bool interpolation = (polydata && polydata->GetNumberOfCells () != polydata->GetNumberOfVerts ());
mapper->SetInterpolateScalarsBeforeMapping (interpolation);
- mapper->ScalarVisibilityOn ();
+ mapper->ScalarVisibilityOff ();
mapper->ImmediateModeRenderingOff ();
actor->SetNumberOfCloudPoints (int (std::max<vtkIdType> (1, polydata->GetNumberOfPoints () / 10)));
actor->GetProperty ()->SetInterpolationToFlat ();
actor->GetProperty ()->BackfaceCullingOn ();
+ actor->GetProperty ()->SetColor(c.val);
actor->SetMapper (mapper);
+}
+
+///////////////////////////////////////////////////////////////////////////////////////////////
+/// cloud normals widget implementation
+
+struct temp_viz::CloudNormalsWidget::ApplyCloudNormals
+{
+ template<typename _Tp>
+ struct Impl
+ {
+ static vtkSmartPointer<vtkCellArray> applyOrganized(const cv::Mat &cloud, const cv::Mat& normals,
+ int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
+ {
+ vtkIdType point_step = static_cast<vtkIdType> (sqrt (double (level)));
+ nr_normals = (static_cast<vtkIdType> ((cloud.cols - 1)/ point_step) + 1) *
+ (static_cast<vtkIdType> ((cloud.rows - 1) / point_step) + 1);
+ vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
+
+ pts = new _Tp[2 * nr_normals * 3];
+
+ int cch = cloud.channels();
+ vtkIdType cell_count = 0;
+ for (vtkIdType y = 0; y < cloud.rows; y += point_step)
+ {
+ const _Tp *prow = cloud.ptr<_Tp>(y);
+ const _Tp *nrow = normals.ptr<_Tp>(y);
+ for (vtkIdType x = 0; x < cloud.cols; x += point_step + cch)
+ {
+ pts[2 * cell_count * 3 + 0] = prow[x];
+ pts[2 * cell_count * 3 + 1] = prow[x+1];
+ pts[2 * cell_count * 3 + 2] = prow[x+2];
+ pts[2 * cell_count * 3 + 3] = prow[x] + nrow[x] * scale;
+ pts[2 * cell_count * 3 + 4] = prow[x+1] + nrow[x+1] * scale;
+ pts[2 * cell_count * 3 + 5] = prow[x+2] + nrow[x+2] * scale;
+
+ lines->InsertNextCell (2);
+ lines->InsertCellPoint (2 * cell_count);
+ lines->InsertCellPoint (2 * cell_count + 1);
+ cell_count++;
+ }
+ }
+ return lines;
+ }
+
+ static vtkSmartPointer<vtkCellArray> applyUnorganized(const cv::Mat &cloud, const cv::Mat& normals,
+ int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
+ {
+ vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
+ nr_normals = (cloud.size().area() - 1) / level + 1 ;
+ pts = new _Tp[2 * nr_normals * 3];
+
+ int cch = cloud.channels();
+ const _Tp *p = cloud.ptr<_Tp>();
+ const _Tp *n = normals.ptr<_Tp>();
+ for (vtkIdType i = 0, j = 0; j < nr_normals; j++, i = j * level * cch)
+ {
+
+ pts[2 * j * 3 + 0] = p[i];
+ pts[2 * j * 3 + 1] = p[i+1];
+ pts[2 * j * 3 + 2] = p[i+2];
+ pts[2 * j * 3 + 3] = p[i] + n[i] * scale;
+ pts[2 * j * 3 + 4] = p[i+1] + n[i+1] * scale;
+ pts[2 * j * 3 + 5] = p[i+2] + n[i+2] * scale;
+
+ lines->InsertNextCell (2);
+ lines->InsertCellPoint (2 * j);
+ lines->InsertCellPoint (2 * j + 1);
+ }
+ return lines;
+ }
+ };
+
+ template<typename _Tp>
+ static inline vtkSmartPointer<vtkCellArray> apply(const cv::Mat &cloud, const cv::Mat& normals,
+ int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
+ {
+ if (cloud.cols > 1 && cloud.rows > 1)
+ return ApplyCloudNormals::Impl<_Tp>::applyOrganized(cloud, normals, level, scale, pts, nr_normals);
+ else
+ return ApplyCloudNormals::Impl<_Tp>::applyUnorganized(cloud, normals, level, scale, pts, nr_normals);
+ }
+};
+
+temp_viz::CloudNormalsWidget::CloudNormalsWidget(InputArray _cloud, InputArray _normals, int level, float scale)
+{
+ Mat cloud = _cloud.getMat();
+ Mat normals = _normals.getMat();
+ CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
+ CV_Assert(cloud.size() == normals.size() && cloud.type() == normals.type());
+
+ vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
+ vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
+ vtkIdType nr_normals = 0;
+
+ if (cloud.depth() == CV_32F)
+ {
+ points->SetDataTypeToFloat();
+
+ vtkSmartPointer<vtkFloatArray> data = vtkSmartPointer<vtkFloatArray>::New ();
+ data->SetNumberOfComponents (3);
+
+ float* pts = 0;
+ lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
+ data->SetArray (&pts[0], 2 * nr_normals * 3, 0);
+ points->SetData (data);
+ }
+ else
+ {
+ points->SetDataTypeToDouble();
+
+ vtkSmartPointer<vtkDoubleArray> data = vtkSmartPointer<vtkDoubleArray>::New ();
+ data->SetNumberOfComponents (3);
+
+ double* pts = 0;
+ lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
+ data->SetArray (&pts[0], 2 * nr_normals * 3, 0);
+ points->SetData (data);
+ }
+
+ vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New();
+ polyData->SetPoints (points);
+ polyData->SetLines (lines);
+
+ vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
+ mapper->SetInput (polyData);
+ mapper->SetColorModeToMapScalars();
+ mapper->SetScalarModeToUsePointData();
+
+ vtkLODActor * actor = vtkLODActor::SafeDownCast(WidgetAccessor::getActor(*this));
+ actor->SetMapper(mapper);
}
\ No newline at end of file
cv::Mat cvcloud_load()
{
- cv::Mat cloud(1, 20000, CV_32FC3);
+ cv::Mat cloud(1, 20000, CV_64FC4);
std::ifstream ifs("cloud_dragon.ply");
std::string str;
for(size_t i = 0; i < 11; ++i)
std::getline(ifs, str);
- cv::Point3f* data = cloud.ptr<cv::Point3f>();
- for(size_t i = 0; i < 20000; ++i)
- ifs >> data[i].x >> data[i].y >> data[i].z;
+ cv::Vec4d* data = cloud.ptr<cv::Vec4d>();
+ for(size_t i = 0; i < 20000; ++i){
+ ifs >> data[i][0] >> data[i][1] >> data[i][2];
+ data[i][3] = 1.0;
+ }
return cloud;
}
temp_viz::CoordinateSystemWidget csw(1.0f, cv::Affine3f::Identity());
temp_viz::TextWidget tw("TEST", cv::Point2i(100,100), 20);
temp_viz::CloudWidget pcw(cloud, colors);
- temp_viz::CloudWidget pcw2(cloud, temp_viz::Color(255,255,255));
+ temp_viz::CloudWidget pcw2(cloud, temp_viz::Color(0,255,255));
// v.showWidget("line", lw);
// v.showWidget("plane", pw);
// v.showWidget("cube", cuw);
v.showWidget("coordinateSystem", csw);
// v.showWidget("text",tw);
- v.showWidget("pcw",pcw);
+// v.showWidget("pcw",pcw);
v.showWidget("pcw2",pcw2);
temp_viz::LineWidget lw2 = lw;
// v.showPointCloud("cld",cloud, colors);
+ cv::Mat normals(cloud.size(), cloud.type(), cv::Scalar(0, 10, 0));
+
+// v.addPointCloudNormals(cloud, normals, 100, 0.02, "n");
+ temp_viz::CloudNormalsWidget cnw(cloud, normals);
+ v.showWidget("n", cnw);
+
while(!v.wasStopped())
{
// Creating new point cloud with id cloud1
cw.setPose(cloudPosition);
cyw.setPose(cloudPosition);
lw.setPose(cloudPosition);
- cuw.setPose(cloudPosition);
- v.showWidget("pcw",pcw, cloudPosition);
- v.showWidget("pcw2",pcw2, cloudPosition2);
+ cuw.setPose(cloudPosition);
+// cnw.setPose(cloudPosition);
+// v.showWidget("pcw",pcw, cloudPosition);
+// v.showWidget("pcw2",pcw2, cloudPosition2);
// v.showWidget("plane", pw, cloudPosition);
angle_x += 0.1f;
v.spinOnce(1, true);
}
-// cv::Mat normals(cloud.size(), CV_32FC3, cv::Scalar(0, 10, 0));
-//
-// v.addPointCloudNormals(cloud, normals, 100, 0.02, "n");
+
//
//
// temp_viz::ModelCoefficients mc;