->desc.bInterfaceProtocol == 129)
xpad->xtype = XTYPE_XBOX360W;
+ else if (intf->cur_altsetting->desc.bInterfaceProtocol == 208)
+ xpad->xtype = XTYPE_XBOXONE;
else
xpad->xtype = XTYPE_XBOX360;
} else {
xpad->mapping |= MAP_STICKS_TO_NULL;
}
+ if (xpad->xtype == XTYPE_XBOXONE &&
+ intf->cur_altsetting->desc.bInterfaceNumber != 0) {
+ /*
+ * The Xbox One controller lists three interfaces all with the
+ * same interface class, subclass and protocol. Differentiate by
+ * interface number.
+ */
+ error = -ENODEV;
+ goto err_free_in_urb;
+ }
+
error = xpad_init_output(intf, xpad);
if (error)
goto err_free_in_urb;
case 5:
etd->hw_version = 3;
break;
- case 6:
- case 7:
- case 8:
- case 9:
- case 10:
- case 13:
- case 14:
+ case 6 ... 14:
etd->hw_version = 4;
break;
default:
return -ENXIO;
}
- if (!request_region(VMMOUSE_PROTO_PORT, 4, "vmmouse")) {
- psmouse_dbg(psmouse, "VMMouse port in use.\n");
- return -EBUSY;
- }
-
/* Check if the device is present */
response = ~VMMOUSE_PROTO_MAGIC;
VMMOUSE_CMD(GETVERSION, 0, version, response, dummy1, dummy2);
- if (response != VMMOUSE_PROTO_MAGIC || version == 0xffffffffU) {
- release_region(VMMOUSE_PROTO_PORT, 4);
+ if (response != VMMOUSE_PROTO_MAGIC || version == 0xffffffffU)
return -ENXIO;
- }
if (set_properties) {
psmouse->vendor = VMMOUSE_VENDOR;
psmouse->model = version;
}
- release_region(VMMOUSE_PROTO_PORT, 4);
-
return 0;
}
psmouse_reset(psmouse);
input_unregister_device(priv->abs_dev);
kfree(priv);
- release_region(VMMOUSE_PROTO_PORT, 4);
}
/**
struct input_dev *rel_dev = psmouse->dev, *abs_dev;
int error;
- if (!request_region(VMMOUSE_PROTO_PORT, 4, "vmmouse")) {
- psmouse_dbg(psmouse, "VMMouse port in use.\n");
- return -EBUSY;
- }
-
psmouse_reset(psmouse);
error = vmmouse_enable(psmouse);
if (error)
- goto release_region;
+ return error;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
abs_dev = input_allocate_device();
kfree(priv);
psmouse->private = NULL;
-release_region:
- release_region(VMMOUSE_PROTO_PORT, 4);
-
return error;
}
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
-#define W8001_MAX_LENGTH 11
+#define W8001_MAX_LENGTH 13
#define W8001_LEAD_MASK 0x80
#define W8001_LEAD_BYTE 0x80
#define W8001_TAB_MASK 0x40
w8001->idx = 0;
parse_multi_touch(w8001);
break;
+
+ default:
+ /*
+ * ThinkPad X60 Tablet PC (pen only device) sometimes
+ * sends invalid data packets that are larger than
+ * W8001_PKTLEN_TPCPEN. Let's start over again.
+ */
+ if (!w8001->touch_dev && w8001->idx > W8001_PKTLEN_TPCPEN - 1)
+ w8001->idx = 0;
}
return IRQ_HANDLED;
/* verify that it doesn't conflict with an IPI irq */
if (test_bit(spec->hwirq, ipi_resrv))
return -EBUSY;
+
+ hwirq = GIC_SHARED_TO_HWIRQ(spec->hwirq);
+
+ return irq_domain_set_hwirq_and_chip(d, virq, hwirq,
+ &gic_level_irq_controller,
+ NULL);
} else {
base_hwirq = find_first_bit(ipi_resrv, gic_shared_intrs);
if (base_hwirq == gic_shared_intrs) {
&gic_level_irq_controller,
NULL);
if (ret)
- return ret;
+ goto error;
}
return 0;
+
+error:
+ irq_domain_free_irqs_parent(d, virq, nr_irqs);
+ return ret;
}
void gic_dev_domain_free(struct irq_domain *d, unsigned int virq,
struct mcb_driver *mdrv = to_mcb_driver(dev->driver);
struct mcb_device *mdev = to_mcb_device(dev);
const struct mcb_device_id *found_id;
+ struct module *carrier_mod;
+ int ret;
found_id = mcb_match_id(mdrv->id_table, mdev);
if (!found_id)
return -ENODEV;
- return mdrv->probe(mdev, found_id);
+ carrier_mod = mdev->dev.parent->driver->owner;
+ if (!try_module_get(carrier_mod))
+ return -EINVAL;
+
+ get_device(dev);
+ ret = mdrv->probe(mdev, found_id);
+ if (ret)
+ module_put(carrier_mod);
+
+ return ret;
}
static int mcb_remove(struct device *dev)
{
struct mcb_driver *mdrv = to_mcb_driver(dev->driver);
struct mcb_device *mdev = to_mcb_device(dev);
+ struct module *carrier_mod;
mdrv->remove(mdev);
+ carrier_mod = mdev->dev.parent->driver->owner;
+ module_put(carrier_mod);
+
put_device(&mdev->dev);
return 0;
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
- GPMC_CONFIG4_OEEXTRADELAY, p->we_extra_delay);
+ GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
p->cycle2cyclesamecsen);
/* synchronized under device mutex */
if (waitqueue_active(&cl->wait)) {
cl_dbg(dev, cl, "Waking up ctrl write clients!\n");
- wake_up_interruptible(&cl->wait);
+ wake_up(&cl->wait);
}
}
int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
struct ubi_volume *vol = ubi->volumes[idx];
struct ubi_vid_hdr *vid_hdr;
+ uint32_t crc;
vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
if (!vid_hdr)
goto out_put;
}
- vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
- err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
- if (err) {
- up_read(&ubi->fm_eba_sem);
- goto write_error;
- }
+ ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
- data_size = offset + len;
mutex_lock(&ubi->buf_mutex);
memset(ubi->peb_buf + offset, 0xFF, len);
memcpy(ubi->peb_buf + offset, buf, len);
+ data_size = offset + len;
+ crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ vid_hdr->copy_flag = 1;
+ vid_hdr->data_size = cpu_to_be32(data_size);
+ vid_hdr->data_crc = cpu_to_be32(crc);
+ err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
+ if (err) {
+ mutex_unlock(&ubi->buf_mutex);
+ up_read(&ubi->fm_eba_sem);
+ goto write_error;
+ }
+
err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
if (err) {
mutex_unlock(&ubi->buf_mutex);
else
pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
*(u16 *)buf);
- buf += 2;
+ buf += 4;
}
- len += 2;
+ len += 4;
/*
* If we have any Low Priority VCs and a VC Arbitration Table Offset
struct exynos_mipi_video_phy *state)
{
u32 val;
+ int ret;
+
+ ret = regmap_read(state->regmaps[data->resetn_map], data->resetn_reg, &val);
+ if (ret)
+ return 0;
- regmap_read(state->regmaps[data->resetn_map], data->resetn_reg, &val);
return val & data->resetn_val;
}
ret = ti_pipe3_dpll_wait_lock(phy);
}
- /* Program the DPLL only if not locked */
+ /* SATA has issues if re-programmed when locked */
val = ti_pipe3_readl(phy->pll_ctrl_base, PLL_STATUS);
- if (!(val & PLL_LOCK))
- if (ti_pipe3_dpll_program(phy))
- return -EINVAL;
+ if ((val & PLL_LOCK) && of_device_is_compatible(phy->dev->of_node,
+ "ti,phy-pipe3-sata"))
+ return ret;
+
+ /* Program the DPLL */
+ ret = ti_pipe3_dpll_program(phy);
+ if (ret) {
+ ti_pipe3_disable_clocks(phy);
+ return -EINVAL;
+ }
return ret;
}
twl4030_usb_set_mode(twl, twl->usb_mode);
if (twl->usb_mode == T2_USB_MODE_ULPI)
twl4030_i2c_access(twl, 0);
- schedule_delayed_work(&twl->id_workaround_work, 0);
+ twl->linkstat = MUSB_UNKNOWN;
+ schedule_delayed_work(&twl->id_workaround_work, HZ);
return 0;
}
struct twl4030_usb *twl = _twl;
enum musb_vbus_id_status status;
bool status_changed = false;
+ int err;
status = twl4030_usb_linkstat(twl);
pm_runtime_mark_last_busy(twl->dev);
pm_runtime_put_autosuspend(twl->dev);
}
- musb_mailbox(status);
+ err = musb_mailbox(status);
+ if (err)
+ twl->linkstat = MUSB_UNKNOWN;
}
/* don't schedule during sleep - irq works right then */
struct twl4030_usb *twl = phy_get_drvdata(phy);
pm_runtime_get_sync(twl->dev);
- schedule_delayed_work(&twl->id_workaround_work, 0);
+ twl->linkstat = MUSB_UNKNOWN;
+ schedule_delayed_work(&twl->id_workaround_work, HZ);
pm_runtime_mark_last_busy(twl->dev);
pm_runtime_put_autosuspend(twl->dev);
if (cable_present(twl->linkstat))
pm_runtime_put_noidle(twl->dev);
pm_runtime_mark_last_busy(twl->dev);
- pm_runtime_put_sync_suspend(twl->dev);
+ pm_runtime_dont_use_autosuspend(&pdev->dev);
+ pm_runtime_put_sync(twl->dev);
pm_runtime_disable(twl->dev);
/* autogate 60MHz ULPI clock,
WARN_ON(tzd == NULL);
psy = tzd->devdata;
- ret = psy->desc->get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
+ ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
+ if (ret)
+ return ret;
/* Convert tenths of degree Celsius to milli degree Celsius. */
- if (!ret)
- *temp = val.intval * 100;
+ *temp = val.intval * 100;
return ret;
}
int ret;
psy = tcd->devdata;
- ret = psy->desc->get_property(psy,
- POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
- if (!ret)
- *state = val.intval;
+ ret = power_supply_get_property(psy,
+ POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
+ if (ret)
+ return ret;
+
+ *state = val.intval;
return ret;
}
int ret;
psy = tcd->devdata;
- ret = psy->desc->get_property(psy,
- POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
- if (!ret)
- *state = val.intval;
+ ret = power_supply_get_property(psy,
+ POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
+ if (ret)
+ return ret;
+
+ *state = val.intval;
return ret;
}
{
struct tps65217 *tps = dev_get_drvdata(pdev->dev.parent);
struct tps65217_charger *charger;
+ struct power_supply_config cfg = {};
int ret;
dev_dbg(&pdev->dev, "%s\n", __func__);
charger->tps = tps;
charger->dev = &pdev->dev;
+ cfg.of_node = pdev->dev.of_node;
+ cfg.drv_data = charger;
+
charger->ac = devm_power_supply_register(&pdev->dev,
&tps65217_charger_desc,
- NULL);
+ &cfg);
if (IS_ERR(charger->ac)) {
dev_err(&pdev->dev, "failed: power supply register\n");
return PTR_ERR(charger->ac);
} else {
struct scsi_cmnd *SCp;
- SCp = scsi_host_find_tag(SDp->host, SCSI_NO_TAG);
+ SCp = SDp->current_cmnd;
if(unlikely(SCp == NULL)) {
sdev_printk(KERN_ERR, SDp,
"no saved request for untagged cmd\n");
slot->tag, slot);
} else {
slot->tag = SCSI_NO_TAG;
- /* must populate current_cmnd for scsi_host_find_tag to work */
+ /* save current command for reselection */
SCp->device->current_cmnd = SCp;
}
/* sanity check: some of the commands generated by the mid-layer
*/
void scsi_eh_finish_cmd(struct scsi_cmnd *scmd, struct list_head *done_q)
{
- scmd->device->host->host_failed--;
scmd->eh_eflags = 0;
list_move_tail(&scmd->eh_entry, done_q);
}
else
scsi_unjam_host(shost);
+ /* All scmds have been handled */
+ shost->host_failed = 0;
+
/*
* Note - if the above fails completely, the action is to take
* individual devices offline and flush the queue of any
return 0;
failed:
- if (ni)
+ if (ni) {
lnet_ni_decref(ni);
+ rej.ibr_cp.ibcp_queue_depth = kiblnd_msg_queue_size(version, ni);
+ rej.ibr_cp.ibcp_max_frags = kiblnd_rdma_frags(version, ni);
+ }
rej.ibr_version = version;
- rej.ibr_cp.ibcp_queue_depth = kiblnd_msg_queue_size(version, ni);
- rej.ibr_cp.ibcp_max_frags = kiblnd_rdma_frags(version, ni);
kiblnd_reject(cmid, &rej);
return -ECONNREFUSED;
if (!efuseTbl)
return;
- eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(*eFuseWord));
+ eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
if (!eFuseWord) {
DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
goto eFuseWord_failed;
{
struct hal_ops *halfunc = &adapt->HalFunc;
- adapt->HalData = kzalloc(sizeof(*adapt->HalData), GFP_KERNEL);
+
+ adapt->HalData = kzalloc(sizeof(struct hal_data_8188e), GFP_KERNEL);
if (!adapt->HalData)
DBG_88E("cant not alloc memory for HAL DATA\n");
/* Creative SB Audigy 2 NX */
{ USB_DEVICE(0x041e, 0x3020), .driver_info = USB_QUIRK_RESET_RESUME },
+ /* USB3503 */
+ { USB_DEVICE(0x0424, 0x3503), .driver_info = USB_QUIRK_RESET_RESUME },
+
/* Microsoft Wireless Laser Mouse 6000 Receiver */
{ USB_DEVICE(0x045e, 0x00e1), .driver_info = USB_QUIRK_RESET_RESUME },
/* MAYA44USB sound device */
{ USB_DEVICE(0x0a92, 0x0091), .driver_info = USB_QUIRK_RESET_RESUME },
+ /* ASUS Base Station(T100) */
+ { USB_DEVICE(0x0b05, 0x17e0), .driver_info =
+ USB_QUIRK_IGNORE_REMOTE_WAKEUP },
+
/* Action Semiconductor flash disk */
{ USB_DEVICE(0x10d6, 0x2200), .driver_info =
USB_QUIRK_STRING_FETCH_255 },
{ USB_DEVICE(0x1908, 0x1315), .driver_info =
USB_QUIRK_HONOR_BNUMINTERFACES },
- /* INTEL VALUE SSD */
- { USB_DEVICE(0x8086, 0xf1a5), .driver_info = USB_QUIRK_RESET_RESUME },
-
- /* USB3503 */
- { USB_DEVICE(0x0424, 0x3503), .driver_info = USB_QUIRK_RESET_RESUME },
-
- /* ASUS Base Station(T100) */
- { USB_DEVICE(0x0b05, 0x17e0), .driver_info =
- USB_QUIRK_IGNORE_REMOTE_WAKEUP },
-
/* Protocol and OTG Electrical Test Device */
{ USB_DEVICE(0x1a0a, 0x0200), .driver_info =
USB_QUIRK_LINEAR_UFRAME_INTR_BINTERVAL },
+ /* Acer C120 LED Projector */
+ { USB_DEVICE(0x1de1, 0xc102), .driver_info = USB_QUIRK_NO_LPM },
+
/* Blackmagic Design Intensity Shuttle */
{ USB_DEVICE(0x1edb, 0xbd3b), .driver_info = USB_QUIRK_NO_LPM },
/* Blackmagic Design UltraStudio SDI */
{ USB_DEVICE(0x1edb, 0xbd4f), .driver_info = USB_QUIRK_NO_LPM },
+ /* INTEL VALUE SSD */
+ { USB_DEVICE(0x8086, 0xf1a5), .driver_info = USB_QUIRK_RESET_RESUME },
+
{ } /* terminating entry must be last */
};
DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
dev_name(hsotg->dev), ##__VA_ARGS__)
+#ifdef CONFIG_MIPS
+/*
+ * There are some MIPS machines that can run in either big-endian
+ * or little-endian mode and that use the dwc2 register without
+ * a byteswap in both ways.
+ * Unlike other architectures, MIPS apparently does not require a
+ * barrier before the __raw_writel() to synchronize with DMA but does
+ * require the barrier after the __raw_writel() to serialize a set of
+ * writes. This set of operations was added specifically for MIPS and
+ * should only be used there.
+ */
static inline u32 dwc2_readl(const void __iomem *addr)
{
u32 value = __raw_readl(addr);
pr_info("INFO:: wrote %08x to %p\n", value, addr);
#endif
}
+#else
+/* Normal architectures just use readl/write */
+static inline u32 dwc2_readl(const void __iomem *addr)
+{
+ return readl(addr);
+}
+
+static inline void dwc2_writel(u32 value, void __iomem *addr)
+{
+ writel(value, addr);
+
+#ifdef DWC2_LOG_WRITES
+ pr_info("info:: wrote %08x to %p\n", value, addr);
+#endif
+}
+#endif
/* Maximum number of Endpoints/HostChannels */
#define MAX_EPS_CHANNELS 16
return 1;
}
-static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
+static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
/**
* get_ep_head - return the first request on the endpoint
case USB_ENDPOINT_HALT:
halted = ep->halted;
- dwc2_hsotg_ep_sethalt(&ep->ep, set);
+ dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
if (ret) {
* dwc2_hsotg_ep_sethalt - set halt on a given endpoint
* @ep: The endpoint to set halt.
* @value: Set or unset the halt.
+ * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
+ * the endpoint is busy processing requests.
+ *
+ * We need to stall the endpoint immediately if request comes from set_feature
+ * protocol command handler.
*/
-static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
+static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hs = hs_ep->parent;
return 0;
}
+ if (hs_ep->isochronous) {
+ dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
+ return -EINVAL;
+ }
+
+ if (!now && value && !list_empty(&hs_ep->queue)) {
+ dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
+ ep->name);
+ return -EAGAIN;
+ }
+
if (hs_ep->dir_in) {
epreg = DIEPCTL(index);
epctl = dwc2_readl(hs->regs + epreg);
int ret = 0;
spin_lock_irqsave(&hs->lock, flags);
- ret = dwc2_hsotg_ep_sethalt(ep, value);
+ ret = dwc2_hsotg_ep_sethalt(ep, value, false);
spin_unlock_irqrestore(&hs->lock, flags);
return ret;
#define DWC3_DEPCMD_GET_RSC_IDX(x) (((x) >> DWC3_DEPCMD_PARAM_SHIFT) & 0x7f)
#define DWC3_DEPCMD_STATUS(x) (((x) >> 12) & 0x0F)
#define DWC3_DEPCMD_HIPRI_FORCERM (1 << 11)
+#define DWC3_DEPCMD_CLEARPENDIN (1 << 11)
#define DWC3_DEPCMD_CMDACT (1 << 10)
#define DWC3_DEPCMD_CMDIOC (1 << 8)
platform_set_drvdata(pdev, exynos);
- ret = dwc3_exynos_register_phys(exynos);
- if (ret) {
- dev_err(dev, "couldn't register PHYs\n");
- return ret;
- }
-
exynos->dev = dev;
exynos->clk = devm_clk_get(dev, "usbdrd30");
goto err3;
}
+ ret = dwc3_exynos_register_phys(exynos);
+ if (ret) {
+ dev_err(dev, "couldn't register PHYs\n");
+ goto err4;
+ }
+
if (node) {
ret = of_platform_populate(node, NULL, NULL, dev);
if (ret) {
dev_err(dev, "failed to add dwc3 core\n");
- goto err4;
+ goto err5;
}
} else {
dev_err(dev, "no device node, failed to add dwc3 core\n");
ret = -ENODEV;
- goto err4;
+ goto err5;
}
return 0;
+err5:
+ platform_device_unregister(exynos->usb2_phy);
+ platform_device_unregister(exynos->usb3_phy);
err4:
regulator_disable(exynos->vdd10);
err3:
switch (dwc3_data->dr_mode) {
case USB_DR_MODE_PERIPHERAL:
- val &= ~(USB3_FORCE_VBUSVALID | USB3_DELAY_VBUSVALID
+ val &= ~(USB3_DELAY_VBUSVALID
| USB3_SEL_FORCE_OPMODE | USB3_FORCE_OPMODE(0x3)
| USB3_SEL_FORCE_DPPULLDOWN2 | USB3_FORCE_DPPULLDOWN2
| USB3_SEL_FORCE_DMPULLDOWN2 | USB3_FORCE_DMPULLDOWN2);
- val |= USB3_DEVICE_NOT_HOST;
+ /*
+ * USB3_PORT2_FORCE_VBUSVALID When '1' and when
+ * USB3_PORT2_DEVICE_NOT_HOST = 1, forces VBUSVLDEXT2 input
+ * of the pico PHY to 1.
+ */
+
+ val |= USB3_DEVICE_NOT_HOST | USB3_FORCE_VBUSVALID;
break;
case USB_DR_MODE_HOST:
return ret;
}
+static int dwc3_send_clear_stall_ep_cmd(struct dwc3_ep *dep)
+{
+ struct dwc3 *dwc = dep->dwc;
+ struct dwc3_gadget_ep_cmd_params params;
+ u32 cmd = DWC3_DEPCMD_CLEARSTALL;
+
+ /*
+ * As of core revision 2.60a the recommended programming model
+ * is to set the ClearPendIN bit when issuing a Clear Stall EP
+ * command for IN endpoints. This is to prevent an issue where
+ * some (non-compliant) hosts may not send ACK TPs for pending
+ * IN transfers due to a mishandled error condition. Synopsys
+ * STAR 9000614252.
+ */
+ if (dep->direction && (dwc->revision >= DWC3_REVISION_260A))
+ cmd |= DWC3_DEPCMD_CLEARPENDIN;
+
+ memset(¶ms, 0, sizeof(params));
+
+ return dwc3_send_gadget_ep_cmd(dwc, dep->number, cmd, ¶ms);
+}
+
static dma_addr_t dwc3_trb_dma_offset(struct dwc3_ep *dep,
struct dwc3_trb *trb)
{
else
dep->flags |= DWC3_EP_STALL;
} else {
- ret = dwc3_send_gadget_ep_cmd(dwc, dep->number,
- DWC3_DEPCMD_CLEARSTALL, ¶ms);
+ ret = dwc3_send_clear_stall_ep_cmd(dep);
if (ret)
dev_err(dwc->dev, "failed to clear STALL on %s\n",
dep->name);
for (epnum = 1; epnum < DWC3_ENDPOINTS_NUM; epnum++) {
struct dwc3_ep *dep;
- struct dwc3_gadget_ep_cmd_params params;
int ret;
dep = dwc->eps[epnum];
dep->flags &= ~DWC3_EP_STALL;
- memset(¶ms, 0, sizeof(params));
- ret = dwc3_send_gadget_ep_cmd(dwc, dep->number,
- DWC3_DEPCMD_CLEARSTALL, ¶ms);
+ ret = dwc3_send_clear_stall_ep_cmd(dep);
WARN_ON_ONCE(ret);
}
}
}
break;
}
- req->length = value;
- req->context = cdev;
- req->zero = value < w_length;
- value = composite_ep0_queue(cdev, req, GFP_ATOMIC);
- if (value < 0) {
- DBG(cdev, "ep_queue --> %d\n", value);
- req->status = 0;
- composite_setup_complete(gadget->ep0, req);
+
+ if (value >= 0) {
+ req->length = value;
+ req->context = cdev;
+ req->zero = value < w_length;
+ value = composite_ep0_queue(cdev, req,
+ GFP_ATOMIC);
+ if (value < 0) {
+ DBG(cdev, "ep_queue --> %d\n", value);
+ req->status = 0;
+ composite_setup_complete(gadget->ep0,
+ req);
+ }
}
return value;
}
.owner = THIS_MODULE,
.name = "configfs-gadget",
},
+ .match_existing_only = 1,
};
static struct config_group *gadgets_make(
if (len < sizeof(*d) ||
d->bFirstInterfaceNumber >= ffs->interfaces_count ||
- d->Reserved1)
+ !d->Reserved1)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
if (d->Reserved2[i])
func->ffs->ss_descs_count;
int fs_len, hs_len, ss_len, ret, i;
+ struct ffs_ep *eps_ptr;
/* Make it a single chunk, less management later on */
vla_group(d);
ffs->raw_descs_length);
memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
- for (ret = ffs->eps_count; ret; --ret) {
- struct ffs_ep *ptr;
-
- ptr = vla_ptr(vlabuf, d, eps);
- ptr[ret].num = -1;
- }
+ eps_ptr = vla_ptr(vlabuf, d, eps);
+ for (i = 0; i < ffs->eps_count; i++)
+ eps_ptr[i].num = -1;
/* Save pointers
* d_eps == vlabuf, func->eps used to kfree vlabuf later
goto error;
func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
- if (c->cdev->use_os_string)
+ if (c->cdev->use_os_string) {
for (i = 0; i < ffs->interfaces_count; ++i) {
struct usb_os_desc *desc;
vla_ptr(vlabuf, d, ext_compat) + i * 16;
INIT_LIST_HEAD(&desc->ext_prop);
}
- ret = ffs_do_os_descs(ffs->ms_os_descs_count,
- vla_ptr(vlabuf, d, raw_descs) +
- fs_len + hs_len + ss_len,
- d_raw_descs__sz - fs_len - hs_len - ss_len,
- __ffs_func_bind_do_os_desc, func);
- if (unlikely(ret < 0))
- goto error;
+ ret = ffs_do_os_descs(ffs->ms_os_descs_count,
+ vla_ptr(vlabuf, d, raw_descs) +
+ fs_len + hs_len + ss_len,
+ d_raw_descs__sz - fs_len - hs_len -
+ ss_len,
+ __ffs_func_bind_do_os_desc, func);
+ if (unlikely(ret < 0))
+ goto error;
+ }
func->function.os_desc_n =
c->cdev->use_os_string ? ffs->interfaces_count : 0;
.wMaxPacketSize = cpu_to_le16(512)
};
-static struct usb_qualifier_descriptor dev_qualifier = {
- .bLength = sizeof(dev_qualifier),
- .bDescriptorType = USB_DT_DEVICE_QUALIFIER,
- .bcdUSB = cpu_to_le16(0x0200),
- .bDeviceClass = USB_CLASS_PRINTER,
- .bNumConfigurations = 1
-};
-
static struct usb_descriptor_header *hs_printer_function[] = {
(struct usb_descriptor_header *) &intf_desc,
(struct usb_descriptor_header *) &hs_ep_in_desc,
for (i = 0; i < TPG_INSTANCES; ++i)
if (tpg_instances[i].tpg == tpg)
break;
- if (i < TPG_INSTANCES)
+ if (i < TPG_INSTANCES) {
tpg_instances[i].tpg = NULL;
- opts = container_of(tpg_instances[i].func_inst,
- struct f_tcm_opts, func_inst);
- mutex_lock(&opts->dep_lock);
- if (opts->has_dep)
- module_put(opts->dependent);
- else
- configfs_undepend_item_unlocked(&opts->func_inst.group.cg_item);
- mutex_unlock(&opts->dep_lock);
+ opts = container_of(tpg_instances[i].func_inst,
+ struct f_tcm_opts, func_inst);
+ mutex_lock(&opts->dep_lock);
+ if (opts->has_dep)
+ module_put(opts->dependent);
+ else
+ configfs_undepend_item_unlocked(
+ &opts->func_inst.group.cg_item);
+ mutex_unlock(&opts->dep_lock);
+ }
mutex_unlock(&tpg_instances_lock);
kfree(tpg);
NULL,
};
-static struct usb_qualifier_descriptor devqual_desc = {
- .bLength = sizeof devqual_desc,
- .bDescriptorType = USB_DT_DEVICE_QUALIFIER,
-
- .bcdUSB = cpu_to_le16(0x200),
- .bDeviceClass = USB_CLASS_MISC,
- .bDeviceSubClass = 0x02,
- .bDeviceProtocol = 0x01,
- .bNumConfigurations = 1,
- .bRESERVED = 0,
-};
-
static struct usb_interface_assoc_descriptor iad_desc = {
.bLength = sizeof iad_desc,
.bDescriptorType = USB_DT_INTERFACE_ASSOCIATION,
if (control_selector == UAC2_CS_CONTROL_SAM_FREQ) {
struct cntrl_cur_lay3 c;
+ memset(&c, 0, sizeof(struct cntrl_cur_lay3));
if (entity_id == USB_IN_CLK_ID)
c.dCUR = p_srate;
* USB 2.0 devices need to expose both high speed and full speed
* descriptors, unless they only run at full speed.
*
- * That means alternate endpoint descriptors (bigger packets)
- * and a "device qualifier" ... plus more construction options
- * for the configuration descriptor.
+ * That means alternate endpoint descriptors (bigger packets).
*/
struct usb_endpoint_descriptor fsg_hs_bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
struct usb_ep *ep = dev->gadget->ep0;
struct usb_request *req = dev->req;
- if ((retval = setup_req (ep, req, 0)) == 0)
- retval = usb_ep_queue (ep, req, GFP_ATOMIC);
+ if ((retval = setup_req (ep, req, 0)) == 0) {
+ spin_unlock_irq (&dev->lock);
+ retval = usb_ep_queue (ep, req, GFP_KERNEL);
+ spin_lock_irq (&dev->lock);
+ }
dev->state = STATE_DEV_CONNECTED;
/* assume that was SET_CONFIGURATION */
w_length);
if (value < 0)
break;
+
+ spin_unlock (&dev->lock);
value = usb_ep_queue (gadget->ep0, dev->req,
- GFP_ATOMIC);
+ GFP_KERNEL);
+ spin_lock (&dev->lock);
if (value < 0) {
clean_req (gadget->ep0, dev->req);
break;
if (value >= 0 && dev->state != STATE_DEV_SETUP) {
req->length = value;
req->zero = value < w_length;
- value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
+
+ spin_unlock (&dev->lock);
+ value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
if (value < 0) {
DBG (dev, "ep_queue --> %d\n", value);
req->status = 0;
}
+ return value;
}
/* device stalls when value < 0 */
}
}
- list_add_tail(&driver->pending, &gadget_driver_pending_list);
- pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
- driver->function);
+ if (!driver->match_existing_only) {
+ list_add_tail(&driver->pending, &gadget_driver_pending_list);
+ pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
+ driver->function);
+ ret = 0;
+ }
+
mutex_unlock(&udc_lock);
- return 0;
+ return ret;
found:
ret = udc_bind_to_driver(udc, driver);
mutex_unlock(&udc_lock);
{
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
+ /**
+ * Protect the system from crashing at system shutdown in cases where
+ * usb host is not added yet from OTG controller driver.
+ * As ehci_setup() not done yet, so stop accessing registers or
+ * variables initialized in ehci_setup()
+ */
+ if (!ehci->sbrn)
+ return;
+
spin_lock_irq(&ehci->lock);
ehci->shutdown = true;
ehci->rh_state = EHCI_RH_STOPPING;
) {
struct ehci_hcd *ehci = hcd_to_ehci (hcd);
int ports = HCS_N_PORTS (ehci->hcs_params);
- u32 __iomem *status_reg = &ehci->regs->port_status[
- (wIndex & 0xff) - 1];
- u32 __iomem *hostpc_reg = &ehci->regs->hostpc[(wIndex & 0xff) - 1];
+ u32 __iomem *status_reg, *hostpc_reg;
u32 temp, temp1, status;
unsigned long flags;
int retval = 0;
unsigned selector;
/*
+ * Avoid underflow while calculating (wIndex & 0xff) - 1.
+ * The compiler might deduce that wIndex can never be 0 and then
+ * optimize away the tests for !wIndex below.
+ */
+ temp = wIndex & 0xff;
+ temp -= (temp > 0);
+ status_reg = &ehci->regs->port_status[temp];
+ hostpc_reg = &ehci->regs->hostpc[temp];
+
+ /*
* FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
* HCS_INDICATOR may say we can change LEDs to off/amber/green.
* (track current state ourselves) ... blink for diagnostics,
static int ehci_msm_pm_suspend(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
+ struct ehci_hcd *ehci = hcd_to_ehci(hcd);
bool do_wakeup = device_may_wakeup(dev);
dev_dbg(dev, "ehci-msm PM suspend\n");
- return ehci_suspend(hcd, do_wakeup);
+ /* Only call ehci_suspend if ehci_setup has been done */
+ if (ehci->sbrn)
+ return ehci_suspend(hcd, do_wakeup);
+
+ return 0;
}
static int ehci_msm_pm_resume(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
+ struct ehci_hcd *ehci = hcd_to_ehci(hcd);
dev_dbg(dev, "ehci-msm PM resume\n");
- ehci_resume(hcd, false);
+
+ /* Only call ehci_resume if ehci_setup has been done */
+ if (ehci->sbrn)
+ ehci_resume(hcd, false);
return 0;
}
+
#else
#define ehci_msm_pm_suspend NULL
#define ehci_msm_pm_resume NULL
struct usb_hcd *hcd = platform_get_drvdata(pdev);
struct tegra_ehci_hcd *tegra =
(struct tegra_ehci_hcd *)hcd_to_ehci(hcd)->priv;
+ bool has_utmi_pad_registers = false;
phy_np = of_parse_phandle(pdev->dev.of_node, "nvidia,phy", 0);
if (!phy_np)
return -ENOENT;
+ if (of_property_read_bool(phy_np, "nvidia,has-utmi-pad-registers"))
+ has_utmi_pad_registers = true;
+
if (!usb1_reset_attempted) {
struct reset_control *usb1_reset;
- usb1_reset = of_reset_control_get(phy_np, "usb");
+ if (!has_utmi_pad_registers)
+ usb1_reset = of_reset_control_get(phy_np, "utmi-pads");
+ else
+ usb1_reset = tegra->rst;
+
if (IS_ERR(usb1_reset)) {
dev_warn(&pdev->dev,
"can't get utmi-pads reset from the PHY\n");
reset_control_assert(usb1_reset);
udelay(1);
reset_control_deassert(usb1_reset);
+
+ if (!has_utmi_pad_registers)
+ reset_control_put(usb1_reset);
}
- reset_control_put(usb1_reset);
usb1_reset_attempted = true;
}
- if (!of_property_read_bool(phy_np, "nvidia,has-utmi-pad-registers")) {
+ if (!has_utmi_pad_registers) {
reset_control_assert(tegra->rst);
udelay(1);
reset_control_deassert(tegra->rst);
{
int branch;
- ed->state = ED_OPER;
ed->ed_prev = NULL;
ed->ed_next = NULL;
ed->hwNextED = 0;
/* the HC may not see the schedule updates yet, but if it does
* then they'll be properly ordered.
*/
+
+ ed->state = ED_OPER;
return 0;
}
/* Device for a quirk */
#define PCI_VENDOR_ID_FRESCO_LOGIC 0x1b73
#define PCI_DEVICE_ID_FRESCO_LOGIC_PDK 0x1000
+#define PCI_DEVICE_ID_FRESCO_LOGIC_FL1009 0x1009
#define PCI_DEVICE_ID_FRESCO_LOGIC_FL1400 0x1400
#define PCI_VENDOR_ID_ETRON 0x1b6f
xhci->quirks |= XHCI_TRUST_TX_LENGTH;
}
+ if (pdev->vendor == PCI_VENDOR_ID_FRESCO_LOGIC &&
+ pdev->device == PCI_DEVICE_ID_FRESCO_LOGIC_FL1009)
+ xhci->quirks |= XHCI_BROKEN_STREAMS;
+
if (pdev->vendor == PCI_VENDOR_ID_NEC)
xhci->quirks |= XHCI_NEC_HOST;
ret = clk_prepare_enable(clk);
if (ret)
goto put_hcd;
+ } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
+ ret = -EPROBE_DEFER;
+ goto put_hcd;
}
xhci = hcd_to_xhci(hcd);
temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
+
+ /*
+ * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
+ * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
+ * but the completion event in never sent. Use the cmd timeout timer to
+ * handle those cases. Use twice the time to cover the bit polling retry
+ */
+ mod_timer(&xhci->cmd_timer, jiffies + (2 * XHCI_CMD_DEFAULT_TIMEOUT));
xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
&xhci->op_regs->cmd_ring);
xhci_err(xhci, "Stopped the command ring failed, "
"maybe the host is dead\n");
+ del_timer(&xhci->cmd_timer);
xhci->xhc_state |= XHCI_STATE_DYING;
xhci_quiesce(xhci);
xhci_halt(xhci);
int ret;
unsigned long flags;
u64 hw_ring_state;
- struct xhci_command *cur_cmd = NULL;
+ bool second_timeout = false;
xhci = (struct xhci_hcd *) data;
/* mark this command to be cancelled */
spin_lock_irqsave(&xhci->lock, flags);
if (xhci->current_cmd) {
- cur_cmd = xhci->current_cmd;
- cur_cmd->status = COMP_CMD_ABORT;
+ if (xhci->current_cmd->status == COMP_CMD_ABORT)
+ second_timeout = true;
+ xhci->current_cmd->status = COMP_CMD_ABORT;
}
-
/* Make sure command ring is running before aborting it */
hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
(hw_ring_state & CMD_RING_RUNNING)) {
-
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "Command timeout\n");
ret = xhci_abort_cmd_ring(xhci);
}
return;
}
+
+ /* command ring failed to restart, or host removed. Bail out */
+ if (second_timeout || xhci->xhc_state & XHCI_STATE_REMOVING) {
+ spin_unlock_irqrestore(&xhci->lock, flags);
+ xhci_dbg(xhci, "command timed out twice, ring start fail?\n");
+ xhci_cleanup_command_queue(xhci);
+ return;
+ }
+
/* command timeout on stopped ring, ring can't be aborted */
xhci_dbg(xhci, "Command timeout on stopped ring\n");
xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
writel(irq_pending, &xhci->ir_set->irq_pending);
}
- if (xhci->xhc_state & XHCI_STATE_DYING) {
+ if (xhci->xhc_state & XHCI_STATE_DYING ||
+ xhci->xhc_state & XHCI_STATE_HALTED) {
xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
"Shouldn't IRQs be disabled?\n");
/* Clear the event handler busy flag (RW1C);
u32 temp;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
- if (xhci->xhc_state & XHCI_STATE_HALTED)
- return;
-
mutex_lock(&xhci->mutex);
- spin_lock_irq(&xhci->lock);
- xhci->xhc_state |= XHCI_STATE_HALTED;
- xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
- /* Make sure the xHC is halted for a USB3 roothub
- * (xhci_stop() could be called as part of failed init).
- */
- xhci_halt(xhci);
- xhci_reset(xhci);
- spin_unlock_irq(&xhci->lock);
+ if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
+ spin_lock_irq(&xhci->lock);
+
+ xhci->xhc_state |= XHCI_STATE_HALTED;
+ xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
+ xhci_halt(xhci);
+ xhci_reset(xhci);
+
+ spin_unlock_irq(&xhci->lock);
+ }
+
+ if (!usb_hcd_is_primary_hcd(hcd)) {
+ mutex_unlock(&xhci->mutex);
+ return;
+ }
xhci_cleanup_msix(xhci);
xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
xhci_print_registers(xhci);
- xhci->quirks = quirks;
+ xhci->quirks |= quirks;
get_quirks(dev, xhci);
musb_platform_try_idle(musb, 0);
}
-static void musb_shutdown(struct platform_device *pdev)
-{
- struct musb *musb = dev_to_musb(&pdev->dev);
- unsigned long flags;
-
- pm_runtime_get_sync(musb->controller);
-
- musb_host_cleanup(musb);
- musb_gadget_cleanup(musb);
-
- spin_lock_irqsave(&musb->lock, flags);
- musb_platform_disable(musb);
- musb_generic_disable(musb);
- spin_unlock_irqrestore(&musb->lock, flags);
-
- musb_writeb(musb->mregs, MUSB_DEVCTL, 0);
- musb_platform_exit(musb);
-
- pm_runtime_put(musb->controller);
- /* FIXME power down */
-}
-
-
/*-------------------------------------------------------------------------*/
/*
#define use_dma 0
#endif
-static void (*musb_phy_callback)(enum musb_vbus_id_status status);
+static int (*musb_phy_callback)(enum musb_vbus_id_status status);
/*
* musb_mailbox - optional phy notifier function
* Optionally gets called from the USB PHY. Note that the USB PHY must be
* disabled at the point the phy_callback is registered or unregistered.
*/
-void musb_mailbox(enum musb_vbus_id_status status)
+int musb_mailbox(enum musb_vbus_id_status status)
{
if (musb_phy_callback)
- musb_phy_callback(status);
+ return musb_phy_callback(status);
+ return -ENODEV;
};
EXPORT_SYMBOL_GPL(musb_mailbox);
musb_readl = musb_default_readl;
musb_writel = musb_default_writel;
- /* We need musb_read/write functions initialized for PM */
- pm_runtime_use_autosuspend(musb->controller);
- pm_runtime_set_autosuspend_delay(musb->controller, 200);
- pm_runtime_enable(musb->controller);
-
/* The musb_platform_init() call:
* - adjusts musb->mregs
* - sets the musb->isr
if (musb->ops->phy_callback)
musb_phy_callback = musb->ops->phy_callback;
+ /*
+ * We need musb_read/write functions initialized for PM.
+ * Note that at least 2430 glue needs autosuspend delay
+ * somewhere above 300 ms for the hardware to idle properly
+ * after disconnecting the cable in host mode. Let's use
+ * 500 ms for some margin.
+ */
+ pm_runtime_use_autosuspend(musb->controller);
+ pm_runtime_set_autosuspend_delay(musb->controller, 500);
+ pm_runtime_enable(musb->controller);
pm_runtime_get_sync(musb->controller);
status = usb_phy_init(musb->xceiv);
if (status)
goto fail5;
- pm_runtime_put(musb->controller);
-
- /*
- * For why this is currently needed, see commit 3e43a0725637
- * ("usb: musb: core: add pm_runtime_irq_safe()")
- */
- pm_runtime_irq_safe(musb->controller);
+ pm_runtime_mark_last_busy(musb->controller);
+ pm_runtime_put_autosuspend(musb->controller);
return 0;
usb_phy_shutdown(musb->xceiv);
err_usb_phy_init:
+ pm_runtime_dont_use_autosuspend(musb->controller);
pm_runtime_put_sync(musb->controller);
+ pm_runtime_disable(musb->controller);
fail2:
if (musb->irq_wake)
musb_platform_exit(musb);
fail1:
- pm_runtime_disable(musb->controller);
dev_err(musb->controller,
"musb_init_controller failed with status %d\n", status);
{
struct device *dev = &pdev->dev;
struct musb *musb = dev_to_musb(dev);
+ unsigned long flags;
/* this gets called on rmmod.
* - Host mode: host may still be active
* - OTG mode: both roles are deactivated (or never-activated)
*/
musb_exit_debugfs(musb);
- musb_shutdown(pdev);
- musb_phy_callback = NULL;
-
- if (musb->dma_controller)
- musb_dma_controller_destroy(musb->dma_controller);
-
- usb_phy_shutdown(musb->xceiv);
cancel_work_sync(&musb->irq_work);
cancel_delayed_work_sync(&musb->finish_resume_work);
cancel_delayed_work_sync(&musb->deassert_reset_work);
+ pm_runtime_get_sync(musb->controller);
+ musb_host_cleanup(musb);
+ musb_gadget_cleanup(musb);
+ spin_lock_irqsave(&musb->lock, flags);
+ musb_platform_disable(musb);
+ musb_generic_disable(musb);
+ spin_unlock_irqrestore(&musb->lock, flags);
+ musb_writeb(musb->mregs, MUSB_DEVCTL, 0);
+ pm_runtime_dont_use_autosuspend(musb->controller);
+ pm_runtime_put_sync(musb->controller);
+ pm_runtime_disable(musb->controller);
+ musb_platform_exit(musb);
+ musb_phy_callback = NULL;
+ if (musb->dma_controller)
+ musb_dma_controller_destroy(musb->dma_controller);
+ usb_phy_shutdown(musb->xceiv);
musb_free(musb);
device_init_wakeup(dev, 0);
return 0;
musb_writew(musb_base, MUSB_INTRTXE, musb->intrtxe);
musb_writew(musb_base, MUSB_INTRRXE, musb->intrrxe);
musb_writeb(musb_base, MUSB_INTRUSBE, musb->context.intrusbe);
- musb_writeb(musb_base, MUSB_DEVCTL, musb->context.devctl);
+ if (musb->context.devctl & MUSB_DEVCTL_SESSION)
+ musb_writeb(musb_base, MUSB_DEVCTL, musb->context.devctl);
for (i = 0; i < musb->config->num_eps; ++i) {
struct musb_hw_ep *hw_ep;
},
.probe = musb_probe,
.remove = musb_remove,
- .shutdown = musb_shutdown,
};
module_platform_driver(musb_driver);
dma_addr_t *dma_addr, u32 *len);
void (*pre_root_reset_end)(struct musb *musb);
void (*post_root_reset_end)(struct musb *musb);
- void (*phy_callback)(enum musb_vbus_id_status status);
+ int (*phy_callback)(enum musb_vbus_id_status status);
};
/*
struct work_struct irq_work;
struct delayed_work deassert_reset_work;
struct delayed_work finish_resume_work;
+ struct delayed_work gadget_work;
u16 hwvers;
u16 intrrxe;
return usb_phy_set_power(musb->xceiv, mA);
}
+static void musb_gadget_work(struct work_struct *work)
+{
+ struct musb *musb;
+ unsigned long flags;
+
+ musb = container_of(work, struct musb, gadget_work.work);
+ pm_runtime_get_sync(musb->controller);
+ spin_lock_irqsave(&musb->lock, flags);
+ musb_pullup(musb, musb->softconnect);
+ spin_unlock_irqrestore(&musb->lock, flags);
+ pm_runtime_mark_last_busy(musb->controller);
+ pm_runtime_put_autosuspend(musb->controller);
+}
+
static int musb_gadget_pullup(struct usb_gadget *gadget, int is_on)
{
struct musb *musb = gadget_to_musb(gadget);
is_on = !!is_on;
- pm_runtime_get_sync(musb->controller);
-
/* NOTE: this assumes we are sensing vbus; we'd rather
* not pullup unless the B-session is active.
*/
spin_lock_irqsave(&musb->lock, flags);
if (is_on != musb->softconnect) {
musb->softconnect = is_on;
- musb_pullup(musb, is_on);
+ schedule_delayed_work(&musb->gadget_work, 0);
}
spin_unlock_irqrestore(&musb->lock, flags);
- pm_runtime_put(musb->controller);
-
return 0;
}
#elif IS_ENABLED(CONFIG_USB_MUSB_GADGET)
musb->g.is_otg = 0;
#endif
-
+ INIT_DELAYED_WORK(&musb->gadget_work, musb_gadget_work);
musb_g_init_endpoints(musb);
musb->is_active = 0;
{
if (musb->port_mode == MUSB_PORT_MODE_HOST)
return;
+
+ cancel_delayed_work_sync(&musb->gadget_work);
usb_del_gadget_udc(&musb->g);
}
if (musb->xceiv->last_event == USB_EVENT_ID)
musb_platform_set_vbus(musb, 1);
- if (musb->xceiv->last_event == USB_EVENT_NONE)
- pm_runtime_put(musb->controller);
+ pm_runtime_mark_last_busy(musb->controller);
+ pm_runtime_put_autosuspend(musb->controller);
return 0;
struct musb *musb = gadget_to_musb(g);
unsigned long flags;
- if (musb->xceiv->last_event == USB_EVENT_NONE)
- pm_runtime_get_sync(musb->controller);
+ pm_runtime_get_sync(musb->controller);
/*
* REVISIT always use otg_set_peripheral() here too;
* that currently misbehaves.
*/
- pm_runtime_put(musb->controller);
+ pm_runtime_mark_last_busy(musb->controller);
+ pm_runtime_put_autosuspend(musb->controller);
return 0;
}
}
}
- if (qh != NULL && qh->is_ready) {
+ /*
+ * The pipe must be broken if current urb->status is set, so don't
+ * start next urb.
+ * TODO: to minimize the risk of regression, only check urb->status
+ * for RX, until we have a test case to understand the behavior of TX.
+ */
+ if ((!status || !is_in) && qh && qh->is_ready) {
dev_dbg(musb->controller, "... next ep%d %cX urb %p\n",
hw_ep->epnum, is_in ? 'R' : 'T', next_urb(qh));
musb_start_urb(musb, is_in, qh);
musb_writew(ep->regs, MUSB_TXCSR, 0);
/* scrub all previous state, clearing toggle */
- } else {
- csr = musb_readw(ep->regs, MUSB_RXCSR);
- if (csr & MUSB_RXCSR_RXPKTRDY)
- WARNING("rx%d, packet/%d ready?\n", ep->epnum,
- musb_readw(ep->regs, MUSB_RXCOUNT));
-
- musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG);
}
+ csr = musb_readw(ep->regs, MUSB_RXCSR);
+ if (csr & MUSB_RXCSR_RXPKTRDY)
+ WARNING("rx%d, packet/%d ready?\n", ep->epnum,
+ musb_readw(ep->regs, MUSB_RXCOUNT));
+
+ musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG);
/* target addr and (for multipoint) hub addr/port */
if (musb->is_multipoint) {
ep->rx_reinit = 0;
}
-static int musb_tx_dma_set_mode_mentor(struct dma_controller *dma,
+static void musb_tx_dma_set_mode_mentor(struct dma_controller *dma,
struct musb_hw_ep *hw_ep, struct musb_qh *qh,
struct urb *urb, u32 offset,
u32 *length, u8 *mode)
}
channel->desired_mode = *mode;
musb_writew(epio, MUSB_TXCSR, csr);
-
- return 0;
}
-static int musb_tx_dma_set_mode_cppi_tusb(struct dma_controller *dma,
- struct musb_hw_ep *hw_ep,
- struct musb_qh *qh,
- struct urb *urb,
- u32 offset,
- u32 *length,
- u8 *mode)
+static void musb_tx_dma_set_mode_cppi_tusb(struct dma_controller *dma,
+ struct musb_hw_ep *hw_ep,
+ struct musb_qh *qh,
+ struct urb *urb,
+ u32 offset,
+ u32 *length,
+ u8 *mode)
{
struct dma_channel *channel = hw_ep->tx_channel;
- if (!is_cppi_enabled(hw_ep->musb) && !tusb_dma_omap(hw_ep->musb))
- return -ENODEV;
-
channel->actual_len = 0;
/*
* to identify the zero-length-final-packet case.
*/
*mode = (urb->transfer_flags & URB_ZERO_PACKET) ? 1 : 0;
-
- return 0;
}
static bool musb_tx_dma_program(struct dma_controller *dma,
struct dma_channel *channel = hw_ep->tx_channel;
u16 pkt_size = qh->maxpacket;
u8 mode;
- int res;
if (musb_dma_inventra(hw_ep->musb) || musb_dma_ux500(hw_ep->musb))
- res = musb_tx_dma_set_mode_mentor(dma, hw_ep, qh, urb,
- offset, &length, &mode);
+ musb_tx_dma_set_mode_mentor(dma, hw_ep, qh, urb, offset,
+ &length, &mode);
+ else if (is_cppi_enabled(hw_ep->musb) || tusb_dma_omap(hw_ep->musb))
+ musb_tx_dma_set_mode_cppi_tusb(dma, hw_ep, qh, urb, offset,
+ &length, &mode);
else
- res = musb_tx_dma_set_mode_cppi_tusb(dma, hw_ep, qh, urb,
- offset, &length, &mode);
- if (res)
return false;
qh->segsize = length;
if (is_in) {
dma = is_dma_capable() ? ep->rx_channel : NULL;
- /* clear nak timeout bit */
+ /*
+ * Need to stop the transaction by clearing REQPKT first
+ * then the NAK Timeout bit ref MUSBMHDRC USB 2.0 HIGH-SPEED
+ * DUAL-ROLE CONTROLLER Programmer's Guide, section 9.2.2
+ */
rx_csr = musb_readw(epio, MUSB_RXCSR);
rx_csr |= MUSB_RXCSR_H_WZC_BITS;
+ rx_csr &= ~MUSB_RXCSR_H_REQPKT;
+ musb_writew(epio, MUSB_RXCSR, rx_csr);
rx_csr &= ~MUSB_RXCSR_DATAERROR;
musb_writew(epio, MUSB_RXCSR, rx_csr);
struct urb *urb,
size_t len)
{
- struct dma_channel *channel = hw_ep->tx_channel;
+ struct dma_channel *channel = hw_ep->rx_channel;
void __iomem *epio = hw_ep->regs;
dma_addr_t *buf;
u32 length, res;
status = -EPROTO;
musb_writeb(epio, MUSB_RXINTERVAL, 0);
+ rx_csr &= ~MUSB_RXCSR_H_ERROR;
+ musb_writew(epio, MUSB_RXCSR, rx_csr);
+
} else if (rx_csr & MUSB_RXCSR_DATAERROR) {
if (USB_ENDPOINT_XFER_ISOC != qh->type) {
enum musb_vbus_id_status status;
struct work_struct omap_musb_mailbox_work;
struct device *control_otghs;
+ bool cable_connected;
+ bool enabled;
+ bool powered;
};
#define glue_to_musb(g) platform_get_drvdata(g->musb)
static struct omap2430_glue *_glue;
-static struct timer_list musb_idle_timer;
-
-static void musb_do_idle(unsigned long _musb)
-{
- struct musb *musb = (void *)_musb;
- unsigned long flags;
- u8 power;
- u8 devctl;
-
- spin_lock_irqsave(&musb->lock, flags);
-
- switch (musb->xceiv->otg->state) {
- case OTG_STATE_A_WAIT_BCON:
-
- devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
- if (devctl & MUSB_DEVCTL_BDEVICE) {
- musb->xceiv->otg->state = OTG_STATE_B_IDLE;
- MUSB_DEV_MODE(musb);
- } else {
- musb->xceiv->otg->state = OTG_STATE_A_IDLE;
- MUSB_HST_MODE(musb);
- }
- break;
- case OTG_STATE_A_SUSPEND:
- /* finish RESUME signaling? */
- if (musb->port1_status & MUSB_PORT_STAT_RESUME) {
- power = musb_readb(musb->mregs, MUSB_POWER);
- power &= ~MUSB_POWER_RESUME;
- dev_dbg(musb->controller, "root port resume stopped, power %02x\n", power);
- musb_writeb(musb->mregs, MUSB_POWER, power);
- musb->is_active = 1;
- musb->port1_status &= ~(USB_PORT_STAT_SUSPEND
- | MUSB_PORT_STAT_RESUME);
- musb->port1_status |= USB_PORT_STAT_C_SUSPEND << 16;
- usb_hcd_poll_rh_status(musb->hcd);
- /* NOTE: it might really be A_WAIT_BCON ... */
- musb->xceiv->otg->state = OTG_STATE_A_HOST;
- }
- break;
- case OTG_STATE_A_HOST:
- devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
- if (devctl & MUSB_DEVCTL_BDEVICE)
- musb->xceiv->otg->state = OTG_STATE_B_IDLE;
- else
- musb->xceiv->otg->state = OTG_STATE_A_WAIT_BCON;
- default:
- break;
- }
- spin_unlock_irqrestore(&musb->lock, flags);
-}
-
-
-static void omap2430_musb_try_idle(struct musb *musb, unsigned long timeout)
-{
- unsigned long default_timeout = jiffies + msecs_to_jiffies(3);
- static unsigned long last_timer;
-
- if (timeout == 0)
- timeout = default_timeout;
-
- /* Never idle if active, or when VBUS timeout is not set as host */
- if (musb->is_active || ((musb->a_wait_bcon == 0)
- && (musb->xceiv->otg->state == OTG_STATE_A_WAIT_BCON))) {
- dev_dbg(musb->controller, "%s active, deleting timer\n",
- usb_otg_state_string(musb->xceiv->otg->state));
- del_timer(&musb_idle_timer);
- last_timer = jiffies;
- return;
- }
-
- if (time_after(last_timer, timeout)) {
- if (!timer_pending(&musb_idle_timer))
- last_timer = timeout;
- else {
- dev_dbg(musb->controller, "Longer idle timer already pending, ignoring\n");
- return;
- }
- }
- last_timer = timeout;
-
- dev_dbg(musb->controller, "%s inactive, for idle timer for %lu ms\n",
- usb_otg_state_string(musb->xceiv->otg->state),
- (unsigned long)jiffies_to_msecs(timeout - jiffies));
- mod_timer(&musb_idle_timer, timeout);
-}
-
static void omap2430_musb_set_vbus(struct musb *musb, int is_on)
{
struct usb_otg *otg = musb->xceiv->otg;
musb_readb(musb->mregs, MUSB_DEVCTL));
}
-static int omap2430_musb_set_mode(struct musb *musb, u8 musb_mode)
-{
- u8 devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
-
- devctl |= MUSB_DEVCTL_SESSION;
- musb_writeb(musb->mregs, MUSB_DEVCTL, devctl);
-
- return 0;
-}
-
static inline void omap2430_low_level_exit(struct musb *musb)
{
u32 l;
musb_writel(musb->mregs, OTG_FORCESTDBY, l);
}
-static void omap2430_musb_mailbox(enum musb_vbus_id_status status)
+/*
+ * We can get multiple cable events so we need to keep track
+ * of the power state. Only keep power enabled if USB cable is
+ * connected and a gadget is started.
+ */
+static void omap2430_set_power(struct musb *musb, bool enabled, bool cable)
+{
+ struct device *dev = musb->controller;
+ struct omap2430_glue *glue = dev_get_drvdata(dev->parent);
+ bool power_up;
+ int res;
+
+ if (glue->enabled != enabled)
+ glue->enabled = enabled;
+
+ if (glue->cable_connected != cable)
+ glue->cable_connected = cable;
+
+ power_up = glue->enabled && glue->cable_connected;
+ if (power_up == glue->powered) {
+ dev_warn(musb->controller, "power state already %i\n",
+ power_up);
+ return;
+ }
+
+ glue->powered = power_up;
+
+ if (power_up) {
+ res = pm_runtime_get_sync(musb->controller);
+ if (res < 0) {
+ dev_err(musb->controller, "could not enable: %i", res);
+ glue->powered = false;
+ }
+ } else {
+ pm_runtime_mark_last_busy(musb->controller);
+ pm_runtime_put_autosuspend(musb->controller);
+ }
+}
+
+static int omap2430_musb_mailbox(enum musb_vbus_id_status status)
{
struct omap2430_glue *glue = _glue;
if (!glue) {
pr_err("%s: musb core is not yet initialized\n", __func__);
- return;
+ return -EPROBE_DEFER;
}
glue->status = status;
if (!glue_to_musb(glue)) {
pr_err("%s: musb core is not yet ready\n", __func__);
- return;
+ return -EPROBE_DEFER;
}
schedule_work(&glue->omap_musb_mailbox_work);
+
+ return 0;
}
static void omap_musb_set_mailbox(struct omap2430_glue *glue)
struct musb_hdrc_platform_data *pdata = dev_get_platdata(dev);
struct omap_musb_board_data *data = pdata->board_data;
struct usb_otg *otg = musb->xceiv->otg;
+ bool cable_connected;
+
+ cable_connected = ((glue->status == MUSB_ID_GROUND) ||
+ (glue->status == MUSB_VBUS_VALID));
+
+ if (cable_connected)
+ omap2430_set_power(musb, glue->enabled, cable_connected);
switch (glue->status) {
case MUSB_ID_GROUND:
musb->xceiv->otg->state = OTG_STATE_A_IDLE;
musb->xceiv->last_event = USB_EVENT_ID;
if (musb->gadget_driver) {
- pm_runtime_get_sync(dev);
omap_control_usb_set_mode(glue->control_otghs,
USB_MODE_HOST);
omap2430_musb_set_vbus(musb, 1);
otg->default_a = false;
musb->xceiv->otg->state = OTG_STATE_B_IDLE;
musb->xceiv->last_event = USB_EVENT_VBUS;
- if (musb->gadget_driver)
- pm_runtime_get_sync(dev);
omap_control_usb_set_mode(glue->control_otghs, USB_MODE_DEVICE);
break;
dev_dbg(dev, "VBUS Disconnect\n");
musb->xceiv->last_event = USB_EVENT_NONE;
- if (musb->gadget_driver) {
+ if (musb->gadget_driver)
omap2430_musb_set_vbus(musb, 0);
- pm_runtime_mark_last_busy(dev);
- pm_runtime_put_autosuspend(dev);
- }
if (data->interface_type == MUSB_INTERFACE_UTMI)
otg_set_vbus(musb->xceiv->otg, 0);
dev_dbg(dev, "ID float\n");
}
+ if (!cable_connected)
+ omap2430_set_power(musb, glue->enabled, cable_connected);
+
atomic_notifier_call_chain(&musb->xceiv->notifier,
musb->xceiv->last_event, NULL);
}
{
struct omap2430_glue *glue = container_of(mailbox_work,
struct omap2430_glue, omap_musb_mailbox_work);
- struct musb *musb = glue_to_musb(glue);
- struct device *dev = musb->controller;
- pm_runtime_get_sync(dev);
omap_musb_set_mailbox(glue);
- pm_runtime_mark_last_busy(dev);
- pm_runtime_put_autosuspend(dev);
}
static irqreturn_t omap2430_musb_interrupt(int irq, void *__hci)
return PTR_ERR(musb->phy);
}
musb->isr = omap2430_musb_interrupt;
-
- /*
- * Enable runtime PM for musb parent (this driver). We can't
- * do it earlier as struct musb is not yet allocated and we
- * need to touch the musb registers for runtime PM.
- */
- pm_runtime_enable(glue->dev);
- status = pm_runtime_get_sync(glue->dev);
- if (status < 0)
- goto err1;
-
- status = pm_runtime_get_sync(dev);
- if (status < 0) {
- dev_err(dev, "pm_runtime_get_sync FAILED %d\n", status);
- pm_runtime_put_sync(glue->dev);
- goto err1;
- }
+ phy_init(musb->phy);
l = musb_readl(musb->mregs, OTG_INTERFSEL);
musb_readl(musb->mregs, OTG_INTERFSEL),
musb_readl(musb->mregs, OTG_SIMENABLE));
- setup_timer(&musb_idle_timer, musb_do_idle, (unsigned long) musb);
-
if (glue->status != MUSB_UNKNOWN)
omap_musb_set_mailbox(glue);
- phy_init(musb->phy);
- phy_power_on(musb->phy);
-
- pm_runtime_put_noidle(musb->controller);
- pm_runtime_put_noidle(glue->dev);
return 0;
-
-err1:
- return status;
}
static void omap2430_musb_enable(struct musb *musb)
struct musb_hdrc_platform_data *pdata = dev_get_platdata(dev);
struct omap_musb_board_data *data = pdata->board_data;
+ if (!WARN_ON(!musb->phy))
+ phy_power_on(musb->phy);
+
+ omap2430_set_power(musb, true, glue->cable_connected);
+
switch (glue->status) {
case MUSB_ID_GROUND:
struct device *dev = musb->controller;
struct omap2430_glue *glue = dev_get_drvdata(dev->parent);
+ if (!WARN_ON(!musb->phy))
+ phy_power_off(musb->phy);
+
if (glue->status != MUSB_UNKNOWN)
omap_control_usb_set_mode(glue->control_otghs,
USB_MODE_DISCONNECT);
+
+ omap2430_set_power(musb, false, glue->cable_connected);
}
static int omap2430_musb_exit(struct musb *musb)
{
- del_timer_sync(&musb_idle_timer);
+ struct device *dev = musb->controller;
+ struct omap2430_glue *glue = dev_get_drvdata(dev->parent);
omap2430_low_level_exit(musb);
- phy_power_off(musb->phy);
phy_exit(musb->phy);
+ musb->phy = NULL;
+ cancel_work_sync(&glue->omap_musb_mailbox_work);
return 0;
}
.init = omap2430_musb_init,
.exit = omap2430_musb_exit,
- .set_mode = omap2430_musb_set_mode,
- .try_idle = omap2430_musb_try_idle,
-
.set_vbus = omap2430_musb_set_vbus,
.enable = omap2430_musb_enable,
goto err2;
}
- /*
- * Note that we cannot enable PM runtime yet for this
- * driver as we need struct musb initialized first.
- * See omap2430_musb_init above.
- */
+ pm_runtime_enable(glue->dev);
+ pm_runtime_use_autosuspend(glue->dev);
+ pm_runtime_set_autosuspend_delay(glue->dev, 500);
ret = platform_device_add(musb);
if (ret) {
static int omap2430_remove(struct platform_device *pdev)
{
- struct omap2430_glue *glue = platform_get_drvdata(pdev);
+ struct omap2430_glue *glue = platform_get_drvdata(pdev);
+ struct musb *musb = glue_to_musb(glue);
pm_runtime_get_sync(glue->dev);
- cancel_work_sync(&glue->omap_musb_mailbox_work);
platform_device_unregister(glue->musb);
+ omap2430_set_power(musb, false, false);
pm_runtime_put_sync(glue->dev);
+ pm_runtime_dont_use_autosuspend(glue->dev);
pm_runtime_disable(glue->dev);
return 0;
struct omap2430_glue *glue = dev_get_drvdata(dev);
struct musb *musb = glue_to_musb(glue);
- if (musb) {
- musb->context.otg_interfsel = musb_readl(musb->mregs,
- OTG_INTERFSEL);
+ if (!musb)
+ return 0;
- omap2430_low_level_exit(musb);
- }
+ musb->context.otg_interfsel = musb_readl(musb->mregs,
+ OTG_INTERFSEL);
+
+ omap2430_low_level_exit(musb);
return 0;
}
struct musb *musb = glue_to_musb(glue);
if (!musb)
- return -EPROBE_DEFER;
+ return 0;
omap2430_low_level_init(musb);
musb_writel(musb->mregs, OTG_INTERFSEL,
},
};
+module_platform_driver(omap2430_driver);
+
MODULE_DESCRIPTION("OMAP2PLUS MUSB Glue Layer");
MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
MODULE_LICENSE("GPL v2");
-
-static int __init omap2430_init(void)
-{
- return platform_driver_register(&omap2430_driver);
-}
-subsys_initcall(omap2430_init);
-
-static void __exit omap2430_exit(void)
-{
- platform_driver_unregister(&omap2430_driver);
-}
-module_exit(omap2430_exit);
struct sunxi_glue {
struct device *dev;
- struct platform_device *musb;
+ struct musb *musb;
+ struct platform_device *musb_pdev;
struct clk *clk;
struct reset_control *rst;
struct phy *phy;
return;
if (test_and_clear_bit(SUNXI_MUSB_FL_HOSTMODE_PEND, &glue->flags)) {
- struct musb *musb = platform_get_drvdata(glue->musb);
+ struct musb *musb = glue->musb;
unsigned long flags;
u8 devctl;
if (test_bit(SUNXI_MUSB_FL_HOSTMODE, &glue->flags)) {
set_bit(SUNXI_MUSB_FL_VBUS_ON, &glue->flags);
musb->xceiv->otg->default_a = 1;
- musb->xceiv->otg->state = OTG_STATE_A_IDLE;
+ musb->xceiv->otg->state = OTG_STATE_A_WAIT_VRISE;
MUSB_HST_MODE(musb);
devctl |= MUSB_DEVCTL_SESSION;
} else {
{
struct sunxi_glue *glue = dev_get_drvdata(musb->controller->parent);
- if (is_on)
+ if (is_on) {
set_bit(SUNXI_MUSB_FL_VBUS_ON, &glue->flags);
- else
+ musb->xceiv->otg->state = OTG_STATE_A_WAIT_VRISE;
+ } else {
clear_bit(SUNXI_MUSB_FL_VBUS_ON, &glue->flags);
+ }
schedule_work(&glue->work);
}
if (ret)
goto error_unregister_notifier;
- if (musb->port_mode == MUSB_PORT_MODE_HOST) {
- ret = phy_power_on(glue->phy);
- if (ret)
- goto error_phy_exit;
- set_bit(SUNXI_MUSB_FL_PHY_ON, &glue->flags);
- /* Stop musb work from turning vbus off again */
- set_bit(SUNXI_MUSB_FL_VBUS_ON, &glue->flags);
- }
-
musb->isr = sunxi_musb_interrupt;
/* Stop the musb-core from doing runtime pm (not supported on sunxi) */
return 0;
-error_phy_exit:
- phy_exit(glue->phy);
error_unregister_notifier:
if (musb->port_mode == MUSB_PORT_MODE_DUAL_ROLE)
extcon_unregister_notifier(glue->extcon, EXTCON_USB_HOST,
return 0;
}
+static int sunxi_set_mode(struct musb *musb, u8 mode)
+{
+ struct sunxi_glue *glue = dev_get_drvdata(musb->controller->parent);
+ int ret;
+
+ if (mode == MUSB_HOST) {
+ ret = phy_power_on(glue->phy);
+ if (ret)
+ return ret;
+
+ set_bit(SUNXI_MUSB_FL_PHY_ON, &glue->flags);
+ /* Stop musb work from turning vbus off again */
+ set_bit(SUNXI_MUSB_FL_VBUS_ON, &glue->flags);
+ musb->xceiv->otg->state = OTG_STATE_A_WAIT_VRISE;
+ }
+
+ return 0;
+}
+
static void sunxi_musb_enable(struct musb *musb)
{
struct sunxi_glue *glue = dev_get_drvdata(musb->controller->parent);
+ glue->musb = musb;
+
/* musb_core does not call us in a balanced manner */
if (test_and_set_bit(SUNXI_MUSB_FL_ENABLED, &glue->flags))
return;
.exit = sunxi_musb_exit,
.enable = sunxi_musb_enable,
.disable = sunxi_musb_disable,
+ .set_mode = sunxi_set_mode,
.fifo_offset = sunxi_musb_fifo_offset,
.ep_offset = sunxi_musb_ep_offset,
.busctl_offset = sunxi_musb_busctl_offset,
pinfo.data = &pdata;
pinfo.size_data = sizeof(pdata);
- glue->musb = platform_device_register_full(&pinfo);
- if (IS_ERR(glue->musb)) {
- ret = PTR_ERR(glue->musb);
+ glue->musb_pdev = platform_device_register_full(&pinfo);
+ if (IS_ERR(glue->musb_pdev)) {
+ ret = PTR_ERR(glue->musb_pdev);
dev_err(&pdev->dev, "Error registering musb dev: %d\n", ret);
goto err_unregister_usb_phy;
}
struct sunxi_glue *glue = platform_get_drvdata(pdev);
struct platform_device *usb_phy = glue->usb_phy;
- platform_device_unregister(glue->musb); /* Frees glue ! */
+ platform_device_unregister(glue->musb_pdev);
usb_phy_generic_unregister(usb_phy);
return 0;
struct regulator *usb3v3;
+ /* used to check initial cable status after probe */
+ struct delayed_work get_status_work;
+
/* used to set vbus, in atomic path */
struct work_struct set_vbus_work;
twl->asleep = 1;
status = MUSB_VBUS_VALID;
twl->linkstat = status;
- musb_mailbox(status);
+ ret = musb_mailbox(status);
+ if (ret)
+ twl->linkstat = MUSB_UNKNOWN;
} else {
if (twl->linkstat != MUSB_UNKNOWN) {
status = MUSB_VBUS_OFF;
twl->linkstat = status;
- musb_mailbox(status);
+ ret = musb_mailbox(status);
+ if (ret)
+ twl->linkstat = MUSB_UNKNOWN;
if (twl->asleep) {
regulator_disable(twl->usb3v3);
twl->asleep = 0;
twl6030_writeb(twl, TWL_MODULE_USB, 0x10, USB_ID_INT_EN_HI_SET);
status = MUSB_ID_GROUND;
twl->linkstat = status;
- musb_mailbox(status);
+ ret = musb_mailbox(status);
+ if (ret)
+ twl->linkstat = MUSB_UNKNOWN;
} else {
twl6030_writeb(twl, TWL_MODULE_USB, 0x10, USB_ID_INT_EN_HI_CLR);
twl6030_writeb(twl, TWL_MODULE_USB, 0x1, USB_ID_INT_EN_HI_SET);
return IRQ_HANDLED;
}
+static void twl6030_status_work(struct work_struct *work)
+{
+ struct twl6030_usb *twl = container_of(work, struct twl6030_usb,
+ get_status_work.work);
+
+ twl6030_usb_irq(twl->irq2, twl);
+ twl6030_usbotg_irq(twl->irq1, twl);
+}
+
static int twl6030_enable_irq(struct twl6030_usb *twl)
{
twl6030_writeb(twl, TWL_MODULE_USB, 0x1, USB_ID_INT_EN_HI_SET);
REG_INT_MSK_LINE_C);
twl6030_interrupt_unmask(TWL6030_CHARGER_CTRL_INT_MASK,
REG_INT_MSK_STS_C);
- twl6030_usb_irq(twl->irq2, twl);
- twl6030_usbotg_irq(twl->irq1, twl);
return 0;
}
dev_warn(&pdev->dev, "could not create sysfs file\n");
INIT_WORK(&twl->set_vbus_work, otg_set_vbus_work);
+ INIT_DELAYED_WORK(&twl->get_status_work, twl6030_status_work);
status = request_threaded_irq(twl->irq1, NULL, twl6030_usbotg_irq,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT,
twl->asleep = 0;
twl6030_enable_irq(twl);
+ schedule_delayed_work(&twl->get_status_work, HZ);
dev_info(&pdev->dev, "Initialized TWL6030 USB module\n");
return 0;
{
struct twl6030_usb *twl = platform_get_drvdata(pdev);
+ cancel_delayed_work(&twl->get_status_work);
twl6030_interrupt_mask(TWL6030_USBOTG_INT_MASK,
REG_INT_MSK_LINE_C);
twl6030_interrupt_mask(TWL6030_USBOTG_INT_MASK,
urblist_entry)
usb_unlink_urb(urbtrack->urb);
spin_unlock_irqrestore(&mos_parport->listlock, flags);
+ parport_del_port(mos_parport->pp);
kref_put(&mos_parport->ref_count, destroy_mos_parport);
}
if (devinfo->flags & US_FL_BROKEN_FUA)
sdev->broken_fua = 1;
+ scsi_change_queue_depth(sdev, devinfo->qdepth - 2);
return 0;
}
.slave_configure = uas_slave_configure,
.eh_abort_handler = uas_eh_abort_handler,
.eh_bus_reset_handler = uas_eh_bus_reset_handler,
- .can_queue = MAX_CMNDS,
.this_id = -1,
.sg_tablesize = SG_NONE,
.skip_settle_delay = 1,
static int vhci_get_frame_number(struct usb_hcd *hcd)
{
- pr_err("Not yet implemented\n");
+ dev_err_ratelimited(&hcd->self.root_hub->dev, "Not yet implemented\n");
return 0;
}
config EBC_C384_WDT
tristate "WinSystems EBC-C384 Watchdog Timer"
- depends on X86 && ISA
+ depends on X86 && ISA_BUS_API
select WATCHDOG_CORE
help
Enables watchdog timer support for the watchdog timer on the
static void balloon_process(struct work_struct *work);
static DECLARE_DELAYED_WORK(balloon_worker, balloon_process);
-static void release_memory_resource(struct resource *resource);
-
/* When ballooning out (allocating memory to return to Xen) we don't really
want the kernel to try too hard since that can trigger the oom killer. */
#define GFP_BALLOON \
}
#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
+static void release_memory_resource(struct resource *resource)
+{
+ if (!resource)
+ return;
+
+ /*
+ * No need to reset region to identity mapped since we now
+ * know that no I/O can be in this region
+ */
+ release_resource(resource);
+ kfree(resource);
+}
+
static struct resource *additional_memory_resource(phys_addr_t size)
{
struct resource *res;
return res;
}
-static void release_memory_resource(struct resource *resource)
-{
- if (!resource)
- return;
-
- /*
- * No need to reset region to identity mapped since we now
- * know that no I/O can be in this region
- */
- release_resource(resource);
- kfree(resource);
-}
-
static enum bp_state reserve_additional_memory(void)
{
long credit;
field_start = OFFSET(cfg_entry);
field_end = OFFSET(cfg_entry) + field->size;
- if ((req_start >= field_start && req_start < field_end)
- || (req_end > field_start && req_end <= field_end)) {
+ if (req_end > field_start && field_end > req_start) {
err = conf_space_read(dev, cfg_entry, field_start,
&tmp_val);
if (err)
field_start = OFFSET(cfg_entry);
field_end = OFFSET(cfg_entry) + field->size;
- if ((req_start >= field_start && req_start < field_end)
- || (req_end > field_start && req_end <= field_end)) {
+ if (req_end > field_start && field_end > req_start) {
tmp_val = 0;
err = xen_pcibk_config_read(dev, field_start,
/* A write to obtain the length must happen as a 32-bit write.
* This does not (yet) support writing individual bytes
*/
- if (value == ~PCI_ROM_ADDRESS_ENABLE)
+ if ((value | ~PCI_ROM_ADDRESS_MASK) == ~0U)
bar->which = 1;
else {
u32 tmpval;
(PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64))) {
bar_info->val = res[pos - 1].start >> 32;
- bar_info->len_val = res[pos - 1].end >> 32;
+ bar_info->len_val = -resource_size(&res[pos - 1]) >> 32;
return;
}
}
+ if (!res[pos].flags ||
+ (res[pos].flags & (IORESOURCE_DISABLED | IORESOURCE_UNSET |
+ IORESOURCE_BUSY)))
+ return;
+
bar_info->val = res[pos].start |
(res[pos].flags & PCI_REGION_FLAG_MASK);
- bar_info->len_val = resource_size(&res[pos]);
+ bar_info->len_val = -resource_size(&res[pos]) |
+ (res[pos].flags & PCI_REGION_FLAG_MASK);
}
static void *bar_init(struct pci_dev *dev, int offset)
{
- struct pci_bar_info *bar = kmalloc(sizeof(*bar), GFP_KERNEL);
+ struct pci_bar_info *bar = kzalloc(sizeof(*bar), GFP_KERNEL);
if (!bar)
return ERR_PTR(-ENOMEM);
read_dev_bar(dev, bar, offset, ~0);
- bar->which = 0;
return bar;
}
static void *rom_init(struct pci_dev *dev, int offset)
{
- struct pci_bar_info *bar = kmalloc(sizeof(*bar), GFP_KERNEL);
+ struct pci_bar_info *bar = kzalloc(sizeof(*bar), GFP_KERNEL);
if (!bar)
return ERR_PTR(-ENOMEM);
read_dev_bar(dev, bar, offset, ~PCI_ROM_ADDRESS_ENABLE);
- bar->which = 0;
return bar;
}
};
#define AUTOFS_INF_EXPIRING (1<<0) /* dentry in the process of expiring */
-#define AUTOFS_INF_NO_RCU (1<<1) /* the dentry is being considered
+#define AUTOFS_INF_WANT_EXPIRE (1<<1) /* the dentry is being considered
* for expiry, so RCU_walk is
- * not permitted
+ * not permitted. If it progresses to
+ * actual expiry attempt, the flag is
+ * not cleared when EXPIRING is set -
+ * in that case it gets cleared only
+ * when it comes to clearing EXPIRING.
*/
#define AUTOFS_INF_PENDING (1<<2) /* dentry pending mount */
if (ino->flags & AUTOFS_INF_PENDING)
goto out;
if (!autofs4_direct_busy(mnt, root, timeout, do_now)) {
- ino->flags |= AUTOFS_INF_NO_RCU;
+ ino->flags |= AUTOFS_INF_WANT_EXPIRE;
spin_unlock(&sbi->fs_lock);
synchronize_rcu();
spin_lock(&sbi->fs_lock);
if (!autofs4_direct_busy(mnt, root, timeout, do_now)) {
ino->flags |= AUTOFS_INF_EXPIRING;
- smp_mb();
- ino->flags &= ~AUTOFS_INF_NO_RCU;
init_completion(&ino->expire_complete);
spin_unlock(&sbi->fs_lock);
return root;
}
- ino->flags &= ~AUTOFS_INF_NO_RCU;
+ ino->flags &= ~AUTOFS_INF_WANT_EXPIRE;
}
out:
spin_unlock(&sbi->fs_lock);
while ((dentry = get_next_positive_subdir(dentry, root))) {
spin_lock(&sbi->fs_lock);
ino = autofs4_dentry_ino(dentry);
- if (ino->flags & AUTOFS_INF_NO_RCU)
+ if (ino->flags & AUTOFS_INF_WANT_EXPIRE)
expired = NULL;
else
expired = should_expire(dentry, mnt, timeout, how);
continue;
}
ino = autofs4_dentry_ino(expired);
- ino->flags |= AUTOFS_INF_NO_RCU;
+ ino->flags |= AUTOFS_INF_WANT_EXPIRE;
spin_unlock(&sbi->fs_lock);
synchronize_rcu();
spin_lock(&sbi->fs_lock);
goto found;
}
- ino->flags &= ~AUTOFS_INF_NO_RCU;
+ ino->flags &= ~AUTOFS_INF_WANT_EXPIRE;
if (expired != dentry)
dput(expired);
spin_unlock(&sbi->fs_lock);
found:
pr_debug("returning %p %pd\n", expired, expired);
ino->flags |= AUTOFS_INF_EXPIRING;
- smp_mb();
- ino->flags &= ~AUTOFS_INF_NO_RCU;
init_completion(&ino->expire_complete);
spin_unlock(&sbi->fs_lock);
- spin_lock(&sbi->lookup_lock);
- spin_lock(&expired->d_parent->d_lock);
- spin_lock_nested(&expired->d_lock, DENTRY_D_LOCK_NESTED);
- list_move(&expired->d_parent->d_subdirs, &expired->d_child);
- spin_unlock(&expired->d_lock);
- spin_unlock(&expired->d_parent->d_lock);
- spin_unlock(&sbi->lookup_lock);
return expired;
}
int status;
/* Block on any pending expire */
- if (!(ino->flags & (AUTOFS_INF_EXPIRING | AUTOFS_INF_NO_RCU)))
+ if (!(ino->flags & AUTOFS_INF_WANT_EXPIRE))
return 0;
if (rcu_walk)
return -ECHILD;
ino = autofs4_dentry_ino(dentry);
/* avoid rapid-fire expire attempts if expiry fails */
ino->last_used = now;
- ino->flags &= ~AUTOFS_INF_EXPIRING;
+ ino->flags &= ~(AUTOFS_INF_EXPIRING|AUTOFS_INF_WANT_EXPIRE);
complete_all(&ino->expire_complete);
spin_unlock(&sbi->fs_lock);
spin_lock(&sbi->fs_lock);
/* avoid rapid-fire expire attempts if expiry fails */
ino->last_used = now;
- ino->flags &= ~AUTOFS_INF_EXPIRING;
+ ino->flags &= ~(AUTOFS_INF_EXPIRING|AUTOFS_INF_WANT_EXPIRE);
complete_all(&ino->expire_complete);
spin_unlock(&sbi->fs_lock);
dput(dentry);
*/
struct inode *inode;
- if (ino->flags & (AUTOFS_INF_EXPIRING | AUTOFS_INF_NO_RCU))
+ if (ino->flags & AUTOFS_INF_WANT_EXPIRE)
return 0;
if (d_mountpoint(dentry))
return 0;
set_fs(KERNEL_DS);
mutex_lock(&sbi->pipe_mutex);
- wr = __vfs_write(file, data, bytes, &file->f_pos);
- while (bytes && wr) {
+ while (bytes) {
+ wr = __vfs_write(file, data, bytes, &file->f_pos);
+ if (wr <= 0)
+ break;
data += wr;
bytes -= wr;
- wr = __vfs_write(file, data, bytes, &file->f_pos);
}
mutex_unlock(&sbi->pipe_mutex);
* This algorithm is recursive because the amount of used stack space
* is very small and the max recursion depth is limited.
*/
- indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
+ indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
btrfsic_get_block_type(state, block),
block->logical_bytenr, block->dev_state->name,
block->dev_bytenr, block->mirror_num);
trans->transid, root->fs_info->generation);
if (!should_cow_block(trans, root, buf)) {
+ trans->dirty = true;
*cow_ret = buf;
return 0;
}
if (!err) {
tmp = (struct btrfs_disk_key *)(kaddr + offset -
map_start);
- } else {
+ } else if (err == 1) {
read_extent_buffer(eb, &unaligned,
offset, sizeof(unaligned));
tmp = &unaligned;
+ } else {
+ return err;
}
} else {
if (!btrfs_buffer_uptodate(tmp, 0, 0))
ret = -EIO;
free_extent_buffer(tmp);
+ } else {
+ ret = PTR_ERR(tmp);
}
return ret;
}
* then we don't want to set the path blocking,
* so we test it here
*/
- if (!should_cow_block(trans, root, b))
+ if (!should_cow_block(trans, root, b)) {
+ trans->dirty = true;
goto cow_done;
+ }
/*
* must have write locks on this node and the
}
ret = key_search(b, key, level, &prev_cmp, &slot);
+ if (ret < 0)
+ goto done;
if (level != 0) {
int dec = 0;
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long count);
int btrfs_async_run_delayed_refs(struct btrfs_root *root,
- unsigned long count, int wait);
+ unsigned long count, u64 transid, int wait);
int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
return 0;
}
-void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
- struct list_head *del_list)
+bool btrfs_readdir_get_delayed_items(struct inode *inode,
+ struct list_head *ins_list,
+ struct list_head *del_list)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_delayed_item *item;
delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
- return;
+ return false;
+
+ /*
+ * We can only do one readdir with delayed items at a time because of
+ * item->readdir_list.
+ */
+ inode_unlock_shared(inode);
+ inode_lock(inode);
mutex_lock(&delayed_node->mutex);
item = __btrfs_first_delayed_insertion_item(delayed_node);
* requeue or dequeue this delayed node.
*/
atomic_dec(&delayed_node->refs);
+
+ return true;
}
-void btrfs_put_delayed_items(struct list_head *ins_list,
- struct list_head *del_list)
+void btrfs_readdir_put_delayed_items(struct inode *inode,
+ struct list_head *ins_list,
+ struct list_head *del_list)
{
struct btrfs_delayed_item *curr, *next;
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
}
+
+ /*
+ * The VFS is going to do up_read(), so we need to downgrade back to a
+ * read lock.
+ */
+ downgrade_write(&inode->i_rwsem);
}
int btrfs_should_delete_dir_index(struct list_head *del_list,
void btrfs_destroy_delayed_inodes(struct btrfs_root *root);
/* Used for readdir() */
-void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
- struct list_head *del_list);
-void btrfs_put_delayed_items(struct list_head *ins_list,
- struct list_head *del_list);
+bool btrfs_readdir_get_delayed_items(struct inode *inode,
+ struct list_head *ins_list,
+ struct list_head *del_list);
+void btrfs_readdir_put_delayed_items(struct inode *inode,
+ struct list_head *ins_list,
+ struct list_head *del_list);
int btrfs_should_delete_dir_index(struct list_head *del_list,
u64 index);
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
struct inode *btree_inode = root->fs_info->btree_inode;
buf = btrfs_find_create_tree_block(root, bytenr);
- if (!buf)
+ if (IS_ERR(buf))
return;
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
buf, 0, WAIT_NONE, btree_get_extent, 0);
int ret;
buf = btrfs_find_create_tree_block(root, bytenr);
- if (!buf)
+ if (IS_ERR(buf))
return 0;
set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
int ret;
buf = btrfs_find_create_tree_block(root, bytenr);
- if (!buf)
- return ERR_PTR(-ENOMEM);
+ if (IS_ERR(buf))
+ return buf;
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
if (ret) {
if (btrfs_need_cleaner_sleep(root))
goto sleep;
+ /*
+ * Do not do anything if we might cause open_ctree() to block
+ * before we have finished mounting the filesystem.
+ */
+ if (!root->fs_info->open)
+ goto sleep;
+
if (!mutex_trylock(&root->fs_info->cleaner_mutex))
goto sleep;
int num_backups_tried = 0;
int backup_index = 0;
int max_active;
- bool cleaner_mutex_locked = false;
tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
nodesize = btrfs_super_nodesize(disk_super);
sectorsize = btrfs_super_sectorsize(disk_super);
- stripesize = btrfs_super_stripesize(disk_super);
+ stripesize = sectorsize;
fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
goto fail_sysfs;
}
- /*
- * Hold the cleaner_mutex thread here so that we don't block
- * for a long time on btrfs_recover_relocation. cleaner_kthread
- * will wait for us to finish mounting the filesystem.
- */
- mutex_lock(&fs_info->cleaner_mutex);
- cleaner_mutex_locked = true;
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
"btrfs-cleaner");
if (IS_ERR(fs_info->cleaner_kthread))
ret = btrfs_cleanup_fs_roots(fs_info);
if (ret)
goto fail_qgroup;
- /* We locked cleaner_mutex before creating cleaner_kthread. */
+
+ mutex_lock(&fs_info->cleaner_mutex);
ret = btrfs_recover_relocation(tree_root);
+ mutex_unlock(&fs_info->cleaner_mutex);
if (ret < 0) {
btrfs_warn(fs_info, "failed to recover relocation: %d",
ret);
goto fail_qgroup;
}
}
- mutex_unlock(&fs_info->cleaner_mutex);
- cleaner_mutex_locked = false;
location.objectid = BTRFS_FS_TREE_OBJECTID;
location.type = BTRFS_ROOT_ITEM_KEY;
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
fail_sysfs:
- if (cleaner_mutex_locked) {
- mutex_unlock(&fs_info->cleaner_mutex);
- cleaner_mutex_locked = false;
- }
btrfs_sysfs_remove_mounted(fs_info);
fail_fsdev_sysfs:
btrfs_super_bytes_used(sb));
ret = -EINVAL;
}
- if (!is_power_of_2(btrfs_super_stripesize(sb)) ||
- btrfs_super_stripesize(sb) != sectorsize) {
+ if (!is_power_of_2(btrfs_super_stripesize(sb))) {
btrfs_err(fs_info, "invalid stripesize %u",
btrfs_super_stripesize(sb));
ret = -EINVAL;
struct async_delayed_refs {
struct btrfs_root *root;
+ u64 transid;
int count;
int error;
int sync;
async = container_of(work, struct async_delayed_refs, work);
+ /* if the commit is already started, we don't need to wait here */
+ if (btrfs_transaction_blocked(async->root->fs_info))
+ goto done;
+
trans = btrfs_join_transaction(async->root);
if (IS_ERR(trans)) {
async->error = PTR_ERR(trans);
* wait on delayed refs
*/
trans->sync = true;
+
+ /* Don't bother flushing if we got into a different transaction */
+ if (trans->transid > async->transid)
+ goto end;
+
ret = btrfs_run_delayed_refs(trans, async->root, async->count);
if (ret)
async->error = ret;
-
+end:
ret = btrfs_end_transaction(trans, async->root);
if (ret && !async->error)
async->error = ret;
}
int btrfs_async_run_delayed_refs(struct btrfs_root *root,
- unsigned long count, int wait)
+ unsigned long count, u64 transid, int wait)
{
struct async_delayed_refs *async;
int ret;
async->root = root->fs_info->tree_root;
async->count = count;
async->error = 0;
+ async->transid = transid;
if (wait)
async->sync = 1;
else
struct extent_buffer *buf;
buf = btrfs_find_create_tree_block(root, bytenr);
- if (!buf)
- return ERR_PTR(-ENOMEM);
+ if (IS_ERR(buf))
+ return buf;
+
btrfs_set_header_generation(buf, trans->transid);
btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
btrfs_tree_lock(buf);
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
}
- trans->blocks_used++;
+ trans->dirty = true;
/* this returns a buffer locked for blocking */
return buf;
}
next = btrfs_find_tree_block(root->fs_info, bytenr);
if (!next) {
next = btrfs_find_create_tree_block(root, bytenr);
- if (!next)
- return -ENOMEM;
+ if (IS_ERR(next))
+ return PTR_ERR(next);
+
btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
level - 1);
reada = 1;
int uptodate = 1;
int ret;
+ if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
+ btrfs_err(fs_info, "bad tree block start %llu", start);
+ return ERR_PTR(-EINVAL);
+ }
+
eb = find_extent_buffer(fs_info, start);
if (eb)
return eb;
eb = __alloc_extent_buffer(fs_info, start, len);
if (!eb)
- return NULL;
+ return ERR_PTR(-ENOMEM);
for (i = 0; i < num_pages; i++, index++) {
p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
- if (!p)
+ if (!p) {
+ exists = ERR_PTR(-ENOMEM);
goto free_eb;
+ }
spin_lock(&mapping->private_lock);
if (PagePrivate(p)) {
set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
again:
ret = radix_tree_preload(GFP_NOFS);
- if (ret)
+ if (ret) {
+ exists = ERR_PTR(ret);
goto free_eb;
+ }
spin_lock(&fs_info->buffer_lock);
ret = radix_tree_insert(&fs_info->buffer_radix,
return ret;
}
+/*
+ * return 0 if the item is found within a page.
+ * return 1 if the item spans two pages.
+ * return -EINVAL otherwise.
+ */
int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
unsigned long min_len, char **map,
unsigned long *map_start,
PAGE_SHIFT;
if (i != end_i)
- return -EINVAL;
+ return 1;
if (i == 0) {
offset = start_offset;
reserve_bytes = round_up(write_bytes + sector_offset,
root->sectorsize);
- if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
- BTRFS_INODE_PREALLOC)) &&
- check_can_nocow(inode, pos, &write_bytes) > 0) {
- /*
- * For nodata cow case, no need to reserve
- * data space.
- */
- only_release_metadata = true;
- /*
- * our prealloc extent may be smaller than
- * write_bytes, so scale down.
- */
- num_pages = DIV_ROUND_UP(write_bytes + offset,
- PAGE_SIZE);
- reserve_bytes = round_up(write_bytes + sector_offset,
- root->sectorsize);
- goto reserve_metadata;
- }
-
ret = btrfs_check_data_free_space(inode, pos, write_bytes);
- if (ret < 0)
- break;
+ if (ret < 0) {
+ if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
+ BTRFS_INODE_PREALLOC)) &&
+ check_can_nocow(inode, pos, &write_bytes) > 0) {
+ /*
+ * For nodata cow case, no need to reserve
+ * data space.
+ */
+ only_release_metadata = true;
+ /*
+ * our prealloc extent may be smaller than
+ * write_bytes, so scale down.
+ */
+ num_pages = DIV_ROUND_UP(write_bytes + offset,
+ PAGE_SIZE);
+ reserve_bytes = round_up(write_bytes +
+ sector_offset,
+ root->sectorsize);
+ } else {
+ break;
+ }
+ }
-reserve_metadata:
ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
if (ret) {
if (!only_release_metadata)
/* grab metadata reservation from transaction handle */
if (reserve) {
ret = btrfs_orphan_reserve_metadata(trans, inode);
- BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
+ ASSERT(!ret);
+ if (ret) {
+ atomic_dec(&root->orphan_inodes);
+ clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
+ &BTRFS_I(inode)->runtime_flags);
+ if (insert)
+ clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
+ &BTRFS_I(inode)->runtime_flags);
+ return ret;
+ }
}
/* insert an orphan item to track this unlinked/truncated file */
BUG_ON(ret);
if (btrfs_should_throttle_delayed_refs(trans, root))
btrfs_async_run_delayed_refs(root,
+ trans->transid,
trans->delayed_ref_updates * 2, 0);
if (be_nice) {
if (truncate_space_check(trans, root,
int name_len;
int is_curr = 0; /* ctx->pos points to the current index? */
bool emitted;
+ bool put = false;
/* FIXME, use a real flag for deciding about the key type */
if (root->fs_info->tree_root == root)
if (key_type == BTRFS_DIR_INDEX_KEY) {
INIT_LIST_HEAD(&ins_list);
INIT_LIST_HEAD(&del_list);
- btrfs_get_delayed_items(inode, &ins_list, &del_list);
+ put = btrfs_readdir_get_delayed_items(inode, &ins_list,
+ &del_list);
}
key.type = key_type;
nopos:
ret = 0;
err:
- if (key_type == BTRFS_DIR_INDEX_KEY)
- btrfs_put_delayed_items(&ins_list, &del_list);
+ if (put)
+ btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
btrfs_free_path(path);
return ret;
}
static const struct file_operations btrfs_dir_file_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
- .iterate = btrfs_real_readdir,
+ .iterate_shared = btrfs_real_readdir,
.unlocked_ioctl = btrfs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = btrfs_compat_ioctl,
struct rb_node *prev = NULL;
struct btrfs_ordered_extent *test;
int ret = 1;
+ u64 orig_offset = offset;
spin_lock_irq(&tree->lock);
if (ordered) {
/* truncate file */
if (disk_i_size > i_size) {
- BTRFS_I(inode)->disk_i_size = i_size;
+ BTRFS_I(inode)->disk_i_size = orig_offset;
ret = 0;
goto out;
}
trans->aborted = errno;
/* Nothing used. The other threads that have joined this
* transaction may be able to continue. */
- if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
+ if (!trans->dirty && list_empty(&trans->new_bgs)) {
const char *errstr;
errstr = btrfs_decode_error(errno);
}
}
sb->s_flags &= ~MS_RDONLY;
+
+ fs_info->open = 1;
}
out:
wake_up_process(fs_info->transaction_kthread);
if (IS_ERR(test_mnt)) {
printk(KERN_ERR "btrfs: cannot mount test file system\n");
unregister_filesystem(&test_type);
- return ret;
+ return PTR_ERR(test_mnt);
}
return 0;
}
{
struct btrfs_transaction *cur_trans = trans->transaction;
struct btrfs_fs_info *info = root->fs_info;
+ u64 transid = trans->transid;
unsigned long cur = trans->delayed_ref_updates;
int lock = (trans->type != TRANS_JOIN_NOLOCK);
int err = 0;
kmem_cache_free(btrfs_trans_handle_cachep, trans);
if (must_run_delayed_refs) {
- btrfs_async_run_delayed_refs(root, cur,
+ btrfs_async_run_delayed_refs(root, cur, transid,
must_run_delayed_refs == 1);
}
return err;
return ret;
}
-/* Bisesctability fixup, remove in 4.8 */
-#ifndef btrfs_std_error
-#define btrfs_std_error btrfs_handle_fs_error
-#endif
-
/*
* Do all special snapshot related qgroup dirty hack.
*
switch_commit_roots(trans->transaction, fs_info);
ret = btrfs_write_and_wait_transaction(trans, src);
if (ret)
- btrfs_std_error(fs_info, ret,
+ btrfs_handle_fs_error(fs_info, ret,
"Error while writing out transaction for qgroup");
out:
u64 chunk_bytes_reserved;
unsigned long use_count;
unsigned long blocks_reserved;
- unsigned long blocks_used;
unsigned long delayed_ref_updates;
struct btrfs_transaction *transaction;
struct btrfs_block_rsv *block_rsv;
bool can_flush_pending_bgs;
bool reloc_reserved;
bool sync;
+ bool dirty;
unsigned int type;
/*
* this root is only needed to validate that the root passed to
root_owner = btrfs_header_owner(parent);
next = btrfs_find_create_tree_block(root, bytenr);
- if (!next)
- return -ENOMEM;
+ if (IS_ERR(next))
+ return PTR_ERR(next);
if (*level == 1) {
ret = wc->process_func(root, next, wc, ptr_gen);
if (type & BTRFS_BLOCK_GROUP_RAID5) {
raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
- btrfs_super_stripesize(info->super_copy));
+ extent_root->stripesize);
data_stripes = num_stripes - 1;
}
if (type & BTRFS_BLOCK_GROUP_RAID6) {
raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
- btrfs_super_stripesize(info->super_copy));
+ extent_root->stripesize);
data_stripes = num_stripes - 2;
}
* overallocate but we can keep it as-is, only the first page is used.
*/
sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
- if (!sb)
- return -ENOMEM;
+ if (IS_ERR(sb))
+ return PTR_ERR(sb);
set_extent_buffer_uptodate(sb);
btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
/*
case SFM_SLASH:
*target = '\\';
break;
+ case SFM_SPACE:
+ *target = ' ';
+ break;
+ case SFM_PERIOD:
+ *target = '.';
+ break;
default:
return false;
}
return dest_char;
}
-static __le16 convert_to_sfm_char(char src_char)
+static __le16 convert_to_sfm_char(char src_char, bool end_of_string)
{
__le16 dest_char;
case '|':
dest_char = cpu_to_le16(SFM_PIPE);
break;
+ case '.':
+ if (end_of_string)
+ dest_char = cpu_to_le16(SFM_PERIOD);
+ else
+ dest_char = 0;
+ break;
+ case ' ':
+ if (end_of_string)
+ dest_char = cpu_to_le16(SFM_SPACE);
+ else
+ dest_char = 0;
+ break;
default:
dest_char = 0;
}
/* see if we must remap this char */
if (map_chars == SFU_MAP_UNI_RSVD)
dst_char = convert_to_sfu_char(src_char);
- else if (map_chars == SFM_MAP_UNI_RSVD)
- dst_char = convert_to_sfm_char(src_char);
- else
+ else if (map_chars == SFM_MAP_UNI_RSVD) {
+ bool end_of_string;
+
+ if (i == srclen - 1)
+ end_of_string = true;
+ else
+ end_of_string = false;
+
+ dst_char = convert_to_sfm_char(src_char, end_of_string);
+ } else
dst_char = 0;
/*
* FIXME: We can not handle remapping backslash (UNI_SLASH)
#define SFM_LESSTHAN ((__u16) 0xF023)
#define SFM_PIPE ((__u16) 0xF027)
#define SFM_SLASH ((__u16) 0xF026)
+#define SFM_PERIOD ((__u16) 0xF028)
+#define SFM_SPACE ((__u16) 0xF029)
/*
* Mapping mechanism to use when one of the seven reserved characters is
extern mempool_t *cifs_mid_poolp;
struct workqueue_struct *cifsiod_wq;
+__u32 cifs_lock_secret;
/*
* Bumps refcount for cifs super block.
spin_lock_init(&cifs_file_list_lock);
spin_lock_init(&GlobalMid_Lock);
+ get_random_bytes(&cifs_lock_secret, sizeof(cifs_lock_secret));
+
if (cifs_max_pending < 2) {
cifs_max_pending = 2;
cifs_dbg(FYI, "cifs_max_pending set to min of 2\n");
extern const struct slow_work_ops cifs_oplock_break_ops;
extern struct workqueue_struct *cifsiod_wq;
+extern __u32 cifs_lock_secret;
extern mempool_t *cifs_mid_poolp;
* server->ops->need_neg() == true. Also, no need to ping if
* we got a response recently.
*/
- if (!server->ops->need_neg || server->ops->need_neg(server) ||
+
+ if (server->tcpStatus == CifsNeedReconnect ||
+ server->tcpStatus == CifsExiting || server->tcpStatus == CifsNew ||
(server->ops->can_echo && !server->ops->can_echo(server)) ||
time_before(jiffies, server->lstrp + echo_interval - HZ))
goto requeue_echo;
return rc;
}
+static __u32
+hash_lockowner(fl_owner_t owner)
+{
+ return cifs_lock_secret ^ hash32_ptr((const void *)owner);
+}
+
struct lock_to_push {
struct list_head llist;
__u64 offset;
else
type = CIFS_WRLCK;
lck = list_entry(el, struct lock_to_push, llist);
- lck->pid = flock->fl_pid;
+ lck->pid = hash_lockowner(flock->fl_owner);
lck->netfid = cfile->fid.netfid;
lck->length = length;
lck->type = type;
posix_lock_type = CIFS_RDLCK;
else
posix_lock_type = CIFS_WRLCK;
- rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
+ rc = CIFSSMBPosixLock(xid, tcon, netfid,
+ hash_lockowner(flock->fl_owner),
flock->fl_start, length, flock,
posix_lock_type, wait_flag);
return rc;
posix_lock_type = CIFS_UNLCK;
rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
- current->tgid, flock->fl_start, length,
+ hash_lockowner(flock->fl_owner),
+ flock->fl_start, length,
NULL, posix_lock_type, wait_flag);
goto out;
}
int decode_ntlmssp_challenge(char *bcc_ptr, int blob_len, struct cifs_ses *ses);
void build_ntlmssp_negotiate_blob(unsigned char *pbuffer, struct cifs_ses *ses);
-int build_ntlmssp_auth_blob(unsigned char *pbuffer, u16 *buflen,
+int build_ntlmssp_auth_blob(unsigned char **pbuffer, u16 *buflen,
struct cifs_ses *ses,
const struct nls_table *nls_cp);
sec_blob->DomainName.MaximumLength = 0;
}
-/* We do not malloc the blob, it is passed in pbuffer, because its
- maximum possible size is fixed and small, making this approach cleaner.
- This function returns the length of the data in the blob */
-int build_ntlmssp_auth_blob(unsigned char *pbuffer,
+static int size_of_ntlmssp_blob(struct cifs_ses *ses)
+{
+ int sz = sizeof(AUTHENTICATE_MESSAGE) + ses->auth_key.len
+ - CIFS_SESS_KEY_SIZE + CIFS_CPHTXT_SIZE + 2;
+
+ if (ses->domainName)
+ sz += 2 * strnlen(ses->domainName, CIFS_MAX_DOMAINNAME_LEN);
+ else
+ sz += 2;
+
+ if (ses->user_name)
+ sz += 2 * strnlen(ses->user_name, CIFS_MAX_USERNAME_LEN);
+ else
+ sz += 2;
+
+ return sz;
+}
+
+int build_ntlmssp_auth_blob(unsigned char **pbuffer,
u16 *buflen,
struct cifs_ses *ses,
const struct nls_table *nls_cp)
{
int rc;
- AUTHENTICATE_MESSAGE *sec_blob = (AUTHENTICATE_MESSAGE *)pbuffer;
+ AUTHENTICATE_MESSAGE *sec_blob;
__u32 flags;
unsigned char *tmp;
+ rc = setup_ntlmv2_rsp(ses, nls_cp);
+ if (rc) {
+ cifs_dbg(VFS, "Error %d during NTLMSSP authentication\n", rc);
+ *buflen = 0;
+ goto setup_ntlmv2_ret;
+ }
+ *pbuffer = kmalloc(size_of_ntlmssp_blob(ses), GFP_KERNEL);
+ sec_blob = (AUTHENTICATE_MESSAGE *)*pbuffer;
+
memcpy(sec_blob->Signature, NTLMSSP_SIGNATURE, 8);
sec_blob->MessageType = NtLmAuthenticate;
flags |= NTLMSSP_NEGOTIATE_KEY_XCH;
}
- tmp = pbuffer + sizeof(AUTHENTICATE_MESSAGE);
+ tmp = *pbuffer + sizeof(AUTHENTICATE_MESSAGE);
sec_blob->NegotiateFlags = cpu_to_le32(flags);
sec_blob->LmChallengeResponse.BufferOffset =
sec_blob->LmChallengeResponse.Length = 0;
sec_blob->LmChallengeResponse.MaximumLength = 0;
- sec_blob->NtChallengeResponse.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->NtChallengeResponse.BufferOffset =
+ cpu_to_le32(tmp - *pbuffer);
if (ses->user_name != NULL) {
- rc = setup_ntlmv2_rsp(ses, nls_cp);
- if (rc) {
- cifs_dbg(VFS, "Error %d during NTLMSSP authentication\n", rc);
- goto setup_ntlmv2_ret;
- }
memcpy(tmp, ses->auth_key.response + CIFS_SESS_KEY_SIZE,
ses->auth_key.len - CIFS_SESS_KEY_SIZE);
tmp += ses->auth_key.len - CIFS_SESS_KEY_SIZE;
}
if (ses->domainName == NULL) {
- sec_blob->DomainName.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->DomainName.BufferOffset = cpu_to_le32(tmp - *pbuffer);
sec_blob->DomainName.Length = 0;
sec_blob->DomainName.MaximumLength = 0;
tmp += 2;
} else {
int len;
len = cifs_strtoUTF16((__le16 *)tmp, ses->domainName,
- CIFS_MAX_USERNAME_LEN, nls_cp);
+ CIFS_MAX_DOMAINNAME_LEN, nls_cp);
len *= 2; /* unicode is 2 bytes each */
- sec_blob->DomainName.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->DomainName.BufferOffset = cpu_to_le32(tmp - *pbuffer);
sec_blob->DomainName.Length = cpu_to_le16(len);
sec_blob->DomainName.MaximumLength = cpu_to_le16(len);
tmp += len;
}
if (ses->user_name == NULL) {
- sec_blob->UserName.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->UserName.BufferOffset = cpu_to_le32(tmp - *pbuffer);
sec_blob->UserName.Length = 0;
sec_blob->UserName.MaximumLength = 0;
tmp += 2;
len = cifs_strtoUTF16((__le16 *)tmp, ses->user_name,
CIFS_MAX_USERNAME_LEN, nls_cp);
len *= 2; /* unicode is 2 bytes each */
- sec_blob->UserName.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->UserName.BufferOffset = cpu_to_le32(tmp - *pbuffer);
sec_blob->UserName.Length = cpu_to_le16(len);
sec_blob->UserName.MaximumLength = cpu_to_le16(len);
tmp += len;
}
- sec_blob->WorkstationName.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->WorkstationName.BufferOffset = cpu_to_le32(tmp - *pbuffer);
sec_blob->WorkstationName.Length = 0;
sec_blob->WorkstationName.MaximumLength = 0;
tmp += 2;
(ses->ntlmssp->server_flags & NTLMSSP_NEGOTIATE_EXTENDED_SEC))
&& !calc_seckey(ses)) {
memcpy(tmp, ses->ntlmssp->ciphertext, CIFS_CPHTXT_SIZE);
- sec_blob->SessionKey.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->SessionKey.BufferOffset = cpu_to_le32(tmp - *pbuffer);
sec_blob->SessionKey.Length = cpu_to_le16(CIFS_CPHTXT_SIZE);
sec_blob->SessionKey.MaximumLength =
cpu_to_le16(CIFS_CPHTXT_SIZE);
tmp += CIFS_CPHTXT_SIZE;
} else {
- sec_blob->SessionKey.BufferOffset = cpu_to_le32(tmp - pbuffer);
+ sec_blob->SessionKey.BufferOffset = cpu_to_le32(tmp - *pbuffer);
sec_blob->SessionKey.Length = 0;
sec_blob->SessionKey.MaximumLength = 0;
}
+ *buflen = tmp - *pbuffer;
setup_ntlmv2_ret:
- *buflen = tmp - pbuffer;
return rc;
}
rc = calc_lanman_hash(ses->password, ses->server->cryptkey,
ses->server->sec_mode & SECMODE_PW_ENCRYPT ?
true : false, lnm_session_key);
+ if (rc)
+ goto out;
memcpy(bcc_ptr, (char *)lnm_session_key, CIFS_AUTH_RESP_SIZE);
bcc_ptr += CIFS_AUTH_RESP_SIZE;
struct cifs_ses *ses = sess_data->ses;
__u16 bytes_remaining;
char *bcc_ptr;
- char *ntlmsspblob = NULL;
+ unsigned char *ntlmsspblob = NULL;
u16 blob_len;
cifs_dbg(FYI, "rawntlmssp session setup authenticate phase\n");
/* Build security blob before we assemble the request */
pSMB = (SESSION_SETUP_ANDX *)sess_data->iov[0].iov_base;
smb_buf = (struct smb_hdr *)pSMB;
- /*
- * 5 is an empirical value, large enough to hold
- * authenticate message plus max 10 of av paris,
- * domain, user, workstation names, flags, etc.
- */
- ntlmsspblob = kzalloc(5*sizeof(struct _AUTHENTICATE_MESSAGE),
- GFP_KERNEL);
- if (!ntlmsspblob) {
- rc = -ENOMEM;
- goto out;
- }
-
- rc = build_ntlmssp_auth_blob(ntlmsspblob,
+ rc = build_ntlmssp_auth_blob(&ntlmsspblob,
&blob_len, ses, sess_data->nls_cp);
if (rc)
goto out_free_ntlmsspblob;
u16 blob_length = 0;
struct key *spnego_key = NULL;
char *security_blob = NULL;
- char *ntlmssp_blob = NULL;
+ unsigned char *ntlmssp_blob = NULL;
bool use_spnego = false; /* else use raw ntlmssp */
cifs_dbg(FYI, "Session Setup\n");
iov[1].iov_len = blob_length;
} else if (phase == NtLmAuthenticate) {
req->hdr.SessionId = ses->Suid;
- ntlmssp_blob = kzalloc(sizeof(struct _NEGOTIATE_MESSAGE) + 500,
- GFP_KERNEL);
- if (ntlmssp_blob == NULL) {
- rc = -ENOMEM;
- goto ssetup_exit;
- }
- rc = build_ntlmssp_auth_blob(ntlmssp_blob, &blob_length, ses,
+ rc = build_ntlmssp_auth_blob(&ntlmssp_blob, &blob_length, ses,
nls_cp);
if (rc) {
cifs_dbg(FYI, "build_ntlmssp_auth_blob failed %d\n",
cifs_dbg(FYI, "In echo request\n");
+ if (server->tcpStatus == CifsNeedNegotiate) {
+ struct list_head *tmp, *tmp2;
+ struct cifs_ses *ses;
+ struct cifs_tcon *tcon;
+
+ cifs_dbg(FYI, "Need negotiate, reconnecting tcons\n");
+ spin_lock(&cifs_tcp_ses_lock);
+ list_for_each(tmp, &server->smb_ses_list) {
+ ses = list_entry(tmp, struct cifs_ses, smb_ses_list);
+ list_for_each(tmp2, &ses->tcon_list) {
+ tcon = list_entry(tmp2, struct cifs_tcon,
+ tcon_list);
+ /* add check for persistent handle reconnect */
+ if (tcon && tcon->need_reconnect) {
+ spin_unlock(&cifs_tcp_ses_lock);
+ rc = smb2_reconnect(SMB2_ECHO, tcon);
+ spin_lock(&cifs_tcp_ses_lock);
+ }
+ }
+ }
+ spin_unlock(&cifs_tcp_ses_lock);
+ }
+
+ /* if no session, renegotiate failed above */
+ if (server->tcpStatus == CifsNeedNegotiate)
+ return -EIO;
+
rc = small_smb2_init(SMB2_ECHO, NULL, (void **)&req);
if (rc)
return rc;
}
EXPORT_SYMBOL(d_drop);
+static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
+{
+ struct dentry *next;
+ /*
+ * Inform d_walk() and shrink_dentry_list() that we are no longer
+ * attached to the dentry tree
+ */
+ dentry->d_flags |= DCACHE_DENTRY_KILLED;
+ if (unlikely(list_empty(&dentry->d_child)))
+ return;
+ __list_del_entry(&dentry->d_child);
+ /*
+ * Cursors can move around the list of children. While we'd been
+ * a normal list member, it didn't matter - ->d_child.next would've
+ * been updated. However, from now on it won't be and for the
+ * things like d_walk() it might end up with a nasty surprise.
+ * Normally d_walk() doesn't care about cursors moving around -
+ * ->d_lock on parent prevents that and since a cursor has no children
+ * of its own, we get through it without ever unlocking the parent.
+ * There is one exception, though - if we ascend from a child that
+ * gets killed as soon as we unlock it, the next sibling is found
+ * using the value left in its ->d_child.next. And if _that_
+ * pointed to a cursor, and cursor got moved (e.g. by lseek())
+ * before d_walk() regains parent->d_lock, we'll end up skipping
+ * everything the cursor had been moved past.
+ *
+ * Solution: make sure that the pointer left behind in ->d_child.next
+ * points to something that won't be moving around. I.e. skip the
+ * cursors.
+ */
+ while (dentry->d_child.next != &parent->d_subdirs) {
+ next = list_entry(dentry->d_child.next, struct dentry, d_child);
+ if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
+ break;
+ dentry->d_child.next = next->d_child.next;
+ }
+}
+
static void __dentry_kill(struct dentry *dentry)
{
struct dentry *parent = NULL;
}
/* if it was on the hash then remove it */
__d_drop(dentry);
- __list_del_entry(&dentry->d_child);
- /*
- * Inform d_walk() that we are no longer attached to the
- * dentry tree
- */
- dentry->d_flags |= DCACHE_DENTRY_KILLED;
+ dentry_unlist(dentry, parent);
if (parent)
spin_unlock(&parent->d_lock);
dentry_iput(dentry);
struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
next = tmp->next;
+ if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
+ continue;
+
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ret = enter(data, dentry);
}
EXPORT_SYMBOL(d_alloc);
+struct dentry *d_alloc_cursor(struct dentry * parent)
+{
+ struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
+ if (dentry) {
+ dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
+ dentry->d_parent = dget(parent);
+ }
+ return dentry;
+}
+
/**
* d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
* @sb: the superblock
rcu_read_unlock();
goto retry;
}
- rcu_read_unlock();
/*
* No changes for the parent since the beginning of d_lookup().
* Since all removals from the chain happen with hlist_bl_lock(),
continue;
if (dentry->d_parent != parent)
continue;
- if (d_unhashed(dentry))
- continue;
if (parent->d_flags & DCACHE_OP_COMPARE) {
int tlen = dentry->d_name.len;
const char *tname = dentry->d_name.name;
if (dentry_cmp(dentry, str, len))
continue;
}
- dget(dentry);
hlist_bl_unlock(b);
- /* somebody is doing lookup for it right now; wait for it */
+ /* now we can try to grab a reference */
+ if (!lockref_get_not_dead(&dentry->d_lockref)) {
+ rcu_read_unlock();
+ goto retry;
+ }
+
+ rcu_read_unlock();
+ /*
+ * somebody is likely to be still doing lookup for it;
+ * wait for them to finish
+ */
spin_lock(&dentry->d_lock);
d_wait_lookup(dentry);
/*
dput(new);
return dentry;
}
+ rcu_read_unlock();
/* we can't take ->d_lock here; it's OK, though. */
new->d_flags |= DCACHE_PAR_LOOKUP;
new->d_wait = wq;
r = real_fops->open(inode, filp);
out:
- fops_put(real_fops);
debugfs_use_file_finish(srcu_idx);
return r;
}
if (real_fops->open) {
r = real_fops->open(inode, filp);
-
- if (filp->f_op != proxy_fops) {
+ if (r) {
+ replace_fops(filp, d_inode(dentry)->i_fop);
+ goto free_proxy;
+ } else if (filp->f_op != proxy_fops) {
/* No protection against file removal anymore. */
WARN(1, "debugfs file owner replaced proxy fops: %pd",
dentry);
extern struct dentry *__d_alloc(struct super_block *, const struct qstr *);
extern int d_set_mounted(struct dentry *dentry);
extern long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc);
+extern struct dentry *d_alloc_cursor(struct dentry *);
/*
* read_write.c
BUG_ON(size & (size-1)); /* Must be a power of 2 */
- flags |= __GFP_REPEAT;
- if (size == PAGE_SIZE)
- ptr = (void *)__get_free_pages(flags, 0);
- else if (size > PAGE_SIZE) {
- int order = get_order(size);
-
- if (order < 3)
- ptr = (void *)__get_free_pages(flags, order);
- else
- ptr = vmalloc(size);
- } else
+ if (size < PAGE_SIZE)
ptr = kmem_cache_alloc(get_slab(size), flags);
+ else
+ ptr = (void *)__get_free_pages(flags, get_order(size));
/* Check alignment; SLUB has gotten this wrong in the past,
* and this can lead to user data corruption! */
void jbd2_free(void *ptr, size_t size)
{
- if (size == PAGE_SIZE) {
- free_pages((unsigned long)ptr, 0);
- return;
- }
- if (size > PAGE_SIZE) {
- int order = get_order(size);
-
- if (order < 3)
- free_pages((unsigned long)ptr, order);
- else
- vfree(ptr);
- return;
- }
- kmem_cache_free(get_slab(size), ptr);
+ if (size < PAGE_SIZE)
+ kmem_cache_free(get_slab(size), ptr);
+ else
+ free_pages((unsigned long)ptr, get_order(size));
};
/*
int dcache_dir_open(struct inode *inode, struct file *file)
{
- static struct qstr cursor_name = QSTR_INIT(".", 1);
-
- file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
+ file->private_data = d_alloc_cursor(file->f_path.dentry);
return file->private_data ? 0 : -ENOMEM;
}
if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
+ /* Don't miss readonly hidden in the superblock flags */
+ if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
+ mnt_flags |= MNT_LOCK_READONLY;
+
/* Verify the mount flags are equal to or more permissive
* than the proposed new mount.
*/
goto out;
inode = d_inode(fh->fh_dentry);
- if (!IS_POSIXACL(inode) || !inode->i_op->set_acl) {
- error = -EOPNOTSUPP;
- goto out_errno;
- }
error = fh_want_write(fh);
if (error)
goto out_errno;
- error = inode->i_op->set_acl(inode, argp->acl_access, ACL_TYPE_ACCESS);
+ fh_lock(fh);
+
+ error = set_posix_acl(inode, ACL_TYPE_ACCESS, argp->acl_access);
if (error)
- goto out_drop_write;
- error = inode->i_op->set_acl(inode, argp->acl_default,
- ACL_TYPE_DEFAULT);
+ goto out_drop_lock;
+ error = set_posix_acl(inode, ACL_TYPE_DEFAULT, argp->acl_default);
if (error)
- goto out_drop_write;
+ goto out_drop_lock;
+
+ fh_unlock(fh);
fh_drop_write(fh);
posix_acl_release(argp->acl_access);
posix_acl_release(argp->acl_default);
return nfserr;
-out_drop_write:
+out_drop_lock:
+ fh_unlock(fh);
fh_drop_write(fh);
out_errno:
nfserr = nfserrno(error);
goto out;
inode = d_inode(fh->fh_dentry);
- if (!IS_POSIXACL(inode) || !inode->i_op->set_acl) {
- error = -EOPNOTSUPP;
- goto out_errno;
- }
error = fh_want_write(fh);
if (error)
goto out_errno;
- error = inode->i_op->set_acl(inode, argp->acl_access, ACL_TYPE_ACCESS);
+ fh_lock(fh);
+
+ error = set_posix_acl(inode, ACL_TYPE_ACCESS, argp->acl_access);
if (error)
- goto out_drop_write;
- error = inode->i_op->set_acl(inode, argp->acl_default,
- ACL_TYPE_DEFAULT);
+ goto out_drop_lock;
+ error = set_posix_acl(inode, ACL_TYPE_DEFAULT, argp->acl_default);
-out_drop_write:
+out_drop_lock:
+ fh_unlock(fh);
fh_drop_write(fh);
out_errno:
nfserr = nfserrno(error);
dentry = fhp->fh_dentry;
inode = d_inode(dentry);
- if (!inode->i_op->set_acl || !IS_POSIXACL(inode))
- return nfserr_attrnotsupp;
-
if (S_ISDIR(inode->i_mode))
flags = NFS4_ACL_DIR;
if (host_error < 0)
goto out_nfserr;
- host_error = inode->i_op->set_acl(inode, pacl, ACL_TYPE_ACCESS);
+ fh_lock(fhp);
+
+ host_error = set_posix_acl(inode, ACL_TYPE_ACCESS, pacl);
if (host_error < 0)
- goto out_release;
+ goto out_drop_lock;
if (S_ISDIR(inode->i_mode)) {
- host_error = inode->i_op->set_acl(inode, dpacl,
- ACL_TYPE_DEFAULT);
+ host_error = set_posix_acl(inode, ACL_TYPE_DEFAULT, dpacl);
}
-out_release:
+out_drop_lock:
+ fh_unlock(fhp);
+
posix_acl_release(pacl);
posix_acl_release(dpacl);
out_nfserr:
if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
return 0;
bytes = le16_to_cpu(sbp->s_bytes);
- if (bytes > BLOCK_SIZE)
+ if (bytes < sumoff + 4 || bytes > BLOCK_SIZE)
return 0;
crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
sumoff);
ccflags-y := -Ifs/ocfs2
-ccflags-y += -DCATCH_BH_JBD_RACES
-
obj-$(CONFIG_OCFS2_FS) += \
ocfs2.o \
ocfs2_stackglue.o
lock_buffer(bh);
if (buffer_jbd(bh)) {
+#ifdef CATCH_BH_JBD_RACES
mlog(ML_ERROR,
"block %llu had the JBD bit set "
"while I was in lock_buffer!",
(unsigned long long)bh->b_blocknr);
BUG();
+#else
+ unlock_buffer(bh);
+ continue;
+#endif
}
clear_buffer_uptodate(bh);
return error;
}
-static int
-posix_acl_xattr_set(const struct xattr_handler *handler,
- struct dentry *unused, struct inode *inode,
- const char *name, const void *value,
- size_t size, int flags)
+int
+set_posix_acl(struct inode *inode, int type, struct posix_acl *acl)
{
- struct posix_acl *acl = NULL;
- int ret;
-
if (!IS_POSIXACL(inode))
return -EOPNOTSUPP;
if (!inode->i_op->set_acl)
return -EOPNOTSUPP;
- if (handler->flags == ACL_TYPE_DEFAULT && !S_ISDIR(inode->i_mode))
- return value ? -EACCES : 0;
+ if (type == ACL_TYPE_DEFAULT && !S_ISDIR(inode->i_mode))
+ return acl ? -EACCES : 0;
if (!inode_owner_or_capable(inode))
return -EPERM;
+ if (acl) {
+ int ret = posix_acl_valid(acl);
+ if (ret)
+ return ret;
+ }
+ return inode->i_op->set_acl(inode, acl, type);
+}
+EXPORT_SYMBOL(set_posix_acl);
+
+static int
+posix_acl_xattr_set(const struct xattr_handler *handler,
+ struct dentry *unused, struct inode *inode,
+ const char *name, const void *value,
+ size_t size, int flags)
+{
+ struct posix_acl *acl = NULL;
+ int ret;
+
if (value) {
acl = posix_acl_from_xattr(&init_user_ns, value, size);
if (IS_ERR(acl))
return PTR_ERR(acl);
-
- if (acl) {
- ret = posix_acl_valid(acl);
- if (ret)
- goto out;
- }
}
-
- ret = inode->i_op->set_acl(inode, acl, handler->flags);
-out:
+ ret = set_posix_acl(inode, handler->flags, acl);
posix_acl_release(acl);
return ret;
}
unsigned long safe_mask = 0;
unsigned int commit_max_age = (unsigned int)-1;
struct reiserfs_journal *journal = SB_JOURNAL(s);
- char *new_opts = kstrdup(arg, GFP_KERNEL);
+ char *new_opts;
int err;
char *qf_names[REISERFS_MAXQUOTAS];
unsigned int qfmt = 0;
int i;
#endif
+ new_opts = kstrdup(arg, GFP_KERNEL);
+ if (arg && !new_opts)
+ return -ENOMEM;
+
sync_filesystem(s);
reiserfs_write_lock(s);
}
out_ok_unlocked:
- replace_mount_options(s, new_opts);
+ if (new_opts)
+ replace_mount_options(s, new_opts);
return 0;
out_err_unlock:
#include "ubifs.h"
#include <linux/mount.h>
#include <linux/slab.h>
+#include <linux/migrate.h>
static int read_block(struct inode *inode, void *addr, unsigned int block,
struct ubifs_data_node *dn)
return ret;
}
+#ifdef CONFIG_MIGRATION
+static int ubifs_migrate_page(struct address_space *mapping,
+ struct page *newpage, struct page *page, enum migrate_mode mode)
+{
+ int rc;
+
+ rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
+ if (rc != MIGRATEPAGE_SUCCESS)
+ return rc;
+
+ if (PagePrivate(page)) {
+ ClearPagePrivate(page);
+ SetPagePrivate(newpage);
+ }
+
+ migrate_page_copy(newpage, page);
+ return MIGRATEPAGE_SUCCESS;
+}
+#endif
+
static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
{
/*
.write_end = ubifs_write_end,
.invalidatepage = ubifs_invalidatepage,
.set_page_dirty = ubifs_set_page_dirty,
+#ifdef CONFIG_MIGRATION
+ .migratepage = ubifs_migrate_page,
+#endif
.releasepage = ubifs_releasepage,
};
map = &UDF_SB(sb)->s_partmaps[partition];
/* map to sparable/physical partition desc */
phyblock = udf_get_pblock(sb, eloc.logicalBlockNum,
- map->s_partition_num, ext_offset + offset);
+ map->s_type_specific.s_metadata.s_phys_partition_ref,
+ ext_offset + offset);
}
brelse(epos.bh);
mdata = &map->s_type_specific.s_metadata;
inode = mdata->s_metadata_fe ? : mdata->s_mirror_fe;
- /* We shouldn't mount such media... */
- BUG_ON(!inode);
+ if (!inode)
+ return 0xFFFFFFFF;
+
retblk = udf_try_read_meta(inode, block, partition, offset);
if (retblk == 0xFFFFFFFF && mdata->s_metadata_fe) {
udf_warn(sb, "error reading from METADATA, trying to read from MIRROR\n");
if (!(mdata->s_flags & MF_MIRROR_FE_LOADED)) {
mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
- mdata->s_mirror_file_loc, map->s_partition_num);
+ mdata->s_mirror_file_loc,
+ mdata->s_phys_partition_ref);
+ if (IS_ERR(mdata->s_mirror_fe))
+ mdata->s_mirror_fe = NULL;
mdata->s_flags |= MF_MIRROR_FE_LOADED;
}
}
struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
- u32 meta_file_loc, u32 partition_num)
+ u32 meta_file_loc, u32 partition_ref)
{
struct kernel_lb_addr addr;
struct inode *metadata_fe;
addr.logicalBlockNum = meta_file_loc;
- addr.partitionReferenceNum = partition_num;
+ addr.partitionReferenceNum = partition_ref;
metadata_fe = udf_iget_special(sb, &addr);
return metadata_fe;
}
-static int udf_load_metadata_files(struct super_block *sb, int partition)
+static int udf_load_metadata_files(struct super_block *sb, int partition,
+ int type1_index)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map;
map = &sbi->s_partmaps[partition];
mdata = &map->s_type_specific.s_metadata;
+ mdata->s_phys_partition_ref = type1_index;
/* metadata address */
udf_debug("Metadata file location: block = %d part = %d\n",
- mdata->s_meta_file_loc, map->s_partition_num);
+ mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
- map->s_partition_num);
+ mdata->s_phys_partition_ref);
if (IS_ERR(fe)) {
/* mirror file entry */
udf_debug("Mirror metadata file location: block = %d part = %d\n",
- mdata->s_mirror_file_loc, map->s_partition_num);
+ mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
- map->s_partition_num);
+ mdata->s_phys_partition_ref);
if (IS_ERR(fe)) {
udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
*/
if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
addr.logicalBlockNum = mdata->s_bitmap_file_loc;
- addr.partitionReferenceNum = map->s_partition_num;
+ addr.partitionReferenceNum = mdata->s_phys_partition_ref;
udf_debug("Bitmap file location: block = %d part = %d\n",
addr.logicalBlockNum, addr.partitionReferenceNum);
p = (struct partitionDesc *)bh->b_data;
partitionNumber = le16_to_cpu(p->partitionNumber);
- /* First scan for TYPE1, SPARABLE and METADATA partitions */
+ /* First scan for TYPE1 and SPARABLE partitions */
for (i = 0; i < sbi->s_partitions; i++) {
map = &sbi->s_partmaps[i];
udf_debug("Searching map: (%d == %d)\n",
goto out_bh;
if (map->s_partition_type == UDF_METADATA_MAP25) {
- ret = udf_load_metadata_files(sb, i);
+ ret = udf_load_metadata_files(sb, i, type1_idx);
if (ret < 0) {
udf_err(sb, "error loading MetaData partition map %d\n",
i);
__u32 s_bitmap_file_loc;
__u32 s_alloc_unit_size;
__u16 s_align_unit_size;
+ /*
+ * Partition Reference Number of the associated physical / sparable
+ * partition
+ */
+ __u16 s_phys_partition_ref;
int s_flags;
struct inode *s_metadata_fe;
struct inode *s_mirror_fe;
#define DCACHE_OP_REAL 0x08000000
#define DCACHE_PAR_LOOKUP 0x10000000 /* being looked up (with parent locked shared) */
+#define DCACHE_DENTRY_CURSOR 0x20000000
extern seqlock_t rename_lock;
* @get_irq_data_ready: Function to get the IRQ used for data ready signal.
* @tf: Transfer function structure used by I/O operations.
* @tb: Transfer buffers and mutex used by I/O operations.
+ * @hw_irq_trigger: if we're using the hardware interrupt on the sensor.
+ * @hw_timestamp: Latest timestamp from the interrupt handler, when in use.
*/
struct st_sensor_data {
struct device *dev;
const struct st_sensor_transfer_function *tf;
struct st_sensor_transfer_buffer tb;
+
+ bool hw_irq_trigger;
+ s64 hw_timestamp;
};
#ifdef CONFIG_IIO_BUFFER
const struct iio_trigger_ops *trigger_ops);
void st_sensors_deallocate_trigger(struct iio_dev *indio_dev);
-
+int st_sensors_validate_device(struct iio_trigger *trig,
+ struct iio_dev *indio_dev);
#else
static inline int st_sensors_allocate_trigger(struct iio_dev *indio_dev,
const struct iio_trigger_ops *trigger_ops)
{
return;
}
+#define st_sensors_validate_device NULL
#endif
int st_sensors_init_sensor(struct iio_dev *indio_dev,
#define INIT_TASK(tsk) \
{ \
.state = 0, \
- .stack = &init_thread_info, \
+ .stack = init_stack, \
.usage = ATOMIC_INIT(2), \
.flags = PF_KTHREAD, \
.prio = MAX_PRIO-20, \
#define __LINUX_ISA_H
#include <linux/device.h>
+#include <linux/errno.h>
#include <linux/kernel.h>
struct isa_driver {
#define to_isa_driver(x) container_of((x), struct isa_driver, driver)
-#ifdef CONFIG_ISA
+#ifdef CONFIG_ISA_BUS_API
int isa_register_driver(struct isa_driver *, unsigned int);
void isa_unregister_driver(struct isa_driver *);
#else
static inline int isa_register_driver(struct isa_driver *d, unsigned int i)
{
- return 0;
+ return -ENODEV;
}
static inline void isa_unregister_driver(struct isa_driver *d)
#include <linux/atomic.h>
+#ifdef HAVE_JUMP_LABEL
+
static inline int static_key_count(struct static_key *key)
{
- return atomic_read(&key->enabled);
+ /*
+ * -1 means the first static_key_slow_inc() is in progress.
+ * static_key_enabled() must return true, so return 1 here.
+ */
+ int n = atomic_read(&key->enabled);
+ return n >= 0 ? n : 1;
}
-#ifdef HAVE_JUMP_LABEL
-
#define JUMP_TYPE_FALSE 0UL
#define JUMP_TYPE_TRUE 1UL
#define JUMP_TYPE_MASK 1UL
#else /* !HAVE_JUMP_LABEL */
+static inline int static_key_count(struct static_key *key)
+{
+ return atomic_read(&key->enabled);
+}
+
static __always_inline void jump_label_init(void)
{
static_key_initialized = true;
void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags);
void kasan_kfree_large(const void *ptr);
-void kasan_kfree(void *ptr);
+void kasan_poison_kfree(void *ptr);
void kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size,
gfp_t flags);
void kasan_krealloc(const void *object, size_t new_size, gfp_t flags);
void kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags);
bool kasan_slab_free(struct kmem_cache *s, void *object);
-void kasan_poison_slab_free(struct kmem_cache *s, void *object);
struct kasan_cache {
int alloc_meta_offset;
int kasan_module_alloc(void *addr, size_t size);
void kasan_free_shadow(const struct vm_struct *vm);
+size_t ksize(const void *);
+static inline void kasan_unpoison_slab(const void *ptr) { ksize(ptr); }
+
#else /* CONFIG_KASAN */
static inline void kasan_unpoison_shadow(const void *address, size_t size) {}
static inline void kasan_kmalloc_large(void *ptr, size_t size, gfp_t flags) {}
static inline void kasan_kfree_large(const void *ptr) {}
-static inline void kasan_kfree(void *ptr) {}
+static inline void kasan_poison_kfree(void *ptr) {}
static inline void kasan_kmalloc(struct kmem_cache *s, const void *object,
size_t size, gfp_t flags) {}
static inline void kasan_krealloc(const void *object, size_t new_size,
{
return false;
}
-static inline void kasan_poison_slab_free(struct kmem_cache *s, void *object) {}
static inline int kasan_module_alloc(void *addr, size_t size) { return 0; }
static inline void kasan_free_shadow(const struct vm_struct *vm) {}
+static inline void kasan_unpoison_slab(const void *ptr) { }
+
#endif /* CONFIG_KASAN */
#endif /* LINUX_KASAN_H */
enum {
MLX5_FENCE_MODE_NONE = 0 << 5,
MLX5_FENCE_MODE_INITIATOR_SMALL = 1 << 5,
+ MLX5_FENCE_MODE_FENCE = 2 << 5,
MLX5_FENCE_MODE_STRONG_ORDERING = 3 << 5,
MLX5_FENCE_MODE_SMALL_AND_FENCE = 4 << 5,
};
}
void do_set_pte(struct vm_area_struct *vma, unsigned long address,
- struct page *page, pte_t *pte, bool write, bool anon, bool old);
+ struct page *page, pte_t *pte, bool write, bool anon);
#endif
/*
return (obj >= stack) && (obj < (stack + THREAD_SIZE));
}
-extern void thread_info_cache_init(void);
+extern void thread_stack_cache_init(void);
#ifdef CONFIG_DEBUG_STACK_USAGE
static inline unsigned long stack_not_used(struct task_struct *p)
* @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
* this driver will be bound to any available UDC.
* @pending: UDC core private data used for deferred probe of this driver.
+ * @match_existing_only: If udc is not found, return an error and don't add this
+ * gadget driver to list of pending driver
*
* Devices are disabled till a gadget driver successfully bind()s, which
* means the driver will handle setup() requests needed to enumerate (and
char *udc_name;
struct list_head pending;
+ unsigned match_existing_only:1;
};
};
#if IS_ENABLED(CONFIG_USB_MUSB_HDRC)
-void musb_mailbox(enum musb_vbus_id_status status);
+int musb_mailbox(enum musb_vbus_id_status status);
#else
-static inline void musb_mailbox(enum musb_vbus_id_status status)
+static inline int musb_mailbox(enum musb_vbus_id_status status)
{
+ return 0;
}
#endif
/*
* Allocate a private queue pair data structure for driver specific
- * information which is opaque to rdmavt.
+ * information which is opaque to rdmavt. Errors are returned via
+ * ERR_PTR(err). The driver is free to return NULL or a valid
+ * pointer.
*/
void * (*qp_priv_alloc)(struct rvt_dev_info *rdi, struct rvt_qp *qp,
gfp_t gfp);
#define KEY_KBDINPUTASSIST_ACCEPT 0x264
#define KEY_KBDINPUTASSIST_CANCEL 0x265
+/* Diagonal movement keys */
+#define KEY_RIGHT_UP 0x266
+#define KEY_RIGHT_DOWN 0x267
+#define KEY_LEFT_UP 0x268
+#define KEY_LEFT_DOWN 0x269
+
+#define KEY_ROOT_MENU 0x26a /* Show Device's Root Menu */
+/* Show Top Menu of the Media (e.g. DVD) */
+#define KEY_MEDIA_TOP_MENU 0x26b
+#define KEY_NUMERIC_11 0x26c
+#define KEY_NUMERIC_12 0x26d
+/*
+ * Toggle Audio Description: refers to an audio service that helps blind and
+ * visually impaired consumers understand the action in a program. Note: in
+ * some countries this is referred to as "Video Description".
+ */
+#define KEY_AUDIO_DESC 0x26e
+#define KEY_3D_MODE 0x26f
+#define KEY_NEXT_FAVORITE 0x270
+#define KEY_STOP_RECORD 0x271
+#define KEY_PAUSE_RECORD 0x272
+#define KEY_VOD 0x273 /* Video on Demand */
+#define KEY_UNMUTE 0x274
+#define KEY_FASTREVERSE 0x275
+#define KEY_SLOWREVERSE 0x276
+/*
+ * Control a data application associated with the currently viewed channel,
+ * e.g. teletext or data broadcast application (MHEG, MHP, HbbTV, etc.)
+ */
+#define KEY_DATA 0x275
+
#define BTN_TRIGGER_HAPPY 0x2c0
#define BTN_TRIGGER_HAPPY1 0x2c0
#define BTN_TRIGGER_HAPPY2 0x2c1
#define BUS_ATARI 0x1B
#define BUS_SPI 0x1C
#define BUS_RMI 0x1D
+#define BUS_CEC 0x1E
/*
* MT_TOOL types
}
# if THREAD_SIZE >= PAGE_SIZE
-void __init __weak thread_info_cache_init(void)
+void __init __weak thread_stack_cache_init(void)
{
}
#endif
/* Should be run before the first non-init thread is created */
init_espfix_bsp();
#endif
- thread_info_cache_init();
+ thread_stack_cache_init();
cred_init();
fork_init();
proc_caches_init();
{
struct blacklist_entry *entry;
char fn_name[KSYM_SYMBOL_LEN];
+ unsigned long addr;
if (list_empty(&blacklisted_initcalls))
return false;
- sprint_symbol_no_offset(fn_name, (unsigned long)fn);
+ addr = (unsigned long) dereference_function_descriptor(fn);
+ sprint_symbol_no_offset(fn_name, addr);
list_for_each_entry(entry, &blacklisted_initcalls, next) {
if (!strcmp(fn_name, entry->buf)) {
}
#endif
-void __weak arch_release_thread_info(struct thread_info *ti)
+void __weak arch_release_thread_stack(unsigned long *stack)
{
}
-#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
+#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
/*
* Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
* kmemcache based allocator.
*/
# if THREAD_SIZE >= PAGE_SIZE
-static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
+static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
int node)
{
struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
return page ? page_address(page) : NULL;
}
-static inline void free_thread_info(struct thread_info *ti)
+static inline void free_thread_stack(unsigned long *stack)
{
- struct page *page = virt_to_page(ti);
+ struct page *page = virt_to_page(stack);
memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
-(1 << THREAD_SIZE_ORDER));
__free_kmem_pages(page, THREAD_SIZE_ORDER);
}
# else
-static struct kmem_cache *thread_info_cache;
+static struct kmem_cache *thread_stack_cache;
-static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
+static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
int node)
{
- return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
+ return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
}
-static void free_thread_info(struct thread_info *ti)
+static void free_thread_stack(unsigned long *stack)
{
- kmem_cache_free(thread_info_cache, ti);
+ kmem_cache_free(thread_stack_cache, stack);
}
-void thread_info_cache_init(void)
+void thread_stack_cache_init(void)
{
- thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
+ thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
THREAD_SIZE, 0, NULL);
- BUG_ON(thread_info_cache == NULL);
+ BUG_ON(thread_stack_cache == NULL);
}
# endif
#endif
/* SLAB cache for mm_struct structures (tsk->mm) */
static struct kmem_cache *mm_cachep;
-static void account_kernel_stack(struct thread_info *ti, int account)
+static void account_kernel_stack(unsigned long *stack, int account)
{
- struct zone *zone = page_zone(virt_to_page(ti));
+ struct zone *zone = page_zone(virt_to_page(stack));
mod_zone_page_state(zone, NR_KERNEL_STACK, account);
}
void free_task(struct task_struct *tsk)
{
account_kernel_stack(tsk->stack, -1);
- arch_release_thread_info(tsk->stack);
- free_thread_info(tsk->stack);
+ arch_release_thread_stack(tsk->stack);
+ free_thread_stack(tsk->stack);
rt_mutex_debug_task_free(tsk);
ftrace_graph_exit_task(tsk);
put_seccomp_filter(tsk);
static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
{
struct task_struct *tsk;
- struct thread_info *ti;
+ unsigned long *stack;
int err;
if (node == NUMA_NO_NODE)
if (!tsk)
return NULL;
- ti = alloc_thread_info_node(tsk, node);
- if (!ti)
+ stack = alloc_thread_stack_node(tsk, node);
+ if (!stack)
goto free_tsk;
err = arch_dup_task_struct(tsk, orig);
if (err)
- goto free_ti;
+ goto free_stack;
- tsk->stack = ti;
+ tsk->stack = stack;
#ifdef CONFIG_SECCOMP
/*
* We must handle setting up seccomp filters once we're under
tsk->task_frag.page = NULL;
tsk->wake_q.next = NULL;
- account_kernel_stack(ti, 1);
+ account_kernel_stack(stack, 1);
kcov_task_init(tsk);
return tsk;
-free_ti:
- free_thread_info(ti);
+free_stack:
+ free_thread_stack(stack);
free_tsk:
free_task_struct(tsk);
return NULL;
void static_key_slow_inc(struct static_key *key)
{
+ int v, v1;
+
STATIC_KEY_CHECK_USE();
- if (atomic_inc_not_zero(&key->enabled))
- return;
+
+ /*
+ * Careful if we get concurrent static_key_slow_inc() calls;
+ * later calls must wait for the first one to _finish_ the
+ * jump_label_update() process. At the same time, however,
+ * the jump_label_update() call below wants to see
+ * static_key_enabled(&key) for jumps to be updated properly.
+ *
+ * So give a special meaning to negative key->enabled: it sends
+ * static_key_slow_inc() down the slow path, and it is non-zero
+ * so it counts as "enabled" in jump_label_update(). Note that
+ * atomic_inc_unless_negative() checks >= 0, so roll our own.
+ */
+ for (v = atomic_read(&key->enabled); v > 0; v = v1) {
+ v1 = atomic_cmpxchg(&key->enabled, v, v + 1);
+ if (likely(v1 == v))
+ return;
+ }
jump_label_lock();
- if (atomic_inc_return(&key->enabled) == 1)
+ if (atomic_read(&key->enabled) == 0) {
+ atomic_set(&key->enabled, -1);
jump_label_update(key);
+ atomic_set(&key->enabled, 1);
+ } else {
+ atomic_inc(&key->enabled);
+ }
jump_label_unlock();
}
EXPORT_SYMBOL_GPL(static_key_slow_inc);
static void __static_key_slow_dec(struct static_key *key,
unsigned long rate_limit, struct delayed_work *work)
{
+ /*
+ * The negative count check is valid even when a negative
+ * key->enabled is in use by static_key_slow_inc(); a
+ * __static_key_slow_dec() before the first static_key_slow_inc()
+ * returns is unbalanced, because all other static_key_slow_inc()
+ * instances block while the update is in progress.
+ */
if (!atomic_dec_and_mutex_lock(&key->enabled, &jump_label_mutex)) {
WARN(atomic_read(&key->enabled) < 0,
"jump label: negative count!\n");
static int __init kcov_init(void)
{
- if (!debugfs_create_file("kcov", 0600, NULL, NULL, &kcov_fops)) {
+ /*
+ * The kcov debugfs file won't ever get removed and thus,
+ * there is no need to protect it against removal races. The
+ * use of debugfs_create_file_unsafe() is actually safe here.
+ */
+ if (!debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops)) {
pr_err("failed to create kcov in debugfs\n");
return -ENOMEM;
}
}
void debug_mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
- struct thread_info *ti)
+ struct task_struct *task)
{
SMP_DEBUG_LOCKS_WARN_ON(!spin_is_locked(&lock->wait_lock));
/* Mark the current thread as blocked on the lock: */
- ti->task->blocked_on = waiter;
+ task->blocked_on = waiter;
}
void mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter,
- struct thread_info *ti)
+ struct task_struct *task)
{
DEBUG_LOCKS_WARN_ON(list_empty(&waiter->list));
- DEBUG_LOCKS_WARN_ON(waiter->task != ti->task);
- DEBUG_LOCKS_WARN_ON(ti->task->blocked_on != waiter);
- ti->task->blocked_on = NULL;
+ DEBUG_LOCKS_WARN_ON(waiter->task != task);
+ DEBUG_LOCKS_WARN_ON(task->blocked_on != waiter);
+ task->blocked_on = NULL;
list_del_init(&waiter->list);
waiter->task = NULL;
extern void debug_mutex_free_waiter(struct mutex_waiter *waiter);
extern void debug_mutex_add_waiter(struct mutex *lock,
struct mutex_waiter *waiter,
- struct thread_info *ti);
+ struct task_struct *task);
extern void mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter,
- struct thread_info *ti);
+ struct task_struct *task);
extern void debug_mutex_unlock(struct mutex *lock);
extern void debug_mutex_init(struct mutex *lock, const char *name,
struct lock_class_key *key);
goto skip_wait;
debug_mutex_lock_common(lock, &waiter);
- debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
+ debug_mutex_add_waiter(lock, &waiter, task);
/* add waiting tasks to the end of the waitqueue (FIFO): */
list_add_tail(&waiter.list, &lock->wait_list);
}
__set_task_state(task, TASK_RUNNING);
- mutex_remove_waiter(lock, &waiter, current_thread_info());
+ mutex_remove_waiter(lock, &waiter, task);
/* set it to 0 if there are no waiters left: */
if (likely(list_empty(&lock->wait_list)))
atomic_set(&lock->count, 0);
return 0;
err:
- mutex_remove_waiter(lock, &waiter, task_thread_info(task));
+ mutex_remove_waiter(lock, &waiter, task);
spin_unlock_mutex(&lock->wait_lock, flags);
debug_mutex_free_waiter(&waiter);
mutex_release(&lock->dep_map, 1, ip);
do { spin_lock(lock); (void)(flags); } while (0)
#define spin_unlock_mutex(lock, flags) \
do { spin_unlock(lock); (void)(flags); } while (0)
-#define mutex_remove_waiter(lock, waiter, ti) \
+#define mutex_remove_waiter(lock, waiter, task) \
__list_del((waiter)->list.prev, (waiter)->list.next)
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
if (!error && !oom_killer_disable())
error = -EBUSY;
+ /*
+ * There is a hard to fix race between oom_reaper kernel thread
+ * and oom_killer_disable. oom_reaper calls exit_oom_victim
+ * before the victim reaches exit_mm so try to freeze all the tasks
+ * again and catch such a left over task.
+ */
+ if (!error) {
+ pr_info("Double checking all user space processes after OOM killer disable... ");
+ error = try_to_freeze_tasks(true);
+ pr_cont("\n");
+ }
+
if (error)
thaw_processes();
return error;
for (;;) {
/* Any allowed, online CPU? */
for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
- if (!cpu_active(dest_cpu))
+ if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
+ continue;
+ if (!cpu_online(dest_cpu))
continue;
goto out;
}
*/
set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
#endif
- /* Post initialize new task's util average when its cfs_rq is set */
+ rq = __task_rq_lock(p, &rf);
post_init_entity_util_avg(&p->se);
- rq = __task_rq_lock(p, &rf);
activate_task(rq, p, 0);
p->on_rq = TASK_ON_RQ_QUEUED;
trace_sched_wakeup_new(p);
/*
* reset the NMI-timeout, listing all files on a slow
* console might take a lot of time:
+ * Also, reset softlockup watchdogs on all CPUs, because
+ * another CPU might be blocked waiting for us to process
+ * an IPI.
*/
touch_nmi_watchdog();
+ touch_all_softlockup_watchdogs();
if (!state_filter || (p->state & state_filter))
sched_show_task(p);
}
- touch_all_softlockup_watchdogs();
-
#ifdef CONFIG_SCHED_DEBUG
if (!state_filter)
sysrq_sched_debug_show();
}
}
+/*
+ * Unsigned subtract and clamp on underflow.
+ *
+ * Explicitly do a load-store to ensure the intermediate value never hits
+ * memory. This allows lockless observations without ever seeing the negative
+ * values.
+ */
+#define sub_positive(_ptr, _val) do { \
+ typeof(_ptr) ptr = (_ptr); \
+ typeof(*ptr) val = (_val); \
+ typeof(*ptr) res, var = READ_ONCE(*ptr); \
+ res = var - val; \
+ if (res > var) \
+ res = 0; \
+ WRITE_ONCE(*ptr, res); \
+} while (0)
+
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
if (atomic_long_read(&cfs_rq->removed_load_avg)) {
s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
- sa->load_avg = max_t(long, sa->load_avg - r, 0);
- sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
+ sub_positive(&sa->load_avg, r);
+ sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
removed_load = 1;
}
if (atomic_long_read(&cfs_rq->removed_util_avg)) {
long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
- sa->util_avg = max_t(long, sa->util_avg - r, 0);
- sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
+ sub_positive(&sa->util_avg, r);
+ sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
removed_util = 1;
}
&se->avg, se->on_rq * scale_load_down(se->load.weight),
cfs_rq->curr == se, NULL);
- cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
- cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
- cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
- cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
+ sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
+ sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
+ sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
+ sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
cfs_rq_util_change(cfs_rq);
}
trace_sched_stat_iowait_enabled() ||
trace_sched_stat_blocked_enabled() ||
trace_sched_stat_runtime_enabled()) {
- pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
+ printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
"stat_blocked and stat_runtime require the "
"kernel parameter schedstats=enabled or "
"kernel.sched_schedstats=1\n");
if (!cfs_bandwidth_used())
return;
+ /* Synchronize hierarchical throttle counter: */
+ if (unlikely(!cfs_rq->throttle_uptodate)) {
+ struct rq *rq = rq_of(cfs_rq);
+ struct cfs_rq *pcfs_rq;
+ struct task_group *tg;
+
+ cfs_rq->throttle_uptodate = 1;
+
+ /* Get closest up-to-date node, because leaves go first: */
+ for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
+ pcfs_rq = tg->cfs_rq[cpu_of(rq)];
+ if (pcfs_rq->throttle_uptodate)
+ break;
+ }
+ if (tg) {
+ cfs_rq->throttle_count = pcfs_rq->throttle_count;
+ cfs_rq->throttled_clock_task = rq_clock_task(rq);
+ }
+ }
+
/* an active group must be handled by the update_curr()->put() path */
if (!cfs_rq->runtime_enabled || cfs_rq->curr)
return;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
+ /* Avoid re-evaluating load for this entity: */
+ se = parent_entity(se);
/*
* Bias pick_next to pick a task from this cfs_rq, as
* p is sleeping when it is within its sched_slice.
*/
- if (task_sleep && parent_entity(se))
- set_next_buddy(parent_entity(se));
-
- /* avoid re-evaluating load for this entity */
- se = parent_entity(se);
+ if (task_sleep && se && !throttled_hierarchy(cfs_rq))
+ set_next_buddy(se);
break;
}
flags |= DEQUEUE_SLEEP;
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
- struct cfs_rq *cfs_rq;
struct sched_entity *se;
+ struct cfs_rq *cfs_rq;
+ struct rq *rq;
int i;
tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
init_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(i) {
+ rq = cpu_rq(i);
+
cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
GFP_KERNEL, cpu_to_node(i));
if (!cfs_rq)
init_cfs_rq(cfs_rq);
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
init_entity_runnable_average(se);
+
+ raw_spin_lock_irq(&rq->lock);
post_init_entity_util_avg(se);
+ raw_spin_unlock_irq(&rq->lock);
}
return 1;
u64 throttled_clock, throttled_clock_task;
u64 throttled_clock_task_time;
- int throttled, throttle_count;
+ int throttled, throttle_count, throttle_uptodate;
struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
static inline struct trace_bprintk_fmt *lookup_format(const char *fmt)
{
struct trace_bprintk_fmt *pos;
+
+ if (!fmt)
+ return ERR_PTR(-EINVAL);
+
list_for_each_entry(pos, &trace_bprintk_fmt_list, list) {
if (!strcmp(pos->fmt, fmt))
return pos;
for (iter = start; iter < end; iter++) {
struct trace_bprintk_fmt *tb_fmt = lookup_format(*iter);
if (tb_fmt) {
- *iter = tb_fmt->fmt;
+ if (!IS_ERR(tb_fmt))
+ *iter = tb_fmt->fmt;
continue;
}
/* Found a free page, break it into order-0 pages */
isolated = split_free_page(page);
+ if (!isolated)
+ break;
+
total_isolated += isolated;
+ cc->nr_freepages += isolated;
for (i = 0; i < isolated; i++) {
list_add(&page->lru, freelist);
page++;
}
-
- /* If a page was split, advance to the end of it */
- if (isolated) {
- cc->nr_freepages += isolated;
- if (!strict &&
- cc->nr_migratepages <= cc->nr_freepages) {
- blockpfn += isolated;
- break;
- }
-
- blockpfn += isolated - 1;
- cursor += isolated - 1;
- continue;
+ if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
+ blockpfn += isolated;
+ break;
}
+ /* Advance to the end of split page */
+ blockpfn += isolated - 1;
+ cursor += isolated - 1;
+ continue;
isolate_fail:
if (strict)
}
+ if (locked)
+ spin_unlock_irqrestore(&cc->zone->lock, flags);
+
/*
* There is a tiny chance that we have read bogus compound_order(),
* so be careful to not go outside of the pageblock.
if (strict && blockpfn < end_pfn)
total_isolated = 0;
- if (locked)
- spin_unlock_irqrestore(&cc->zone->lock, flags);
-
/* Update the pageblock-skip if the whole pageblock was scanned */
if (blockpfn == end_pfn)
update_pageblock_skip(cc, valid_page, total_isolated, false);
block_end_pfn = block_start_pfn,
block_start_pfn -= pageblock_nr_pages,
isolate_start_pfn = block_start_pfn) {
+ unsigned long isolated;
/*
* This can iterate a massively long zone without finding any
continue;
/* Found a block suitable for isolating free pages from. */
- isolate_freepages_block(cc, &isolate_start_pfn,
- block_end_pfn, freelist, false);
+ isolated = isolate_freepages_block(cc, &isolate_start_pfn,
+ block_end_pfn, freelist, false);
+ /* If isolation failed early, do not continue needlessly */
+ if (!isolated && isolate_start_pfn < block_end_pfn &&
+ cc->nr_migratepages > cc->nr_freepages)
+ break;
/*
* If we isolated enough freepages, or aborted due to async
if (file->f_ra.mmap_miss > 0)
file->f_ra.mmap_miss--;
addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
- do_set_pte(vma, addr, page, pte, false, false, true);
+ do_set_pte(vma, addr, page, pte, false, false);
unlock_page(page);
goto next;
unlock:
int nr_pages = 1 << order;
struct page *p = page + 1;
+ atomic_set(compound_mapcount_ptr(page), 0);
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
clear_compound_head(p);
set_page_refcounted(p);
if (saddr) {
spte = huge_pte_offset(svma->vm_mm, saddr);
if (spte) {
- mm_inc_nr_pmds(mm);
get_page(virt_to_page(spte));
break;
}
if (pud_none(*pud)) {
pud_populate(mm, pud,
(pmd_t *)((unsigned long)spte & PAGE_MASK));
+ mm_inc_nr_pmds(mm);
} else {
put_page(virt_to_page(spte));
- mm_inc_nr_pmds(mm);
}
spin_unlock(ptl);
out:
*/
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
__GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
- __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC)
+ __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
+ __GFP_ATOMIC)
/* The GFP flags allowed during early boot */
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
kasan_kmalloc(cache, object, cache->object_size, flags);
}
-void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
+static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
{
unsigned long size = cache->object_size;
unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
kasan_kmalloc(page->slab_cache, object, size, flags);
}
-void kasan_kfree(void *ptr)
+void kasan_poison_kfree(void *ptr)
{
struct page *page;
kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
KASAN_FREE_PAGE);
else
- kasan_slab_free(page->slab_cache, ptr);
+ kasan_poison_slab_free(page->slab_cache, ptr);
}
void kasan_kfree_large(const void *ptr)
len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
seq_printf(seq, " hex dump (first %zu bytes):\n", len);
+ kasan_disable_current();
seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
+ kasan_enable_current();
}
/*
return &memcg->css;
fail:
mem_cgroup_free(memcg);
- return NULL;
+ return ERR_PTR(-ENOMEM);
}
static int
struct mem_cgroup *memcg;
unsigned int nr_pages;
bool compound;
+ unsigned long flags;
VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
commit_charge(newpage, memcg, false);
- local_irq_disable();
+ local_irq_save(flags);
mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
memcg_check_events(memcg, newpage);
- local_irq_enable();
+ local_irq_restore(flags);
}
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
* vm_ops->map_pages.
*/
void do_set_pte(struct vm_area_struct *vma, unsigned long address,
- struct page *page, pte_t *pte, bool write, bool anon, bool old)
+ struct page *page, pte_t *pte, bool write, bool anon)
{
pte_t entry;
entry = mk_pte(page, vma->vm_page_prot);
if (write)
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (old)
- entry = pte_mkold(entry);
if (anon) {
inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
page_add_new_anon_rmap(page, vma, address, false);
update_mmu_cache(vma, address, pte);
}
-/*
- * If architecture emulates "accessed" or "young" bit without HW support,
- * there is no much gain with fault_around.
- */
static unsigned long fault_around_bytes __read_mostly =
-#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
- PAGE_SIZE;
-#else
rounddown_pow_of_two(65536);
-#endif
#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
*/
if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (!pte_same(*pte, orig_pte))
- goto unlock_out;
do_fault_around(vma, address, pte, pgoff, flags);
- /* Check if the fault is handled by faultaround */
- if (!pte_same(*pte, orig_pte)) {
- /*
- * Faultaround produce old pte, but the pte we've
- * handler fault for should be young.
- */
- pte_t entry = pte_mkyoung(*pte);
- if (ptep_set_access_flags(vma, address, pte, entry, 0))
- update_mmu_cache(vma, address, pte);
+ if (!pte_same(*pte, orig_pte))
goto unlock_out;
- }
pte_unmap_unlock(pte, ptl);
}
put_page(fault_page);
return ret;
}
- do_set_pte(vma, address, fault_page, pte, false, false, false);
+ do_set_pte(vma, address, fault_page, pte, false, false);
unlock_page(fault_page);
unlock_out:
pte_unmap_unlock(pte, ptl);
}
goto uncharge_out;
}
- do_set_pte(vma, address, new_page, pte, true, true, false);
+ do_set_pte(vma, address, new_page, pte, true, true);
mem_cgroup_commit_charge(new_page, memcg, false, false);
lru_cache_add_active_or_unevictable(new_page, vma);
pte_unmap_unlock(pte, ptl);
put_page(fault_page);
return ret;
}
- do_set_pte(vma, address, fault_page, pte, true, false, false);
+ do_set_pte(vma, address, fault_page, pte, true, false);
pte_unmap_unlock(pte, ptl);
if (set_page_dirty(fault_page))
static void kasan_poison_element(mempool_t *pool, void *element)
{
- if (pool->alloc == mempool_alloc_slab)
- kasan_poison_slab_free(pool->pool_data, element);
- if (pool->alloc == mempool_kmalloc)
- kasan_kfree(element);
+ if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
+ kasan_poison_kfree(element);
if (pool->alloc == mempool_alloc_pages)
kasan_free_pages(element, (unsigned long)pool->pool_data);
}
static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
{
- if (pool->alloc == mempool_alloc_slab)
- kasan_slab_alloc(pool->pool_data, element, flags);
- if (pool->alloc == mempool_kmalloc)
- kasan_krealloc(element, (size_t)pool->pool_data, flags);
+ if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
+ kasan_unpoison_slab(element);
if (pool->alloc == mempool_alloc_pages)
kasan_alloc_pages(element, (unsigned long)pool->pool_data);
}
return MIGRATEPAGE_SUCCESS;
}
+EXPORT_SYMBOL(migrate_page_move_mapping);
/*
* The expected number of remaining references is the same as that
mem_cgroup_migrate(page, newpage);
}
+EXPORT_SYMBOL(migrate_page_copy);
/************************************************************
* Migration functions
p = find_lock_task_mm(tsk);
if (!p)
goto unlock_oom;
-
mm = p->mm;
- if (!atomic_inc_not_zero(&mm->mm_users)) {
- task_unlock(p);
- goto unlock_oom;
- }
-
+ atomic_inc(&mm->mm_users);
task_unlock(p);
if (!down_read_trylock(&mm->mmap_sem)) {
.nr_entries = page_ext->nr_entries,
.entries = &page_ext->trace_entries[0],
};
- gfp_t gfp_mask = page_ext->gfp_mask;
- int mt = gfpflags_to_migratetype(gfp_mask);
+ gfp_t gfp_mask;
+ int mt;
if (unlikely(!page_ext)) {
pr_alert("There is not page extension available.\n");
return;
}
+ gfp_mask = page_ext->gfp_mask;
+ mt = gfpflags_to_migratetype(gfp_mask);
if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) {
pr_alert("page_owner info is not active (free page?)\n");
/* Remove the !PageUptodate pages we added */
shmem_undo_range(inode,
(loff_t)start << PAGE_SHIFT,
- (loff_t)index << PAGE_SHIFT, true);
+ ((loff_t)index << PAGE_SHIFT) - 1, true);
goto undone;
}
get_page(page);
local_irq_save(flags);
pvec = this_cpu_ptr(&lru_rotate_pvecs);
- if (!pagevec_add(pvec, page))
+ if (!pagevec_add(pvec, page) || PageCompound(page))
pagevec_move_tail(pvec);
local_irq_restore(flags);
}
struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
get_page(page);
- if (!pagevec_add(pvec, page))
+ if (!pagevec_add(pvec, page) || PageCompound(page))
pagevec_lru_move_fn(pvec, __activate_page, NULL);
put_cpu_var(activate_page_pvecs);
}
struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
get_page(page);
- if (!pagevec_space(pvec))
+ if (!pagevec_add(pvec, page) || PageCompound(page))
__pagevec_lru_add(pvec);
- pagevec_add(pvec, page);
put_cpu_var(lru_add_pvec);
}
if (likely(get_page_unless_zero(page))) {
struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
- if (!pagevec_add(pvec, page))
+ if (!pagevec_add(pvec, page) || PageCompound(page))
pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
put_cpu_var(lru_deactivate_file_pvecs);
}
struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
get_page(page);
- if (!pagevec_add(pvec, page))
+ if (!pagevec_add(pvec, page) || PageCompound(page))
pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
put_cpu_var(lru_deactivate_pvecs);
}
static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm)
{
+ hrtimer_cancel(&dpcm->timer);
tasklet_kill(&dpcm->tasklet);
}
err = reg_raw_write(codec, reg, val);
if (err == -EAGAIN) {
err = snd_hdac_power_up_pm(codec);
- if (!err)
+ if (err >= 0)
err = reg_raw_write(codec, reg, val);
snd_hdac_power_down_pm(codec);
}
err = reg_raw_read(codec, reg, val, uncached);
if (err == -EAGAIN) {
err = snd_hdac_power_up_pm(codec);
- if (!err)
+ if (err >= 0)
err = reg_raw_read(codec, reg, val, uncached);
snd_hdac_power_down_pm(codec);
}
/*
* Register access ops. Tegra HDA register access is DWORD only.
*/
-static void hda_tegra_writel(u32 value, u32 *addr)
+static void hda_tegra_writel(u32 value, u32 __iomem *addr)
{
writel(value, addr);
}
-static u32 hda_tegra_readl(u32 *addr)
+static u32 hda_tegra_readl(u32 __iomem *addr)
{
return readl(addr);
}
-static void hda_tegra_writew(u16 value, u16 *addr)
+static void hda_tegra_writew(u16 value, u16 __iomem *addr)
{
unsigned int shift = ((unsigned long)(addr) & 0x3) << 3;
- void *dword_addr = (void *)((unsigned long)(addr) & ~0x3);
+ void __iomem *dword_addr = (void __iomem *)((unsigned long)(addr) & ~0x3);
u32 v;
v = readl(dword_addr);
writel(v, dword_addr);
}
-static u16 hda_tegra_readw(u16 *addr)
+static u16 hda_tegra_readw(u16 __iomem *addr)
{
unsigned int shift = ((unsigned long)(addr) & 0x3) << 3;
- void *dword_addr = (void *)((unsigned long)(addr) & ~0x3);
+ void __iomem *dword_addr = (void __iomem *)((unsigned long)(addr) & ~0x3);
u32 v;
v = readl(dword_addr);
return (v >> shift) & 0xffff;
}
-static void hda_tegra_writeb(u8 value, u8 *addr)
+static void hda_tegra_writeb(u8 value, u8 __iomem *addr)
{
unsigned int shift = ((unsigned long)(addr) & 0x3) << 3;
- void *dword_addr = (void *)((unsigned long)(addr) & ~0x3);
+ void __iomem *dword_addr = (void __iomem *)((unsigned long)(addr) & ~0x3);
u32 v;
v = readl(dword_addr);
writel(v, dword_addr);
}
-static u8 hda_tegra_readb(u8 *addr)
+static u8 hda_tegra_readb(u8 __iomem *addr)
{
unsigned int shift = ((unsigned long)(addr) & 0x3) << 3;
- void *dword_addr = (void *)((unsigned long)(addr) & ~0x3);
+ void __iomem *dword_addr = (void __iomem *)((unsigned long)(addr) & ~0x3);
u32 v;
v = readl(dword_addr);
SND_PCI_QUIRK(0x17aa, 0x503c, "Thinkpad L450", ALC292_FIXUP_TPT440_DOCK),
SND_PCI_QUIRK(0x17aa, 0x504a, "ThinkPad X260", ALC292_FIXUP_TPT440_DOCK),
SND_PCI_QUIRK(0x17aa, 0x504b, "Thinkpad", ALC293_FIXUP_LENOVO_SPK_NOISE),
+ SND_PCI_QUIRK(0x17aa, 0x5050, "Thinkpad T560p", ALC292_FIXUP_TPT460),
+ SND_PCI_QUIRK(0x17aa, 0x5053, "Thinkpad T460", ALC292_FIXUP_TPT460),
SND_PCI_QUIRK(0x17aa, 0x5109, "Thinkpad", ALC269_FIXUP_LIMIT_INT_MIC_BOOST),
SND_PCI_QUIRK(0x17aa, 0x3bf8, "Quanta FL1", ALC269_FIXUP_PCM_44K),
SND_PCI_QUIRK(0x17aa, 0x9e54, "LENOVO NB", ALC269_FIXUP_LENOVO_EAPD),
{0x14, 0x90170120},
{0x21, 0x02211030}),
SND_HDA_PIN_QUIRK(0x10ec0256, 0x1028, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE,
+ {0x12, 0x90a60170},
+ {0x14, 0x90170120},
+ {0x21, 0x02211030}),
+ SND_HDA_PIN_QUIRK(0x10ec0256, 0x1028, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE,
ALC256_STANDARD_PINS),
SND_HDA_PIN_QUIRK(0x10ec0280, 0x103c, "HP", ALC280_FIXUP_HP_GPIO4,
{0x12, 0x90a60130},
exit_unsupported
fi
-reset_tracer
-do_reset
-
-FEATURE=`grep hist events/sched/sched_process_fork/trigger`
-if [ -z "$FEATURE" ]; then
+if [ ! -f events/sched/sched_process_fork/hist ]; then
echo "hist trigger is not supported"
exit_unsupported
fi
+reset_tracer
+do_reset
+
echo "Test histogram with execname modifier"
echo 'hist:keys=common_pid.execname' > events/sched/sched_process_fork/trigger
exit_unsupported
fi
-reset_tracer
-do_reset
-
-FEATURE=`grep hist events/sched/sched_process_fork/trigger`
-if [ -z "$FEATURE" ]; then
+if [ ! -f events/sched/sched_process_fork/hist ]; then
echo "hist trigger is not supported"
exit_unsupported
fi
+reset_tracer
+do_reset
+
echo "Test histogram basic tigger"
echo 'hist:keys=parent_pid:vals=child_pid' > events/sched/sched_process_fork/trigger
exit_unsupported
fi
-reset_tracer
-do_reset
-
-FEATURE=`grep hist events/sched/sched_process_fork/trigger`
-if [ -z "$FEATURE" ]; then
+if [ ! -f events/sched/sched_process_fork/hist ]; then
echo "hist trigger is not supported"
exit_unsupported
fi
+reset_tracer
+do_reset
+
reset_trigger
echo "Test histogram multiple tiggers"
printf("No of huge pages allocated = %d\n",
(atoi(nr_hugepages)));
- if (write(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages))
+ if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
!= strlen(initial_nr_hugepages)) {
perror("Failed to write to /proc/sys/vm/nr_hugepages\n");
goto close_fd;
s->deactivate_to_head + s->deactivate_to_tail + s->deactivate_bypass;
if (total) {
- printf("\nSlab Deactivation Ocurrences %%\n");
+ printf("\nSlab Deactivation Occurrences %%\n");
printf("-------------------------------------------------\n");
printf("Slab full %7lu %3lu%%\n",
s->deactivate_full, (s->deactivate_full * 100) / total);