/// less-than comparison will execute. If not computable, return
/// CouldNotCompute.
///
- /// \p Pred specifies the kind of less-than comparison.
+ /// \p isSigned specifies whether the less-than is signed.
///
/// \p ControlsExit is true when the LHS < RHS condition directly controls
/// the branch (loops exits only if condition is true). In this case, we can
/// If \p AllowPredicates is set, this call will try to use a minimal set of
/// SCEV predicates in order to return an exact answer.
ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
- ICmpInst::Predicate Pred, bool ControlsExit,
- bool AllowPredicates);
+ bool isSigned, bool ControlsExit,
+ bool AllowPredicates = false);
ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
bool isSigned, bool IsSubExpr,
- bool AllowPredicates);
+ bool AllowPredicates = false);
/// Return a predecessor of BB (which may not be an immediate predecessor)
/// which has exactly one successor from which BB is reachable, or null if
createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
/// Compute the backedge taken count knowing the interval difference, and
- /// the stride for an inequality.
- ///
- /// Caller must ensure that non-negative N exists such that
- /// (Start + Stride * N) >= End, and that computing "(Start + Stride * N)"
- /// doesn't overflow. In other words:
- /// 1. If IsSigned is true, Start <=s End. Otherwise, Start <=u End.
- /// 2. If End is not equal to start and IsSigned is true, Stride >s 0. If
- /// End is not equal to start and IsSigned is false, Stride >u 0.
- /// 3. The index variable doesn't overflow.
- ///
- /// If the preconditions hold, the backedge taken count is N.
- ///
- /// IsSigned determines whether End, Start, and Stride are treated as
- /// signed values, for the purpose of optimizing the form of the result.
- ///
- /// This function tries to use an optimized form:
- /// ((End - Start) + (Stride - 1)) /u Stride
- ///
- /// If it can't prove the addition doesn't overflow in that form, it uses
- /// getUDivCeilSCEV.
- const SCEV *computeBECount(bool IsSigned, const SCEV *Start, const SCEV *End,
- const SCEV *Stride);
-
- /// Compute ceil(N / D). N and D are treated as unsigned values.
- ///
- /// Since SCEV doesn't have native ceiling division, this generates a
- /// SCEV expression of the following form:
- ///
- /// umin(N, 1) + floor((N - umin(N, 1)) / D)
- ///
- /// A denominator of zero or poison is handled the same way as getUDivExpr().
- const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
+ /// the stride for an inequality. Result takes the form:
+ /// (Delta + (Stride - 1)) udiv Stride.
+ /// Caller must ensure that this expression either does not overflow or
+ /// that the result is undefined if it does.
+ const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride);
/// Compute the maximum backedge count based on the range of values
/// permitted by Start, End, and Stride. This is for loops of the form
}
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: { // while (X < Y)
- ExitLimit EL =
- howManyLessThans(LHS, RHS, L, Pred, ControlsExit, AllowPredicates);
+ bool IsSigned = Pred == ICmpInst::ICMP_SLT;
+ ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
+ AllowPredicates);
if (EL.hasAnyInfo()) return EL;
break;
}
return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
}
-const SCEV *ScalarEvolution::computeBECount(bool IsSigned, const SCEV *Start,
- const SCEV *End,
- const SCEV *Stride) {
- // The basic formula here is ceil((End - Start) / Stride). Since SCEV
- // doesn't natively have division that rounds up, we need to convert to
- // floor division.
- //
- // MayOverflow is whether adding (End - Start) + (Stride - 1)
- // can overflow if Stride is positive. It's a precondition of the
- // function that "End - Start" doesn't overflow. We handle the case where
- // Stride isn't positive later.
- //
- // In practice, the arithmetic almost never overflows, but we have to prove
- // it. We have a variety of ways to come up with a proof.
- const SCEV *One = getOne(Stride->getType());
- bool MayOverflow = [&] {
- if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
- if (StrideC->getAPInt().isPowerOf2()) {
- // Suppose Stride is a power of two, and Start/End are unsigned
- // integers. Let UMAX be the largest representable unsigned
- // integer.
- //
- // By the preconditions of this function (see comment in header), we
- // know "(Start + Stride * N)" >= End, and this doesn't overflow.
- // As a formula:
- //
- // End <= (Start + Stride * N) <= UMAX
- //
- // Subtracting Start from all the terms:
- //
- // End - Start <= Stride * N <= UMAX - Start
- //
- // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
- //
- // End - Start <= Stride * N <= UMAX
- //
- // Stride * N is a multiple of Stride. Therefore,
- //
- // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
- //
- // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
- // Therefore, UMAX mod Stride == Stride - 1. So we can write:
- //
- // End - Start <= Stride * N <= UMAX - Stride - 1
- //
- // Dropping the middle term:
- //
- // End - Start <= UMAX - Stride - 1
- //
- // Adding Stride - 1 to both sides:
- //
- // (End - Start) + (Stride - 1) <= UMAX
- //
- // In other words, the addition doesn't have unsigned overflow.
- //
- // A similar proof works if we treat Start/End as signed values.
- // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
- // use signed max instead of unsigned max. Note that we're trying
- // to prove a lack of unsigned overflow in either case.
- return false;
- }
- }
- if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
- // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
- // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
- // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
- //
- // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
- return false;
- }
- if (IsSigned && isKnownNonNegative(Start)) {
- // IsSigned implies "Start <=s End <=s INT_MAX".
- // "isKnownNonNegative(Start)" implies "Start >=s 0".
- // Therefore, "0 <=s End - Start <=s INT_MAX - Start <= INT_MAX".
- // IsSigned also implies "0 <=s Stride - 1 <s INT_MAX". Therefore,
- // "(End - Start) + (Stride - 1) <u INT_MAX * 2 <u UINT_MAX".
- return false;
- }
- return true;
- }();
-
- // Force the stride to at least one, so we don't divide by zero. The stride
- // can be zero if Delta is zero. We don't actually care what value we use
- // for Stride in this case, as long as it isn't zero.
- Stride = getUMaxExpr(Stride, One);
-
- const SCEV *Delta = getMinusSCEV(End, Start);
- if (!MayOverflow) {
- // floor((D + (S - 1)) / S)
- // We prefer this formulation if it's legal because it's fewer operations.
- return getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
- }
- return getUDivCeilSCEV(Delta, Stride);
-}
-
-const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
- // umin(N, 1) + floor((N - umin(N, 1)) / D)
- // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
- // expression fixes the case of N=0.
- const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
- const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
- return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
+const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta,
+ const SCEV *Step) {
+ const SCEV *One = getOne(Step->getType());
+ Delta = getAddExpr(Delta, getMinusSCEV(Step, One));
+ return getUDivExpr(Delta, Step);
}
const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
: APIntOps::umin(getUnsignedRangeMax(End), Limit);
- MaxBECount = getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
- getConstant(StrideForMaxBECount) /* Step */);
+ MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
+ getConstant(StrideForMaxBECount) /* Step */);
return MaxBECount;
}
ScalarEvolution::ExitLimit
ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, ICmpInst::Predicate Pred,
+ const Loop *L, bool IsSigned,
bool ControlsExit, bool AllowPredicates) {
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
- assert(ICmpInst::isLT(Pred) && "Unexpected pred");
- bool IsSigned = ICmpInst::isSigned(Pred);
-
const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
bool PredicatedIV = false;
auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
+ ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
const SCEV *Stride = IV->getStepRecurrence(*this);
return RHS;
}
+ const SCEV *End = RHS;
// When the RHS is not invariant, we do not know the end bound of the loop and
// cannot calculate the ExactBECount needed by ExitLimit. However, we can
// calculate the MaxBECount, given the start, stride and max value for the end
// is the LHS value of the less-than comparison the first time it is evaluated
// and End is the RHS.
const SCEV *BECountIfBackedgeTaken =
- computeBECount(IsSigned, Start, RHS, Stride);
+ computeBECount(getMinusSCEV(End, Start), Stride);
// If the loop entry is guarded by the result of the backedge test of the
// first loop iteration, then we know the backedge will be taken at least
// once and so the backedge taken count is as above. If not then we use the
// result is as above, and if not max(End,Start) is Start so we get a backedge
// count of zero.
const SCEV *BECount;
- if (isLoopEntryGuardedByCond(L, Pred, getMinusSCEV(OrigStart, Stride),
- OrigRHS))
+ if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(OrigStart, Stride), OrigRHS))
BECount = BECountIfBackedgeTaken;
else {
- const SCEV *End;
// If we know that RHS >= Start in the context of loop, then we know that
// max(RHS, Start) = RHS at this point.
- if (isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
- OrigRHS, OrigStart))
+ if (isLoopEntryGuardedByCond(
+ L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, OrigRHS, OrigStart))
End = RHS;
else
End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
- BECount = computeBECount(IsSigned, Start, End, Stride);
+ BECount = computeBECount(getMinusSCEV(End, Start), Stride);
}
const SCEV *MaxBECount;
return End;
}
- const SCEV *BECount = computeBECount(IsSigned, End, Start, Stride);
+ const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride);
APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
: getUnsignedRangeMax(Start);
const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
? BECount
- : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
- getConstant(MinStride));
+ : computeBECount(getConstant(MaxStart - MinEnd),
+ getConstant(MinStride));
+
+ if (isa<SCEVCouldNotCompute>(MaxBECount))
+ MaxBECount = BECount;
return ExitLimit(BECount, MaxBECount, false, Predicates);
}
; RUN: opt < %s -analyze -enable-new-pm=0 -scalar-evolution | FileCheck %s
; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
-; CHECK: Loop %bb: backedge-taken count is (((-7 + (-1 * (1 umin (-7 + %x)))<nuw><nsw> + %x) /u 3) + (1 umin (-7 + %x)))
+; CHECK: Loop %bb: backedge-taken count is ((-5 + %x) /u 3)
; CHECK: Loop %bb: max backedge-taken count is 1431655764
+
+; ScalarEvolution can't compute a trip count because it doesn't know if
+; dividing by the stride will have a remainder. This could theoretically
+; be teaching it how to use a more elaborate trip count computation.
+
define i32 @f(i32 %x) nounwind readnone {
entry:
%0 = icmp ugt i32 %x, 4 ; <i1> [#uses=1]
; RUN: opt < %s -analyze -enable-new-pm=0 -scalar-evolution 2>&1 | FileCheck %s
; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" 2>&1 2>&1 | FileCheck %s
-; CHECK: Loop %bb: backedge-taken count is (((997 + (-1 * (1 umin (997 + (-1 * %x))))<nuw><nsw> + (-1 * %x)) /u 3) + (1 umin (997 + (-1 * %x))))
+; CHECK: Loop %bb: backedge-taken count is ((999 + (-1 * %x)) /u 3)
; CHECK: Loop %bb: max backedge-taken count is 334
-; This is a tricky testcase for unsigned wrap detection.
+
+; This is a tricky testcase for unsigned wrap detection which ScalarEvolution
+; doesn't yet know how to do.
define i32 @f(i32 %x) nounwind readnone {
entry:
; CHECK: Loop %for.body: Unpredictable backedge-taken count.
; CHECK: Determining loop execution counts for: @test_other_exit
; CHECK: Loop %for.body: <multiple exits> Unpredictable backedge-taken count.
-; CHECK: Determining loop execution counts for: @test_gt
-; CHECK: Loop %for.body: Unpredictable backedge-taken count.
define void @test(i32 %N) mustprogress {
entry:
ret void
}
-define void @test_gt(i32 %S, i32 %N) mustprogress {
-entry:
- br label %for.body
-for.body:
- %iv = phi i32 [ %iv.next, %for.body ], [ %S, %entry ]
- %iv.next = add i32 %iv, -2
- %cmp = icmp ugt i32 %iv.next, %N
- br i1 %cmp, label %for.body, label %for.cond.cleanup
-
-for.cond.cleanup:
- ret void
-}
loop.exit:
ret void
}
-
-; sgt with negative stride
-define void @changing_end_bound7(i32 %start, i32* %n_addr, i32* %addr) {
-; CHECK-LABEL: Determining loop execution counts for: @changing_end_bound7
-; CHECK: Loop %loop: Unpredictable backedge-taken count.
-; CHECK: Loop %loop: Unpredictable max backedge-taken count.
-entry:
- br label %loop
-
-loop:
- %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
- %acc = phi i32 [ 0, %entry ], [ %acc.next, %loop ]
- %val = load atomic i32, i32* %addr unordered, align 4
- fence acquire
- %acc.next = add i32 %acc, %val
- %iv.next = add i32 %iv, -1
- %n = load atomic i32, i32* %n_addr unordered, align 4
- %cmp = icmp sgt i32 %iv.next, %n
- br i1 %cmp, label %loop, label %loop.exit
-
-loop.exit:
- ret void
-}
; ScalarEvolution should be able to compute trip count of the loop by proving
; that this is not an infinite loop with side effects.
-; CHECK-LABEL: Determining loop execution counts for: @foo1
-; CHECK: backedge-taken count is ((-1 + (-1 * %s) + (1 umax %s) + %n) /u (1 umax %s))
+; CHECK: Determining loop execution counts for: @foo1
+; CHECK: backedge-taken count is ((-1 + %n) /u %s)
; We should have a conservative estimate for the max backedge taken count for
; loops with unknown stride.
; Check that we are able to compute trip count of a loop without an entry guard.
-; CHECK-LABEL: Determining loop execution counts for: @foo2
-; CHECK: backedge-taken count is ((-1 + (-1 * %s) + (1 umax %s) + (%n smax %s)) /u (1 umax %s))
+; CHECK: Determining loop execution counts for: @foo2
+; CHECK: backedge-taken count is ((-1 + (%n smax %s)) /u %s)
; We should have a conservative estimate for the max backedge taken count for
; loops with unknown stride.
; Check that without mustprogress we don't make assumptions about infinite
; loops being UB.
-; CHECK-LABEL: Determining loop execution counts for: @foo3
+; CHECK: Determining loop execution counts for: @foo3
; CHECK: Loop %for.body: Unpredictable backedge-taken count.
; CHECK: Loop %for.body: Unpredictable max backedge-taken count.
}
; Same as foo2, but with mustprogress on loop, not function
-; CHECK-LABEL: Determining loop execution counts for: @foo4
-; CHECK: backedge-taken count is ((-1 + (-1 * %s) + (1 umax %s) + (%n smax %s)) /u (1 umax %s))
+; CHECK: Determining loop execution counts for: @foo4
+; CHECK: backedge-taken count is ((-1 + (%n smax %s)) /u %s)
; CHECK: max backedge-taken count is -1
define void @foo4(i32* nocapture %A, i32 %n, i32 %s) {
ret void
}
-; A more complex case with pre-increment compare instead of post-increment.
-; CHECK-LABEL: Determining loop execution counts for: @foo5
-; CHECK: Loop %for.body: backedge-taken count is ((((-1 * (1 umin ((-1 * %start) + (%n smax %start))))<nuw><nsw> + (-1 * %start) + (%n smax %start)) /u (1 umax %s)) + (1 umin ((-1 * %start) + (%n smax %start))))
-
-; We should have a conservative estimate for the max backedge taken count for
-; loops with unknown stride.
-; CHECK: max backedge-taken count is -1
-
-define void @foo5(i32* nocapture %A, i32 %n, i32 %s, i32 %start) mustprogress {
-entry:
- br label %for.body
-
-for.body: ; preds = %entry, %for.body
- %i.05 = phi i32 [ %add, %for.body ], [ %start, %entry ]
- %arrayidx = getelementptr inbounds i32, i32* %A, i32 %i.05
- %0 = load i32, i32* %arrayidx, align 4
- %inc = add nsw i32 %0, 1
- store i32 %inc, i32* %arrayidx, align 4
- %add = add nsw i32 %i.05, %s
- %cmp = icmp slt i32 %i.05, %n
- br i1 %cmp, label %for.body, label %for.end
-
-for.end: ; preds = %for.body, %entry
- ret void
-}
-
!8 = distinct !{!8, !9}
!9 = !{!"llvm.loop.mustprogress"}
leave:
ret void
}
-
-define void @s_2(i8 %start) {
-entry:
- %rhs = add i8 %start, -100
- br label %loop
-
-loop:
- %iv = phi i8 [ %start, %entry ], [ %iv.inc, %loop ]
- %iv.inc = add nsw i8 %iv, -1
- %iv.cmp = icmp sgt i8 %iv, %rhs
- br i1 %iv.cmp, label %loop, label %leave
-
-; CHECK-LABEL: Determining loop execution counts for: @s_2
-; CHECK-NEXT: Loop %loop: backedge-taken count is ((-1 * ((-100 + %start) smin %start)) + %start)
-; CHECK-NEXT: Loop %loop: max backedge-taken count is -1
-
-leave:
- ret void
-}