namespace cv {
+#define LAPLACIAN_LOCAL_MEM(tileX, tileY, ksize, elsize) (((tileX) + 2 * (int)((ksize) / 2)) * (3 * (tileY) + 2 * (int)((ksize) / 2)) * elsize)
+
static bool ocl_Laplacian5(InputArray _src, OutputArray _dst,
const Mat & kd, const Mat & ks, double scale, double delta,
int borderType, int depth, int ddepth)
{
+ const size_t tileSizeX = 16;
+ const size_t tileSizeYmin = 8;
+
+ const ocl::Device dev = ocl::Device::getDefault();
+
+ int stype = _src.type();
+ int sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), esz = CV_ELEM_SIZE(stype);
+
+ bool doubleSupport = dev.doubleFPConfig() > 0;
+ if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
+ return false;
+
+ Mat kernelX = kd.reshape(1, 1);
+ if (kernelX.cols % 2 != 1)
+ return false;
+ Mat kernelY = ks.reshape(1, 1);
+ if (kernelY.cols % 2 != 1)
+ return false;
+ CV_Assert(kernelX.cols == kernelY.cols);
+
+ size_t wgs = dev.maxWorkGroupSize();
+ size_t lmsz = dev.localMemSize();
+
+ size_t src_step = _src.step(), src_offset = _src.offset();
+ if (((src_offset % src_step) % esz == 0) &&
+ (
+ (borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE) ||
+ (borderType == BORDER_REFLECT || borderType == BORDER_WRAP || borderType == BORDER_REFLECT_101) &&
+ (_src.cols() >= kernelX.cols && _src.rows() >= kernelY.cols)
+ ) &&
+ (tileSizeX * tileSizeYmin <= wgs) &&
+ (LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeYmin, kernelX.cols, cn * 4) <= lmsz)
+ )
+ {
+ Size size = _src.size(), wholeSize;
+ Point origin;
+ int dtype = CV_MAKE_TYPE(ddepth, cn);
+ int wdepth = CV_32F;
+
+ size_t tileSizeY = wgs / tileSizeX;
+ while ((tileSizeX * tileSizeY > wgs) || (LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeY, kernelX.cols, cn * 4) > lmsz))
+ {
+ tileSizeY /= 2;
+ }
+ size_t lt2[2] = { tileSizeX, tileSizeY};
+ size_t gt2[2] = { lt2[0] * (1 + (size.width - 1) / lt2[0]), lt2[1] };
+
+ char cvt[2][40];
+ const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
+ "BORDER_REFLECT_101" };
+
+ String opts = cv::format("-D BLK_X=%d -D BLK_Y=%d -D RADIUS=%d%s%s"
+ " -D convertToWT=%s -D convertToDT=%s"
+ " -D %s -D srcT1=%s -D dstT1=%s -D WT1=%s -D CN=%d ",
+ (int)lt2[0], (int)lt2[1], kernelX.cols / 2,
+ ocl::kernelToStr(kernelX, wdepth, "KERNEL_MATRIX_X").c_str(),
+ ocl::kernelToStr(kernelY, wdepth, "KERNEL_MATRIX_Y").c_str(),
+ ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
+ ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]),
+ borderMap[borderType], ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), ocl::typeToStr(wdepth),
+ cn);
+
+ ocl::Kernel k("laplacian", ocl::imgproc::laplacian5_oclsrc, opts);
+ if (k.empty())
+ return false;
+ UMat src = _src.getUMat();
+ _dst.create(size, dtype);
+ UMat dst = _dst.getUMat();
+
+ int src_offset_x = static_cast<int>((src_offset % src_step) / esz);
+ int src_offset_y = static_cast<int>(src_offset / src_step);
+
+ src.locateROI(wholeSize, origin);
+
+ k.args(ocl::KernelArg::PtrReadOnly(src), (int)src_step, src_offset_x, src_offset_y,
+ wholeSize.height, wholeSize.width, ocl::KernelArg::WriteOnly(dst),
+ static_cast<float>(scale), static_cast<float>(delta));
+
+ return k.run(2, gt2, lt2, false);
+ }
int iscale = cvRound(scale), idelta = cvRound(delta);
- bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
- floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
- int cn = _src.channels(), wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
+ bool floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
+ int wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
if (!doubleSupport && wdepth == CV_64F)
return false;
char cvt[2][40];
ocl::Kernel k("sumConvert", ocl::imgproc::laplacian5_oclsrc,
- format("-D srcT=%s -D WT=%s -D dstT=%s -D coeffT=%s -D wdepth=%d "
+ format("-D ONLY_SUM_CONVERT "
+ "-D srcT=%s -D WT=%s -D dstT=%s -D coeffT=%s -D wdepth=%d "
"-D convertToWT=%s -D convertToDT=%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)),
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
+
#define noconvert
+#ifdef ONLY_SUM_CONVERT
+
__kernel void sumConvert(__global const uchar * src1ptr, int src1_step, int src1_offset,
__global const uchar * src2ptr, int src2_step, int src2_offset,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
#endif
}
}
+
+#else
+
+#if CN==1
+#define srcT srcT1
+#define WT WT1
+#define dstT dstT1
+#else
+#define __CAT(x, y) x##y
+#define CAT(x, y) __CAT(x, y)
+
+#define srcT CAT(srcT1, CN)
+#define WT CAT(WT1, CN)
+#define dstT CAT(dstT1, CN)
+#endif
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+/////////////////////////////////Macro for border type////////////////////////////////////////////
+/////////////////////////////////////////////////////////////////////////////////////////////////
+
+#ifdef BORDER_CONSTANT
+// CCCCCC|abcdefgh|CCCCCCC
+#define EXTRAPOLATE(x, maxV)
+#elif defined BORDER_REPLICATE
+// aaaaaa|abcdefgh|hhhhhhh
+#define EXTRAPOLATE(x, maxV) \
+ { \
+ (x) = max(min((x), (maxV) - 1), 0); \
+ }
+#elif defined BORDER_WRAP
+// cdefgh|abcdefgh|abcdefg
+#define EXTRAPOLATE(x, maxV) \
+ { \
+ (x) = ( (x) + (maxV) ) % (maxV); \
+ }
+#elif defined BORDER_REFLECT
+// fedcba|abcdefgh|hgfedcb
+#define EXTRAPOLATE(x, maxV) \
+ { \
+ (x) = min(((maxV)-1)*2-(x)+1, max((x),-(x)-1) ); \
+ }
+#elif defined BORDER_REFLECT_101
+// gfedcb|abcdefgh|gfedcba
+#define EXTRAPOLATE(x, maxV) \
+ { \
+ (x) = min(((maxV)-1)*2-(x), max((x),-(x)) ); \
+ }
+#else
+#error No extrapolation method
+#endif
+
+#if CN != 3
+#define loadpix(addr) *(__global const srcT *)(addr)
+#define storepix(val, addr) *(__global dstT *)(addr) = val
+#define SRCSIZE (int)sizeof(srcT)
+#define DSTSIZE (int)sizeof(dstT)
+#else
+#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
+#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
+#define SRCSIZE (int)sizeof(srcT1)*3
+#define DSTSIZE (int)sizeof(dstT1)*3
+#endif
+
+#define SRC(_x,_y) convertToWT(loadpix(Src + mad24(_y, src_step, SRCSIZE * _x)))
+
+#ifdef BORDER_CONSTANT
+// CCCCCC|abcdefgh|CCCCCCC
+#define ELEM(_x,_y,r_edge,t_edge,const_v) (_x)<0 | (_x) >= (r_edge) | (_y)<0 | (_y) >= (t_edge) ? (const_v) : SRC((_x),(_y))
+#else
+#define ELEM(_x,_y,r_edge,t_edge,const_v) SRC((_x),(_y))
+#endif
+
+// horizontal and vertical filter kernels
+// should be defined on host during compile time to avoid overhead
+#define DIG(a) a,
+__constant WT1 mat_kernelX[] = { KERNEL_MATRIX_X };
+__constant WT1 mat_kernelY[] = { KERNEL_MATRIX_Y };
+
+__kernel void laplacian(__global uchar* Src, int src_step, int srcOffsetX, int srcOffsetY, int height, int width,
+ __global uchar* Dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
+ WT1 scale, WT1 delta)
+{
+ __local WT lsmem[BLK_Y + 2 * RADIUS][BLK_X + 2 * RADIUS];
+ __local WT lsmemDy1[BLK_Y][BLK_X + 2 * RADIUS];
+ __local WT lsmemDy2[BLK_Y][BLK_X + 2 * RADIUS];
+
+ int lix = get_local_id(0);
+ int liy = get_local_id(1);
+
+ int x = get_global_id(0);
+
+ int srcX = x + srcOffsetX - RADIUS;
+
+ int clocY = liy;
+ do
+ {
+ int yb = clocY + srcOffsetY - RADIUS;
+ EXTRAPOLATE(yb, (height));
+
+ int clocX = lix;
+ int cSrcX = srcX;
+ do
+ {
+ int xb = cSrcX;
+ EXTRAPOLATE(xb,(width));
+ lsmem[clocY][clocX] = ELEM(xb, yb, (width), (height), 0 );
+
+ clocX += BLK_X;
+ cSrcX += BLK_X;
+ }
+ while(clocX < BLK_X+(RADIUS*2));
+
+ clocY += BLK_Y;
+ }
+ while (clocY < BLK_Y+(RADIUS*2));
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ WT scale_v = (WT)scale;
+ WT delta_v = (WT)delta;
+ for (int y = 0; y < dst_rows; y+=BLK_Y)
+ {
+ int i, clocX = lix;
+ WT sum1 = (WT) 0;
+ WT sum2 = (WT) 0;
+ do
+ {
+ sum1 = (WT) 0;
+ sum2 = (WT) 0;
+ for (i=0; i<=2*RADIUS; i++)
+ {
+ sum1 = mad(lsmem[liy + i][clocX], mat_kernelY[i], sum1);
+ sum2 = mad(lsmem[liy + i][clocX], mat_kernelX[i], sum2);
+ }
+ lsmemDy1[liy][clocX] = sum1;
+ lsmemDy2[liy][clocX] = sum2;
+ clocX += BLK_X;
+ }
+ while(clocX < BLK_X+(RADIUS*2));
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if ((x < dst_cols) && (y + liy < dst_rows))
+ {
+ sum1 = (WT) 0;
+ sum2 = (WT) 0;
+ for (i=0; i<=2*RADIUS; i++)
+ {
+ sum1 = mad(lsmemDy1[liy][lix+i], mat_kernelX[i], sum1);
+ sum2 = mad(lsmemDy2[liy][lix+i], mat_kernelY[i], sum2);
+ }
+
+ WT sum = mad(scale_v, (sum1 + sum2), delta_v);
+ storepix(convertToDT(sum), Dst + mad24(y + liy, dst_step, mad24(x, DSTSIZE, dst_offset)));
+ }
+
+ for (int i = liy * BLK_X + lix; i < (RADIUS*2) * (BLK_X+(RADIUS*2)); i += BLK_X * BLK_Y)
+ {
+ int clocX = i % (BLK_X+(RADIUS*2));
+ int clocY = i / (BLK_X+(RADIUS*2));
+ lsmem[clocY][clocX] = lsmem[clocY + BLK_Y][clocX];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ int yb = y + liy + BLK_Y + srcOffsetY + RADIUS;
+ EXTRAPOLATE(yb, (height));
+
+ clocX = lix;
+ int cSrcX = x + srcOffsetX - RADIUS;
+ do
+ {
+ int xb = cSrcX;
+ EXTRAPOLATE(xb,(width));
+ lsmem[liy + 2*RADIUS][clocX] = ELEM(xb, yb, (width), (height), 0 );
+
+ clocX += BLK_X;
+ cSrcX += BLK_X;
+ }
+ while(clocX < BLK_X+(RADIUS*2));
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+}
+
+#endif
\ No newline at end of file