results.insert<MaterializePadValue>(context);
}
-struct Conv2DFullyConnectedOptimization
- : public OpRewritePattern<tosa::Conv2DOp> {
- using OpRewritePattern::OpRewritePattern;
-
- LogicalResult matchAndRewrite(tosa::Conv2DOp op,
- PatternRewriter &rewriter) const override {
- Value input = op.input();
- Value weight = op.weight();
- ShapedType inputType = input.getType().cast<ShapedType>();
- ShapedType weightType = weight.getType().cast<ShapedType>();
-
- if (!inputType.hasStaticShape() || !weightType.hasRank()) {
- return failure();
- }
-
- // Stride must be 1 for this optimization.
- for (Attribute stride : op.stride().getValue()) {
- if (!stride.cast<IntegerAttr>().getValue().isOne()) {
- return failure();
- }
- }
-
- // Only works for a 1x1 kernel.
- ArrayRef<int64_t> weightShape = weightType.getShape();
- if (weightShape[1] != 1 || weightShape[2] != 1) {
- return failure();
- }
-
- // Reshape input to [N,IH,IW,IC] -> [N * IH * IW, IC].
- ArrayRef<int64_t> inputShape = inputType.getShape();
- llvm::SmallVector<int64_t, 2> revisedInputShape{
- inputShape[0] * inputShape[1] * inputShape[2], inputShape[3]};
- auto revisedInputShapeType = RankedTensorType::get(
- revisedInputShape,
- input.getType().dyn_cast<RankedTensorType>().getElementType());
- auto reshapedInput = rewriter
- .create<tosa::ReshapeOp>(
- op.getLoc(), revisedInputShapeType, input,
- rewriter.getI64ArrayAttr(revisedInputShape))
- .getResult();
-
- // Reshape kernel to [OC,KH,KW,IC] -> [OC, IC].
- llvm::SmallVector<int64_t, 2> revisedWeightShape{weightShape[0],
- weightShape[3]};
- auto revisedWeightShapeType = RankedTensorType::get(
- revisedWeightShape,
- weight.getType().dyn_cast<RankedTensorType>().getElementType());
- auto reshapedWeight = rewriter
- .create<tosa::ReshapeOp>(
- op.getLoc(), revisedWeightShapeType, weight,
- rewriter.getI64ArrayAttr(revisedWeightShape))
- .getResult();
-
- // Perform a fully connected network over the reshaped input and weight.
- llvm::SmallVector<int64_t, 2> fullyConnectedShape{
- inputShape[0] * inputShape[1] * inputShape[2], inputShape[3]};
- auto fullyConnectedShapeType = RankedTensorType::get(
- fullyConnectedShape,
- weight.getType().dyn_cast<RankedTensorType>().getElementType());
-
- Value fullyConnectedValue;
- if (op.quantization_info()) {
- fullyConnectedValue =
- rewriter
- .create<tosa::FullyConnectedOp>(
- op.getLoc(), fullyConnectedShapeType, reshapedInput,
- reshapedWeight, op.bias(), op.quantization_info().getValue())
- .getResult();
- } else {
- fullyConnectedValue = rewriter
- .create<tosa::FullyConnectedOp>(
- op.getLoc(), fullyConnectedShapeType,
- reshapedInput, reshapedWeight, op.bias())
- .getResult();
- }
-
- // Reshape output to [N, IH, IW, OC].
- llvm::SmallVector<int64_t, 4> outputShape{inputShape[0], inputShape[1],
- inputShape[2], weightShape[0]};
- auto outputShapeType = RankedTensorType::get(
- outputShape,
- input.getType().dyn_cast<RankedTensorType>().getElementType());
- rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
- op, outputShapeType, fullyConnectedValue,
- rewriter.getI64ArrayAttr(outputShape));
- return success();
- }
-};
-
-void Conv2DOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
- MLIRContext *context) {
- results.insert<Conv2DFullyConnectedOptimization>(context);
-}
-
//===----------------------------------------------------------------------===//
// Operator Folders.
//===----------------------------------------------------------------------===//
return %0 : tensor<?x?xf32>
}
-// -----
-
-// CHECK-LABEL: @conv2d_as_fully_connected
-func @conv2d_as_fully_connected(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<3x1x1x2xf32>, %arg2: tensor<3xf32>) -> tensor<4x10x10x3xf32> {
- // CHECK-NOT: "tosa.conv2d"
- // CHECK: %[[VAR0:.*]] = "tosa.reshape"(%arg0) {new_shape = [400, 2]}
- // CHECK: %[[VAR1:.*]] = "tosa.reshape"(%arg1) {new_shape = [3, 2]}
- // CHECK: %[[VAR2:.*]] = "tosa.fully_connected"(%[[VAR0]], %[[VAR1]], %arg2)
- // CHECK: %[[VAR3:.*]] = "tosa.reshape"(%[[VAR2]]) {new_shape = [4, 10, 10, 3]}
- // CHECK: return %[[VAR3]]
- %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1]} : (tensor<4x10x10x2xf32>, tensor<3x1x1x2xf32>, tensor<3xf32>) -> tensor<4x10x10x3xf32>
- return %0 : tensor<4x10x10x3xf32>
-}
-
-// -----
-
-// CHECK-LABEL: @conv2d_stride_2
-func @conv2d_stride_2(%arg0: tensor<4x10x10x2xf32>) -> tensor<4x10x10x3xf32> {
- // CHECK: "tosa.conv2d"
- %weight = "tosa.const"() {value = dense<[[[[1.0, 1.0]]], [[[1.0, 1.0]]], [[[1.0, 1.0]]]]> : tensor<3x1x1x2xf32>} : ()-> tensor<3x1x1x2xf32>
- %bias = "tosa.const"() {value = dense<0.0> : tensor<3xf32>} : ()-> tensor<3xf32>
- %0 = "tosa.conv2d"(%arg0, %weight, %bias) {pad = [0, 0, 0, 0], stride = [2, 2], dilation = [1, 1]} : (tensor<4x10x10x2xf32>, tensor<3x1x1x2xf32>, tensor<3xf32>) -> tensor<4x10x10x3xf32>
- return %0 : tensor<4x10x10x3xf32>
-}
-
-// -----
-
-// CHECK-LABEL: @conv2d_weight_2x2
-func @conv2d_weight_2x2(%arg0: tensor<4x10x10x1xf32>) -> tensor<4x10x10x1xf32> {
- // CHECK: "tosa.conv2d"
- %weight = "tosa.const"() {value = dense<[[[[1.0], [1.0]], [[1.0], [1.0]]]]> : tensor<1x2x2x1xf32>} : ()-> tensor<1x2x2x1xf32>
- %bias = "tosa.const"() {value = dense<0.0> : tensor<1xf32>} : ()-> tensor<1xf32>
- %0 = "tosa.conv2d"(%arg0, %weight, %bias) {pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1]} : (tensor<4x10x10x1xf32>, tensor<1x2x2x1xf32>, tensor<1xf32>) -> tensor<4x10x10x1xf32>
- return %0 : tensor<4x10x10x1xf32>
-}
-
// ----
// CHECK-LABEL: @pad_noop
func @pad_noop(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> {
// CHECK: return %arg0
- %0 = "tosa.const"() { value = dense<0> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
+ %0 = "tosa.const"() { value = dense<0> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %0) : (tensor<?x?xf32>, tensor<2x2xi32>) -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
func @pad_determine_val_i32(%arg0: tensor<?x?xi32>, %arg1 : tensor<2x2xi32>) -> tensor<?x?xi32> {
// CHECK: %[[ZERO:.+]] = "tosa.const"() {value = dense<0> : tensor<i32>}
// CHECK: "tosa.pad"(%arg0, %arg1, %[[ZERO]])
- %0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
+ %0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %arg1) : (tensor<?x?xi32>, tensor<2x2xi32>) -> tensor<?x?xi32>
return %1 : tensor<?x?xi32>
}
func @pad_determine_val_f32(%arg0: tensor<?x?xf32>, %arg1 : tensor<2x2xi32>) -> tensor<?x?xf32> {
// CHECK: %[[ZERO:.+]] = "tosa.const"() {value = dense<0.000000e+00> : tensor<f32>}
// CHECK: "tosa.pad"(%arg0, %arg1, %[[ZERO]])
- %0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
+ %0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<2x2xi32>) -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
func @pad_determine_val_quant(%arg0: tensor<?x?xi32>, %arg1 : tensor<2x2xi32>) -> tensor<?x?xi32> {
// CHECK: %[[ZERO:.+]] = "tosa.const"() {value = dense<42> : tensor<i32>}
// CHECK: "tosa.pad"(%arg0, %arg1, %[[ZERO]])
- %0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
+ %0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %arg1) { quantization_info = {input_zp = 42:i32} } : (tensor<?x?xi32>, tensor<2x2xi32>) -> tensor<?x?xi32>
return %1 : tensor<?x?xi32>
}