--- /dev/null
+//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for Haswell to support instruction
+// scheduling and other instruction cost heuristics.
+//
+//===----------------------------------------------------------------------===//
+
+def HaswellModel : SchedMachineModel {
+ // All x86 instructions are modeled as a single micro-op, and HW can decode 4
+ // instructions per cycle.
+ let IssueWidth = 4;
+ let MinLatency = 0; // 0 = Out-of-order execution.
+ let LoadLatency = 4;
+ let ILPWindow = 40;
+ let MispredictPenalty = 16;
+}
+
+let SchedModel = HaswellModel in {
+
+// Haswell can issue micro-ops to 8 different ports in one cycle.
+
+// Ports 0, 1, 5, 6 and 7 handle all computation.
+// Port 4 gets the data half of stores. Store data can be available later than
+// the store address, but since we don't model the latency of stores, we can
+// ignore that.
+// Ports 2 and 3 are identical. They handle loads and the address half of
+// stores. Port 7 can handle address calculations.
+def HWPort0 : ProcResource<1>;
+def HWPort1 : ProcResource<1>;
+def HWPort2 : ProcResource<1>;
+def HWPort3 : ProcResource<1>;
+def HWPort4 : ProcResource<1>;
+def HWPort5 : ProcResource<1>;
+def HWPort6 : ProcResource<1>;
+def HWPort7 : ProcResource<1>;
+
+// Many micro-ops are capable of issuing on multiple ports.
+def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>;
+def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
+def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>;
+def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
+def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>;
+def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
+def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
+
+// Integer division issued on port 0, but uses the non-pipelined divider.
+def HWDivider : ProcResource<1> { let Buffered = 0; }
+
+// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
+// cycles after the memory operand.
+def : ReadAdvance<ReadAfterLd, 4>;
+
+// Many SchedWrites are defined in pairs with and without a folded load.
+// Instructions with folded loads are usually micro-fused, so they only appear
+// as two micro-ops when queued in the reservation station.
+// This multiclass defines the resource usage for variants with and without
+// folded loads.
+multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
+ ProcResourceKind ExePort,
+ int Lat> {
+ // Register variant is using a single cycle on ExePort.
+ def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+ // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
+ // latency.
+ def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
+ let Latency = !add(Lat, 4);
+ }
+}
+
+// A folded store needs a cycle on port 4 for the store data, but it does not
+// need an extra port 2/3 cycle to recompute the address.
+def : WriteRes<WriteRMW, [HWPort4]>;
+
+def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
+def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; }
+def : WriteRes<WriteMove, [HWPort0156]>;
+def : WriteRes<WriteZero, []>;
+
+defm : HWWriteResPair<WriteALU, HWPort0156, 1>;
+defm : HWWriteResPair<WriteIMul, HWPort1, 3>;
+defm : HWWriteResPair<WriteShift, HWPort056, 1>;
+defm : HWWriteResPair<WriteJump, HWPort5, 1>;
+
+// This is for simple LEAs with one or two input operands.
+// The complex ones can only execute on port 1, and they require two cycles on
+// the port to read all inputs. We don't model that.
+def : WriteRes<WriteLEA, [HWPort15]>;
+
+// This is quite rough, latency depends on the dividend.
+def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
+ let Latency = 25;
+ let ResourceCycles = [1, 10];
+}
+def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
+ let Latency = 29;
+ let ResourceCycles = [1, 1, 10];
+}
+
+// Scalar and vector floating point.
+defm : HWWriteResPair<WriteFAdd, HWPort1, 3>;
+defm : HWWriteResPair<WriteFMul, HWPort0, 5>;
+defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles.
+defm : HWWriteResPair<WriteFRcp, HWPort0, 5>;
+defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>;
+defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
+defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
+defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
+
+// Vector integer operations.
+defm : HWWriteResPair<WriteVecShift, HWPort05, 1>;
+defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
+defm : HWWriteResPair<WriteVecALU, HWPort15, 1>;
+defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>;
+defm : HWWriteResPair<WriteShuffle, HWPort15, 1>;
+
+def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; }
+def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
+} // SchedModel