SPIFI is a specialized controller for connecting serial SPI
Flash. Enable this option if you have a device with a SPIFI
controller and want to access the Flash as a mtd device.
-
-config SPI_INTEL_SPI
- tristate
-
-config SPI_INTEL_SPI_PCI
- tristate "Intel PCH/PCU SPI flash PCI driver (DANGEROUS)"
- depends on X86 && PCI
- select SPI_INTEL_SPI
- help
- This enables PCI support for the Intel PCH/PCU SPI controller in
- master mode. This controller is present in modern Intel hardware
- and is used to hold BIOS and other persistent settings. Using
- this driver it is possible to upgrade BIOS directly from Linux.
-
- Say N here unless you know what you are doing. Overwriting the
- SPI flash may render the system unbootable.
-
- To compile this driver as a module, choose M here: the module
- will be called intel-spi-pci.
-
-config SPI_INTEL_SPI_PLATFORM
- tristate "Intel PCH/PCU SPI flash platform driver (DANGEROUS)"
- depends on X86
- select SPI_INTEL_SPI
- help
- This enables platform support for the Intel PCH/PCU SPI
- controller in master mode. This controller is present in modern
- Intel hardware and is used to hold BIOS and other persistent
- settings. Using this driver it is possible to upgrade BIOS
- directly from Linux.
-
- Say N here unless you know what you are doing. Overwriting the
- SPI flash may render the system unbootable.
-
- To compile this driver as a module, choose M here: the module
- will be called intel-spi-platform.
obj-$(CONFIG_SPI_ASPEED_SMC) += aspeed-smc.o
obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o
obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o
-obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o
-obj-$(CONFIG_SPI_INTEL_SPI_PCI) += intel-spi-pci.o
-obj-$(CONFIG_SPI_INTEL_SPI_PLATFORM) += intel-spi-platform.o
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Intel PCH/PCU SPI flash PCI driver.
- *
- * Copyright (C) 2016, Intel Corporation
- * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
- */
-
-#include <linux/ioport.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/pci.h>
-
-#include "intel-spi.h"
-
-#define BCR 0xdc
-#define BCR_WPD BIT(0)
-
-static bool intel_spi_pci_set_writeable(void __iomem *base, void *data)
-{
- struct pci_dev *pdev = data;
- u32 bcr;
-
- /* Try to make the chip read/write */
- pci_read_config_dword(pdev, BCR, &bcr);
- if (!(bcr & BCR_WPD)) {
- bcr |= BCR_WPD;
- pci_write_config_dword(pdev, BCR, bcr);
- pci_read_config_dword(pdev, BCR, &bcr);
- }
-
- return bcr & BCR_WPD;
-}
-
-static const struct intel_spi_boardinfo bxt_info = {
- .type = INTEL_SPI_BXT,
- .set_writeable = intel_spi_pci_set_writeable,
-};
-
-static const struct intel_spi_boardinfo cnl_info = {
- .type = INTEL_SPI_CNL,
- .set_writeable = intel_spi_pci_set_writeable,
-};
-
-static int intel_spi_pci_probe(struct pci_dev *pdev,
- const struct pci_device_id *id)
-{
- struct intel_spi_boardinfo *info;
- struct intel_spi *ispi;
- int ret;
-
- ret = pcim_enable_device(pdev);
- if (ret)
- return ret;
-
- info = devm_kmemdup(&pdev->dev, (void *)id->driver_data, sizeof(*info),
- GFP_KERNEL);
- if (!info)
- return -ENOMEM;
-
- info->data = pdev;
- ispi = intel_spi_probe(&pdev->dev, &pdev->resource[0], info);
- if (IS_ERR(ispi))
- return PTR_ERR(ispi);
-
- pci_set_drvdata(pdev, ispi);
- return 0;
-}
-
-static void intel_spi_pci_remove(struct pci_dev *pdev)
-{
- intel_spi_remove(pci_get_drvdata(pdev));
-}
-
-static const struct pci_device_id intel_spi_pci_ids[] = {
- { PCI_VDEVICE(INTEL, 0x02a4), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x06a4), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x18e0), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x19e0), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x1bca), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x34a4), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x43a4), (unsigned long)&cnl_info },
- { PCI_VDEVICE(INTEL, 0x4b24), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x4da4), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0x51a4), (unsigned long)&cnl_info },
- { PCI_VDEVICE(INTEL, 0x54a4), (unsigned long)&cnl_info },
- { PCI_VDEVICE(INTEL, 0x7aa4), (unsigned long)&cnl_info },
- { PCI_VDEVICE(INTEL, 0xa0a4), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0xa1a4), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0xa224), (unsigned long)&bxt_info },
- { PCI_VDEVICE(INTEL, 0xa324), (unsigned long)&cnl_info },
- { PCI_VDEVICE(INTEL, 0xa3a4), (unsigned long)&bxt_info },
- { },
-};
-MODULE_DEVICE_TABLE(pci, intel_spi_pci_ids);
-
-static struct pci_driver intel_spi_pci_driver = {
- .name = "intel-spi",
- .id_table = intel_spi_pci_ids,
- .probe = intel_spi_pci_probe,
- .remove = intel_spi_pci_remove,
-};
-
-module_pci_driver(intel_spi_pci_driver);
-
-MODULE_DESCRIPTION("Intel PCH/PCU SPI flash PCI driver");
-MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
-MODULE_LICENSE("GPL v2");
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Intel PCH/PCU SPI flash platform driver.
- *
- * Copyright (C) 2016, Intel Corporation
- * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
- */
-
-#include <linux/ioport.h>
-#include <linux/module.h>
-#include <linux/platform_device.h>
-
-#include "intel-spi.h"
-
-static int intel_spi_platform_probe(struct platform_device *pdev)
-{
- struct intel_spi_boardinfo *info;
- struct intel_spi *ispi;
- struct resource *mem;
-
- info = dev_get_platdata(&pdev->dev);
- if (!info)
- return -EINVAL;
-
- mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- ispi = intel_spi_probe(&pdev->dev, mem, info);
- if (IS_ERR(ispi))
- return PTR_ERR(ispi);
-
- platform_set_drvdata(pdev, ispi);
- return 0;
-}
-
-static int intel_spi_platform_remove(struct platform_device *pdev)
-{
- struct intel_spi *ispi = platform_get_drvdata(pdev);
-
- return intel_spi_remove(ispi);
-}
-
-static struct platform_driver intel_spi_platform_driver = {
- .probe = intel_spi_platform_probe,
- .remove = intel_spi_platform_remove,
- .driver = {
- .name = "intel-spi",
- },
-};
-
-module_platform_driver(intel_spi_platform_driver);
-
-MODULE_DESCRIPTION("Intel PCH/PCU SPI flash platform driver");
-MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
-MODULE_LICENSE("GPL v2");
-MODULE_ALIAS("platform:intel-spi");
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Intel PCH/PCU SPI flash driver.
- *
- * Copyright (C) 2016, Intel Corporation
- * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
- */
-
-#include <linux/err.h>
-#include <linux/io.h>
-#include <linux/iopoll.h>
-#include <linux/module.h>
-#include <linux/sched.h>
-#include <linux/sizes.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/partitions.h>
-#include <linux/mtd/spi-nor.h>
-
-#include "intel-spi.h"
-
-/* Offsets are from @ispi->base */
-#define BFPREG 0x00
-
-#define HSFSTS_CTL 0x04
-#define HSFSTS_CTL_FSMIE BIT(31)
-#define HSFSTS_CTL_FDBC_SHIFT 24
-#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
-
-#define HSFSTS_CTL_FCYCLE_SHIFT 17
-#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
-/* HW sequencer opcodes */
-#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
-#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
-#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
-#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
-#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
-#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
-#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
-
-#define HSFSTS_CTL_FGO BIT(16)
-#define HSFSTS_CTL_FLOCKDN BIT(15)
-#define HSFSTS_CTL_FDV BIT(14)
-#define HSFSTS_CTL_SCIP BIT(5)
-#define HSFSTS_CTL_AEL BIT(2)
-#define HSFSTS_CTL_FCERR BIT(1)
-#define HSFSTS_CTL_FDONE BIT(0)
-
-#define FADDR 0x08
-#define DLOCK 0x0c
-#define FDATA(n) (0x10 + ((n) * 4))
-
-#define FRACC 0x50
-
-#define FREG(n) (0x54 + ((n) * 4))
-#define FREG_BASE_MASK 0x3fff
-#define FREG_LIMIT_SHIFT 16
-#define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
-
-/* Offset is from @ispi->pregs */
-#define PR(n) ((n) * 4)
-#define PR_WPE BIT(31)
-#define PR_LIMIT_SHIFT 16
-#define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
-#define PR_RPE BIT(15)
-#define PR_BASE_MASK 0x3fff
-
-/* Offsets are from @ispi->sregs */
-#define SSFSTS_CTL 0x00
-#define SSFSTS_CTL_FSMIE BIT(23)
-#define SSFSTS_CTL_DS BIT(22)
-#define SSFSTS_CTL_DBC_SHIFT 16
-#define SSFSTS_CTL_SPOP BIT(11)
-#define SSFSTS_CTL_ACS BIT(10)
-#define SSFSTS_CTL_SCGO BIT(9)
-#define SSFSTS_CTL_COP_SHIFT 12
-#define SSFSTS_CTL_FRS BIT(7)
-#define SSFSTS_CTL_DOFRS BIT(6)
-#define SSFSTS_CTL_AEL BIT(4)
-#define SSFSTS_CTL_FCERR BIT(3)
-#define SSFSTS_CTL_FDONE BIT(2)
-#define SSFSTS_CTL_SCIP BIT(0)
-
-#define PREOP_OPTYPE 0x04
-#define OPMENU0 0x08
-#define OPMENU1 0x0c
-
-#define OPTYPE_READ_NO_ADDR 0
-#define OPTYPE_WRITE_NO_ADDR 1
-#define OPTYPE_READ_WITH_ADDR 2
-#define OPTYPE_WRITE_WITH_ADDR 3
-
-/* CPU specifics */
-#define BYT_PR 0x74
-#define BYT_SSFSTS_CTL 0x90
-#define BYT_BCR 0xfc
-#define BYT_BCR_WPD BIT(0)
-#define BYT_FREG_NUM 5
-#define BYT_PR_NUM 5
-
-#define LPT_PR 0x74
-#define LPT_SSFSTS_CTL 0x90
-#define LPT_FREG_NUM 5
-#define LPT_PR_NUM 5
-
-#define BXT_PR 0x84
-#define BXT_SSFSTS_CTL 0xa0
-#define BXT_FREG_NUM 12
-#define BXT_PR_NUM 6
-
-#define CNL_PR 0x84
-#define CNL_FREG_NUM 6
-#define CNL_PR_NUM 5
-
-#define LVSCC 0xc4
-#define UVSCC 0xc8
-#define ERASE_OPCODE_SHIFT 8
-#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
-#define ERASE_64K_OPCODE_SHIFT 16
-#define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
-
-#define INTEL_SPI_TIMEOUT 5000 /* ms */
-#define INTEL_SPI_FIFO_SZ 64
-
-/**
- * struct intel_spi - Driver private data
- * @dev: Device pointer
- * @info: Pointer to board specific info
- * @nor: SPI NOR layer structure
- * @base: Beginning of MMIO space
- * @pregs: Start of protection registers
- * @sregs: Start of software sequencer registers
- * @nregions: Maximum number of regions
- * @pr_num: Maximum number of protected range registers
- * @locked: Is SPI setting locked
- * @swseq_reg: Use SW sequencer in register reads/writes
- * @swseq_erase: Use SW sequencer in erase operation
- * @erase_64k: 64k erase supported
- * @atomic_preopcode: Holds preopcode when atomic sequence is requested
- * @opcodes: Opcodes which are supported. This are programmed by BIOS
- * before it locks down the controller.
- */
-struct intel_spi {
- struct device *dev;
- const struct intel_spi_boardinfo *info;
- struct spi_nor nor;
- void __iomem *base;
- void __iomem *pregs;
- void __iomem *sregs;
- size_t nregions;
- size_t pr_num;
- bool locked;
- bool swseq_reg;
- bool swseq_erase;
- bool erase_64k;
- u8 atomic_preopcode;
- u8 opcodes[8];
-};
-
-static bool writeable;
-module_param(writeable, bool, 0);
-MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
-
-static void intel_spi_dump_regs(struct intel_spi *ispi)
-{
- u32 value;
- int i;
-
- dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
-
- value = readl(ispi->base + HSFSTS_CTL);
- dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
- if (value & HSFSTS_CTL_FLOCKDN)
- dev_dbg(ispi->dev, "-> Locked\n");
-
- dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
- dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
-
- for (i = 0; i < 16; i++)
- dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
- i, readl(ispi->base + FDATA(i)));
-
- dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
-
- for (i = 0; i < ispi->nregions; i++)
- dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
- readl(ispi->base + FREG(i)));
- for (i = 0; i < ispi->pr_num; i++)
- dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
- readl(ispi->pregs + PR(i)));
-
- if (ispi->sregs) {
- value = readl(ispi->sregs + SSFSTS_CTL);
- dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
- dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
- readl(ispi->sregs + PREOP_OPTYPE));
- dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
- readl(ispi->sregs + OPMENU0));
- dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
- readl(ispi->sregs + OPMENU1));
- }
-
- if (ispi->info->type == INTEL_SPI_BYT)
- dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
-
- dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
- dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
-
- dev_dbg(ispi->dev, "Protected regions:\n");
- for (i = 0; i < ispi->pr_num; i++) {
- u32 base, limit;
-
- value = readl(ispi->pregs + PR(i));
- if (!(value & (PR_WPE | PR_RPE)))
- continue;
-
- limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
- base = value & PR_BASE_MASK;
-
- dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
- i, base << 12, (limit << 12) | 0xfff,
- value & PR_WPE ? 'W' : '.',
- value & PR_RPE ? 'R' : '.');
- }
-
- dev_dbg(ispi->dev, "Flash regions:\n");
- for (i = 0; i < ispi->nregions; i++) {
- u32 region, base, limit;
-
- region = readl(ispi->base + FREG(i));
- base = region & FREG_BASE_MASK;
- limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
-
- if (base >= limit || (i > 0 && limit == 0))
- dev_dbg(ispi->dev, " %02d disabled\n", i);
- else
- dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
- i, base << 12, (limit << 12) | 0xfff);
- }
-
- dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
- ispi->swseq_reg ? 'S' : 'H');
- dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
- ispi->swseq_erase ? 'S' : 'H');
-}
-
-/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
-static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
-{
- size_t bytes;
- int i = 0;
-
- if (size > INTEL_SPI_FIFO_SZ)
- return -EINVAL;
-
- while (size > 0) {
- bytes = min_t(size_t, size, 4);
- memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
- size -= bytes;
- buf += bytes;
- i++;
- }
-
- return 0;
-}
-
-/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
-static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
- size_t size)
-{
- size_t bytes;
- int i = 0;
-
- if (size > INTEL_SPI_FIFO_SZ)
- return -EINVAL;
-
- while (size > 0) {
- bytes = min_t(size_t, size, 4);
- memcpy_toio(ispi->base + FDATA(i), buf, bytes);
- size -= bytes;
- buf += bytes;
- i++;
- }
-
- return 0;
-}
-
-static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
-{
- u32 val;
-
- return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
- !(val & HSFSTS_CTL_SCIP), 0,
- INTEL_SPI_TIMEOUT * 1000);
-}
-
-static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
-{
- u32 val;
-
- return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
- !(val & SSFSTS_CTL_SCIP), 0,
- INTEL_SPI_TIMEOUT * 1000);
-}
-
-static bool intel_spi_set_writeable(struct intel_spi *ispi)
-{
- if (!ispi->info->set_writeable)
- return false;
-
- return ispi->info->set_writeable(ispi->base, ispi->info->data);
-}
-
-static int intel_spi_init(struct intel_spi *ispi)
-{
- u32 opmenu0, opmenu1, lvscc, uvscc, val;
- int i;
-
- switch (ispi->info->type) {
- case INTEL_SPI_BYT:
- ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
- ispi->pregs = ispi->base + BYT_PR;
- ispi->nregions = BYT_FREG_NUM;
- ispi->pr_num = BYT_PR_NUM;
- ispi->swseq_reg = true;
- break;
-
- case INTEL_SPI_LPT:
- ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
- ispi->pregs = ispi->base + LPT_PR;
- ispi->nregions = LPT_FREG_NUM;
- ispi->pr_num = LPT_PR_NUM;
- ispi->swseq_reg = true;
- break;
-
- case INTEL_SPI_BXT:
- ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
- ispi->pregs = ispi->base + BXT_PR;
- ispi->nregions = BXT_FREG_NUM;
- ispi->pr_num = BXT_PR_NUM;
- ispi->erase_64k = true;
- break;
-
- case INTEL_SPI_CNL:
- ispi->sregs = NULL;
- ispi->pregs = ispi->base + CNL_PR;
- ispi->nregions = CNL_FREG_NUM;
- ispi->pr_num = CNL_PR_NUM;
- break;
-
- default:
- return -EINVAL;
- }
-
- /* Try to disable write protection if user asked to do so */
- if (writeable && !intel_spi_set_writeable(ispi)) {
- dev_warn(ispi->dev, "can't disable chip write protection\n");
- writeable = false;
- }
-
- /* Disable #SMI generation from HW sequencer */
- val = readl(ispi->base + HSFSTS_CTL);
- val &= ~HSFSTS_CTL_FSMIE;
- writel(val, ispi->base + HSFSTS_CTL);
-
- /*
- * Determine whether erase operation should use HW or SW sequencer.
- *
- * The HW sequencer has a predefined list of opcodes, with only the
- * erase opcode being programmable in LVSCC and UVSCC registers.
- * If these registers don't contain a valid erase opcode, erase
- * cannot be done using HW sequencer.
- */
- lvscc = readl(ispi->base + LVSCC);
- uvscc = readl(ispi->base + UVSCC);
- if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
- ispi->swseq_erase = true;
- /* SPI controller on Intel BXT supports 64K erase opcode */
- if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
- if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
- !(uvscc & ERASE_64K_OPCODE_MASK))
- ispi->erase_64k = false;
-
- if (ispi->sregs == NULL && (ispi->swseq_reg || ispi->swseq_erase)) {
- dev_err(ispi->dev, "software sequencer not supported, but required\n");
- return -EINVAL;
- }
-
- /*
- * Some controllers can only do basic operations using hardware
- * sequencer. All other operations are supposed to be carried out
- * using software sequencer.
- */
- if (ispi->swseq_reg) {
- /* Disable #SMI generation from SW sequencer */
- val = readl(ispi->sregs + SSFSTS_CTL);
- val &= ~SSFSTS_CTL_FSMIE;
- writel(val, ispi->sregs + SSFSTS_CTL);
- }
-
- /* Check controller's lock status */
- val = readl(ispi->base + HSFSTS_CTL);
- ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
-
- if (ispi->locked && ispi->sregs) {
- /*
- * BIOS programs allowed opcodes and then locks down the
- * register. So read back what opcodes it decided to support.
- * That's the set we are going to support as well.
- */
- opmenu0 = readl(ispi->sregs + OPMENU0);
- opmenu1 = readl(ispi->sregs + OPMENU1);
-
- if (opmenu0 && opmenu1) {
- for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
- ispi->opcodes[i] = opmenu0 >> i * 8;
- ispi->opcodes[i + 4] = opmenu1 >> i * 8;
- }
- }
- }
-
- intel_spi_dump_regs(ispi);
-
- return 0;
-}
-
-static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
-{
- int i;
- int preop;
-
- if (ispi->locked) {
- for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
- if (ispi->opcodes[i] == opcode)
- return i;
-
- return -EINVAL;
- }
-
- /* The lock is off, so just use index 0 */
- writel(opcode, ispi->sregs + OPMENU0);
- preop = readw(ispi->sregs + PREOP_OPTYPE);
- writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
-
- return 0;
-}
-
-static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
-{
- u32 val, status;
- int ret;
-
- val = readl(ispi->base + HSFSTS_CTL);
- val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
-
- switch (opcode) {
- case SPINOR_OP_RDID:
- val |= HSFSTS_CTL_FCYCLE_RDID;
- break;
- case SPINOR_OP_WRSR:
- val |= HSFSTS_CTL_FCYCLE_WRSR;
- break;
- case SPINOR_OP_RDSR:
- val |= HSFSTS_CTL_FCYCLE_RDSR;
- break;
- default:
- return -EINVAL;
- }
-
- if (len > INTEL_SPI_FIFO_SZ)
- return -EINVAL;
-
- val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
- val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
- val |= HSFSTS_CTL_FGO;
- writel(val, ispi->base + HSFSTS_CTL);
-
- ret = intel_spi_wait_hw_busy(ispi);
- if (ret)
- return ret;
-
- status = readl(ispi->base + HSFSTS_CTL);
- if (status & HSFSTS_CTL_FCERR)
- return -EIO;
- else if (status & HSFSTS_CTL_AEL)
- return -EACCES;
-
- return 0;
-}
-
-static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
- int optype)
-{
- u32 val = 0, status;
- u8 atomic_preopcode;
- int ret;
-
- ret = intel_spi_opcode_index(ispi, opcode, optype);
- if (ret < 0)
- return ret;
-
- if (len > INTEL_SPI_FIFO_SZ)
- return -EINVAL;
-
- /*
- * Always clear it after each SW sequencer operation regardless
- * of whether it is successful or not.
- */
- atomic_preopcode = ispi->atomic_preopcode;
- ispi->atomic_preopcode = 0;
-
- /* Only mark 'Data Cycle' bit when there is data to be transferred */
- if (len > 0)
- val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
- val |= ret << SSFSTS_CTL_COP_SHIFT;
- val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
- val |= SSFSTS_CTL_SCGO;
- if (atomic_preopcode) {
- u16 preop;
-
- switch (optype) {
- case OPTYPE_WRITE_NO_ADDR:
- case OPTYPE_WRITE_WITH_ADDR:
- /* Pick matching preopcode for the atomic sequence */
- preop = readw(ispi->sregs + PREOP_OPTYPE);
- if ((preop & 0xff) == atomic_preopcode)
- ; /* Do nothing */
- else if ((preop >> 8) == atomic_preopcode)
- val |= SSFSTS_CTL_SPOP;
- else
- return -EINVAL;
-
- /* Enable atomic sequence */
- val |= SSFSTS_CTL_ACS;
- break;
-
- default:
- return -EINVAL;
- }
-
- }
- writel(val, ispi->sregs + SSFSTS_CTL);
-
- ret = intel_spi_wait_sw_busy(ispi);
- if (ret)
- return ret;
-
- status = readl(ispi->sregs + SSFSTS_CTL);
- if (status & SSFSTS_CTL_FCERR)
- return -EIO;
- else if (status & SSFSTS_CTL_AEL)
- return -EACCES;
-
- return 0;
-}
-
-static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
- size_t len)
-{
- struct intel_spi *ispi = nor->priv;
- int ret;
-
- /* Address of the first chip */
- writel(0, ispi->base + FADDR);
-
- if (ispi->swseq_reg)
- ret = intel_spi_sw_cycle(ispi, opcode, len,
- OPTYPE_READ_NO_ADDR);
- else
- ret = intel_spi_hw_cycle(ispi, opcode, len);
-
- if (ret)
- return ret;
-
- return intel_spi_read_block(ispi, buf, len);
-}
-
-static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
- size_t len)
-{
- struct intel_spi *ispi = nor->priv;
- int ret;
-
- /*
- * This is handled with atomic operation and preop code in Intel
- * controller so we only verify that it is available. If the
- * controller is not locked, program the opcode to the PREOP
- * register for later use.
- *
- * When hardware sequencer is used there is no need to program
- * any opcodes (it handles them automatically as part of a command).
- */
- if (opcode == SPINOR_OP_WREN) {
- u16 preop;
-
- if (!ispi->swseq_reg)
- return 0;
-
- preop = readw(ispi->sregs + PREOP_OPTYPE);
- if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
- if (ispi->locked)
- return -EINVAL;
- writel(opcode, ispi->sregs + PREOP_OPTYPE);
- }
-
- /*
- * This enables atomic sequence on next SW sycle. Will
- * be cleared after next operation.
- */
- ispi->atomic_preopcode = opcode;
- return 0;
- }
-
- /*
- * We hope that HW sequencer will do the right thing automatically and
- * with the SW sequencer we cannot use preopcode anyway, so just ignore
- * the Write Disable operation and pretend it was completed
- * successfully.
- */
- if (opcode == SPINOR_OP_WRDI)
- return 0;
-
- writel(0, ispi->base + FADDR);
-
- /* Write the value beforehand */
- ret = intel_spi_write_block(ispi, buf, len);
- if (ret)
- return ret;
-
- if (ispi->swseq_reg)
- return intel_spi_sw_cycle(ispi, opcode, len,
- OPTYPE_WRITE_NO_ADDR);
- return intel_spi_hw_cycle(ispi, opcode, len);
-}
-
-static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
- u_char *read_buf)
-{
- struct intel_spi *ispi = nor->priv;
- size_t block_size, retlen = 0;
- u32 val, status;
- ssize_t ret;
-
- /*
- * Atomic sequence is not expected with HW sequencer reads. Make
- * sure it is cleared regardless.
- */
- if (WARN_ON_ONCE(ispi->atomic_preopcode))
- ispi->atomic_preopcode = 0;
-
- switch (nor->read_opcode) {
- case SPINOR_OP_READ:
- case SPINOR_OP_READ_FAST:
- case SPINOR_OP_READ_4B:
- case SPINOR_OP_READ_FAST_4B:
- break;
- default:
- return -EINVAL;
- }
-
- while (len > 0) {
- block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
-
- /* Read cannot cross 4K boundary */
- block_size = min_t(loff_t, from + block_size,
- round_up(from + 1, SZ_4K)) - from;
-
- writel(from, ispi->base + FADDR);
-
- val = readl(ispi->base + HSFSTS_CTL);
- val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
- val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
- val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
- val |= HSFSTS_CTL_FCYCLE_READ;
- val |= HSFSTS_CTL_FGO;
- writel(val, ispi->base + HSFSTS_CTL);
-
- ret = intel_spi_wait_hw_busy(ispi);
- if (ret)
- return ret;
-
- status = readl(ispi->base + HSFSTS_CTL);
- if (status & HSFSTS_CTL_FCERR)
- ret = -EIO;
- else if (status & HSFSTS_CTL_AEL)
- ret = -EACCES;
-
- if (ret < 0) {
- dev_err(ispi->dev, "read error: %llx: %#x\n", from,
- status);
- return ret;
- }
-
- ret = intel_spi_read_block(ispi, read_buf, block_size);
- if (ret)
- return ret;
-
- len -= block_size;
- from += block_size;
- retlen += block_size;
- read_buf += block_size;
- }
-
- return retlen;
-}
-
-static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
- const u_char *write_buf)
-{
- struct intel_spi *ispi = nor->priv;
- size_t block_size, retlen = 0;
- u32 val, status;
- ssize_t ret;
-
- /* Not needed with HW sequencer write, make sure it is cleared */
- ispi->atomic_preopcode = 0;
-
- while (len > 0) {
- block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
-
- /* Write cannot cross 4K boundary */
- block_size = min_t(loff_t, to + block_size,
- round_up(to + 1, SZ_4K)) - to;
-
- writel(to, ispi->base + FADDR);
-
- val = readl(ispi->base + HSFSTS_CTL);
- val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
- val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
- val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
- val |= HSFSTS_CTL_FCYCLE_WRITE;
-
- ret = intel_spi_write_block(ispi, write_buf, block_size);
- if (ret) {
- dev_err(ispi->dev, "failed to write block\n");
- return ret;
- }
-
- /* Start the write now */
- val |= HSFSTS_CTL_FGO;
- writel(val, ispi->base + HSFSTS_CTL);
-
- ret = intel_spi_wait_hw_busy(ispi);
- if (ret) {
- dev_err(ispi->dev, "timeout\n");
- return ret;
- }
-
- status = readl(ispi->base + HSFSTS_CTL);
- if (status & HSFSTS_CTL_FCERR)
- ret = -EIO;
- else if (status & HSFSTS_CTL_AEL)
- ret = -EACCES;
-
- if (ret < 0) {
- dev_err(ispi->dev, "write error: %llx: %#x\n", to,
- status);
- return ret;
- }
-
- len -= block_size;
- to += block_size;
- retlen += block_size;
- write_buf += block_size;
- }
-
- return retlen;
-}
-
-static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
-{
- size_t erase_size, len = nor->mtd.erasesize;
- struct intel_spi *ispi = nor->priv;
- u32 val, status, cmd;
- int ret;
-
- /* If the hardware can do 64k erase use that when possible */
- if (len >= SZ_64K && ispi->erase_64k) {
- cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
- erase_size = SZ_64K;
- } else {
- cmd = HSFSTS_CTL_FCYCLE_ERASE;
- erase_size = SZ_4K;
- }
-
- if (ispi->swseq_erase) {
- while (len > 0) {
- writel(offs, ispi->base + FADDR);
-
- ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
- 0, OPTYPE_WRITE_WITH_ADDR);
- if (ret)
- return ret;
-
- offs += erase_size;
- len -= erase_size;
- }
-
- return 0;
- }
-
- /* Not needed with HW sequencer erase, make sure it is cleared */
- ispi->atomic_preopcode = 0;
-
- while (len > 0) {
- writel(offs, ispi->base + FADDR);
-
- val = readl(ispi->base + HSFSTS_CTL);
- val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
- val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
- val |= cmd;
- val |= HSFSTS_CTL_FGO;
- writel(val, ispi->base + HSFSTS_CTL);
-
- ret = intel_spi_wait_hw_busy(ispi);
- if (ret)
- return ret;
-
- status = readl(ispi->base + HSFSTS_CTL);
- if (status & HSFSTS_CTL_FCERR)
- return -EIO;
- else if (status & HSFSTS_CTL_AEL)
- return -EACCES;
-
- offs += erase_size;
- len -= erase_size;
- }
-
- return 0;
-}
-
-static bool intel_spi_is_protected(const struct intel_spi *ispi,
- unsigned int base, unsigned int limit)
-{
- int i;
-
- for (i = 0; i < ispi->pr_num; i++) {
- u32 pr_base, pr_limit, pr_value;
-
- pr_value = readl(ispi->pregs + PR(i));
- if (!(pr_value & (PR_WPE | PR_RPE)))
- continue;
-
- pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
- pr_base = pr_value & PR_BASE_MASK;
-
- if (pr_base >= base && pr_limit <= limit)
- return true;
- }
-
- return false;
-}
-
-/*
- * There will be a single partition holding all enabled flash regions. We
- * call this "BIOS".
- */
-static void intel_spi_fill_partition(struct intel_spi *ispi,
- struct mtd_partition *part)
-{
- u64 end;
- int i;
-
- memset(part, 0, sizeof(*part));
-
- /* Start from the mandatory descriptor region */
- part->size = 4096;
- part->name = "BIOS";
-
- /*
- * Now try to find where this partition ends based on the flash
- * region registers.
- */
- for (i = 1; i < ispi->nregions; i++) {
- u32 region, base, limit;
-
- region = readl(ispi->base + FREG(i));
- base = region & FREG_BASE_MASK;
- limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
-
- if (base >= limit || limit == 0)
- continue;
-
- /*
- * If any of the regions have protection bits set, make the
- * whole partition read-only to be on the safe side.
- *
- * Also if the user did not ask the chip to be writeable
- * mask the bit too.
- */
- if (!writeable || intel_spi_is_protected(ispi, base, limit))
- part->mask_flags |= MTD_WRITEABLE;
-
- end = (limit << 12) + 4096;
- if (end > part->size)
- part->size = end;
- }
-}
-
-static const struct spi_nor_controller_ops intel_spi_controller_ops = {
- .read_reg = intel_spi_read_reg,
- .write_reg = intel_spi_write_reg,
- .read = intel_spi_read,
- .write = intel_spi_write,
- .erase = intel_spi_erase,
-};
-
-struct intel_spi *intel_spi_probe(struct device *dev,
- struct resource *mem, const struct intel_spi_boardinfo *info)
-{
- const struct spi_nor_hwcaps hwcaps = {
- .mask = SNOR_HWCAPS_READ |
- SNOR_HWCAPS_READ_FAST |
- SNOR_HWCAPS_PP,
- };
- struct mtd_partition part;
- struct intel_spi *ispi;
- int ret;
-
- if (!info || !mem)
- return ERR_PTR(-EINVAL);
-
- ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
- if (!ispi)
- return ERR_PTR(-ENOMEM);
-
- ispi->base = devm_ioremap_resource(dev, mem);
- if (IS_ERR(ispi->base))
- return ERR_CAST(ispi->base);
-
- ispi->dev = dev;
- ispi->info = info;
-
- ret = intel_spi_init(ispi);
- if (ret)
- return ERR_PTR(ret);
-
- ispi->nor.dev = ispi->dev;
- ispi->nor.priv = ispi;
- ispi->nor.controller_ops = &intel_spi_controller_ops;
-
- ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
- if (ret) {
- dev_info(dev, "failed to locate the chip\n");
- return ERR_PTR(ret);
- }
-
- intel_spi_fill_partition(ispi, &part);
-
- ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
- if (ret)
- return ERR_PTR(ret);
-
- return ispi;
-}
-EXPORT_SYMBOL_GPL(intel_spi_probe);
-
-int intel_spi_remove(struct intel_spi *ispi)
-{
- return mtd_device_unregister(&ispi->nor.mtd);
-}
-EXPORT_SYMBOL_GPL(intel_spi_remove);
-
-MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
-MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
-MODULE_LICENSE("GPL v2");
+++ /dev/null
-/* SPDX-License-Identifier: GPL-2.0-only */
-/*
- * Intel PCH/PCU SPI flash driver.
- *
- * Copyright (C) 2016, Intel Corporation
- * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
- */
-
-#ifndef INTEL_SPI_H
-#define INTEL_SPI_H
-
-#include <linux/platform_data/x86/intel-spi.h>
-
-struct intel_spi;
-struct resource;
-
-struct intel_spi *intel_spi_probe(struct device *dev,
- struct resource *mem, const struct intel_spi_boardinfo *info);
-int intel_spi_remove(struct intel_spi *ispi);
-
-#endif /* INTEL_SPI_H */
To compile this driver as a module, choose M here: the module
will be called spi-ingenic.
+config SPI_INTEL
+ tristate
+
+config SPI_INTEL_PCI
+ tristate "Intel PCH/PCU SPI flash PCI driver (DANGEROUS)"
+ depends on PCI
+ depends on X86 || COMPILE_TEST
+ depends on SPI_MEM
+ select SPI_INTEL
+ help
+ This enables PCI support for the Intel PCH/PCU SPI controller in
+ master mode. This controller is present in modern Intel hardware
+ and is used to hold BIOS and other persistent settings. Using
+ this driver it is possible to upgrade BIOS directly from Linux.
+
+ Say N here unless you know what you are doing. Overwriting the
+ SPI flash may render the system unbootable.
+
+ To compile this driver as a module, choose M here: the module
+ will be called spi-intel-pci.
+
+config SPI_INTEL_PLATFORM
+ tristate "Intel PCH/PCU SPI flash platform driver (DANGEROUS)"
+ depends on X86 || COMPILE_TEST
+ depends on SPI_MEM
+ select SPI_INTEL
+ help
+ This enables platform support for the Intel PCH/PCU SPI
+ controller in master mode. This controller is present in modern
+ Intel hardware and is used to hold BIOS and other persistent
+ settings. Using this driver it is possible to upgrade BIOS
+ directly from Linux.
+
+ Say N here unless you know what you are doing. Overwriting the
+ SPI flash may render the system unbootable.
+
+ To compile this driver as a module, choose M here: the module
+ will be called spi-intel-platform.
+
config SPI_JCORE
tristate "J-Core SPI Master"
depends on OF && (SUPERH || COMPILE_TEST)
obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o
obj-$(CONFIG_SPI_IMX) += spi-imx.o
obj-$(CONFIG_SPI_INGENIC) += spi-ingenic.o
+obj-$(CONFIG_SPI_INTEL) += spi-intel.o
+obj-$(CONFIG_SPI_INTEL_PCI) += spi-intel-pci.o
+obj-$(CONFIG_SPI_INTEL_PLATFORM) += spi-intel-platform.o
obj-$(CONFIG_SPI_LANTIQ_SSC) += spi-lantiq-ssc.o
obj-$(CONFIG_SPI_JCORE) += spi-jcore.o
obj-$(CONFIG_SPI_LM70_LLP) += spi-lm70llp.o
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel PCH/PCU SPI flash PCI driver.
+ *
+ * Copyright (C) 2016 - 2022, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/module.h>
+#include <linux/pci.h>
+
+#include "spi-intel.h"
+
+#define BCR 0xdc
+#define BCR_WPD BIT(0)
+
+static bool intel_spi_pci_set_writeable(void __iomem *base, void *data)
+{
+ struct pci_dev *pdev = data;
+ u32 bcr;
+
+ /* Try to make the chip read/write */
+ pci_read_config_dword(pdev, BCR, &bcr);
+ if (!(bcr & BCR_WPD)) {
+ bcr |= BCR_WPD;
+ pci_write_config_dword(pdev, BCR, bcr);
+ pci_read_config_dword(pdev, BCR, &bcr);
+ }
+
+ return bcr & BCR_WPD;
+}
+
+static const struct intel_spi_boardinfo bxt_info = {
+ .type = INTEL_SPI_BXT,
+ .set_writeable = intel_spi_pci_set_writeable,
+};
+
+static const struct intel_spi_boardinfo cnl_info = {
+ .type = INTEL_SPI_CNL,
+ .set_writeable = intel_spi_pci_set_writeable,
+};
+
+static int intel_spi_pci_probe(struct pci_dev *pdev,
+ const struct pci_device_id *id)
+{
+ struct intel_spi_boardinfo *info;
+ int ret;
+
+ ret = pcim_enable_device(pdev);
+ if (ret)
+ return ret;
+
+ info = devm_kmemdup(&pdev->dev, (void *)id->driver_data, sizeof(*info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ info->data = pdev;
+ return intel_spi_probe(&pdev->dev, &pdev->resource[0], info);
+}
+
+static const struct pci_device_id intel_spi_pci_ids[] = {
+ { PCI_VDEVICE(INTEL, 0x02a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x06a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x18e0), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x19e0), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x1bca), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x34a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x43a4), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0x4b24), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x4da4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x51a4), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0x54a4), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0x7aa4), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0xa0a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa1a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa224), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa324), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0xa3a4), (unsigned long)&bxt_info },
+ { },
+};
+MODULE_DEVICE_TABLE(pci, intel_spi_pci_ids);
+
+static struct pci_driver intel_spi_pci_driver = {
+ .name = "intel-spi",
+ .id_table = intel_spi_pci_ids,
+ .probe = intel_spi_pci_probe,
+};
+
+module_pci_driver(intel_spi_pci_driver);
+
+MODULE_DESCRIPTION("Intel PCH/PCU SPI flash PCI driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
+MODULE_LICENSE("GPL v2");
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel PCH/PCU SPI flash platform driver.
+ *
+ * Copyright (C) 2016 - 2022, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+
+#include "spi-intel.h"
+
+static int intel_spi_platform_probe(struct platform_device *pdev)
+{
+ struct intel_spi_boardinfo *info;
+ struct resource *mem;
+
+ info = dev_get_platdata(&pdev->dev);
+ if (!info)
+ return -EINVAL;
+
+ mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ return intel_spi_probe(&pdev->dev, mem, info);
+}
+
+static struct platform_driver intel_spi_platform_driver = {
+ .probe = intel_spi_platform_probe,
+ .driver = {
+ .name = "intel-spi",
+ },
+};
+
+module_platform_driver(intel_spi_platform_driver);
+
+MODULE_DESCRIPTION("Intel PCH/PCU SPI flash platform driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:intel-spi");
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel PCH/PCU SPI flash driver.
+ *
+ * Copyright (C) 2016 - 2022, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/iopoll.h>
+#include <linux/module.h>
+
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nor.h>
+
+#include <linux/spi/flash.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+
+#include "spi-intel.h"
+
+/* Offsets are from @ispi->base */
+#define BFPREG 0x00
+
+#define HSFSTS_CTL 0x04
+#define HSFSTS_CTL_FSMIE BIT(31)
+#define HSFSTS_CTL_FDBC_SHIFT 24
+#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
+
+#define HSFSTS_CTL_FCYCLE_SHIFT 17
+#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
+/* HW sequencer opcodes */
+#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
+
+#define HSFSTS_CTL_FGO BIT(16)
+#define HSFSTS_CTL_FLOCKDN BIT(15)
+#define HSFSTS_CTL_FDV BIT(14)
+#define HSFSTS_CTL_SCIP BIT(5)
+#define HSFSTS_CTL_AEL BIT(2)
+#define HSFSTS_CTL_FCERR BIT(1)
+#define HSFSTS_CTL_FDONE BIT(0)
+
+#define FADDR 0x08
+#define DLOCK 0x0c
+#define FDATA(n) (0x10 + ((n) * 4))
+
+#define FRACC 0x50
+
+#define FREG(n) (0x54 + ((n) * 4))
+#define FREG_BASE_MASK 0x3fff
+#define FREG_LIMIT_SHIFT 16
+#define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
+
+/* Offset is from @ispi->pregs */
+#define PR(n) ((n) * 4)
+#define PR_WPE BIT(31)
+#define PR_LIMIT_SHIFT 16
+#define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
+#define PR_RPE BIT(15)
+#define PR_BASE_MASK 0x3fff
+
+/* Offsets are from @ispi->sregs */
+#define SSFSTS_CTL 0x00
+#define SSFSTS_CTL_FSMIE BIT(23)
+#define SSFSTS_CTL_DS BIT(22)
+#define SSFSTS_CTL_DBC_SHIFT 16
+#define SSFSTS_CTL_SPOP BIT(11)
+#define SSFSTS_CTL_ACS BIT(10)
+#define SSFSTS_CTL_SCGO BIT(9)
+#define SSFSTS_CTL_COP_SHIFT 12
+#define SSFSTS_CTL_FRS BIT(7)
+#define SSFSTS_CTL_DOFRS BIT(6)
+#define SSFSTS_CTL_AEL BIT(4)
+#define SSFSTS_CTL_FCERR BIT(3)
+#define SSFSTS_CTL_FDONE BIT(2)
+#define SSFSTS_CTL_SCIP BIT(0)
+
+#define PREOP_OPTYPE 0x04
+#define OPMENU0 0x08
+#define OPMENU1 0x0c
+
+#define OPTYPE_READ_NO_ADDR 0
+#define OPTYPE_WRITE_NO_ADDR 1
+#define OPTYPE_READ_WITH_ADDR 2
+#define OPTYPE_WRITE_WITH_ADDR 3
+
+/* CPU specifics */
+#define BYT_PR 0x74
+#define BYT_SSFSTS_CTL 0x90
+#define BYT_FREG_NUM 5
+#define BYT_PR_NUM 5
+
+#define LPT_PR 0x74
+#define LPT_SSFSTS_CTL 0x90
+#define LPT_FREG_NUM 5
+#define LPT_PR_NUM 5
+
+#define BXT_PR 0x84
+#define BXT_SSFSTS_CTL 0xa0
+#define BXT_FREG_NUM 12
+#define BXT_PR_NUM 6
+
+#define CNL_PR 0x84
+#define CNL_FREG_NUM 6
+#define CNL_PR_NUM 5
+
+#define LVSCC 0xc4
+#define UVSCC 0xc8
+#define ERASE_OPCODE_SHIFT 8
+#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
+#define ERASE_64K_OPCODE_SHIFT 16
+#define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
+
+#define INTEL_SPI_TIMEOUT 5000 /* ms */
+#define INTEL_SPI_FIFO_SZ 64
+
+/**
+ * struct intel_spi - Driver private data
+ * @dev: Device pointer
+ * @info: Pointer to board specific info
+ * @base: Beginning of MMIO space
+ * @pregs: Start of protection registers
+ * @sregs: Start of software sequencer registers
+ * @master: Pointer to the SPI controller structure
+ * @nregions: Maximum number of regions
+ * @pr_num: Maximum number of protected range registers
+ * @locked: Is SPI setting locked
+ * @swseq_reg: Use SW sequencer in register reads/writes
+ * @swseq_erase: Use SW sequencer in erase operation
+ * @atomic_preopcode: Holds preopcode when atomic sequence is requested
+ * @opcodes: Opcodes which are supported. This are programmed by BIOS
+ * before it locks down the controller.
+ * @mem_ops: Pointer to SPI MEM ops supported by the controller
+ */
+struct intel_spi {
+ struct device *dev;
+ const struct intel_spi_boardinfo *info;
+ void __iomem *base;
+ void __iomem *pregs;
+ void __iomem *sregs;
+ struct spi_controller *master;
+ size_t nregions;
+ size_t pr_num;
+ bool locked;
+ bool swseq_reg;
+ bool swseq_erase;
+ u8 atomic_preopcode;
+ u8 opcodes[8];
+ const struct intel_spi_mem_op *mem_ops;
+};
+
+struct intel_spi_mem_op {
+ struct spi_mem_op mem_op;
+ u32 replacement_op;
+ int (*exec_op)(struct intel_spi *ispi,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op);
+};
+
+static bool writeable;
+module_param(writeable, bool, 0);
+MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
+
+static void intel_spi_dump_regs(struct intel_spi *ispi)
+{
+ u32 value;
+ int i;
+
+ dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
+
+ value = readl(ispi->base + HSFSTS_CTL);
+ dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
+ if (value & HSFSTS_CTL_FLOCKDN)
+ dev_dbg(ispi->dev, "-> Locked\n");
+
+ dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
+ dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
+
+ for (i = 0; i < 16; i++)
+ dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
+ i, readl(ispi->base + FDATA(i)));
+
+ dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
+
+ for (i = 0; i < ispi->nregions; i++)
+ dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
+ readl(ispi->base + FREG(i)));
+ for (i = 0; i < ispi->pr_num; i++)
+ dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
+ readl(ispi->pregs + PR(i)));
+
+ if (ispi->sregs) {
+ value = readl(ispi->sregs + SSFSTS_CTL);
+ dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
+ dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
+ readl(ispi->sregs + PREOP_OPTYPE));
+ dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
+ readl(ispi->sregs + OPMENU0));
+ dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
+ readl(ispi->sregs + OPMENU1));
+ }
+
+ dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
+ dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
+
+ dev_dbg(ispi->dev, "Protected regions:\n");
+ for (i = 0; i < ispi->pr_num; i++) {
+ u32 base, limit;
+
+ value = readl(ispi->pregs + PR(i));
+ if (!(value & (PR_WPE | PR_RPE)))
+ continue;
+
+ limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
+ base = value & PR_BASE_MASK;
+
+ dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
+ i, base << 12, (limit << 12) | 0xfff,
+ value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
+ }
+
+ dev_dbg(ispi->dev, "Flash regions:\n");
+ for (i = 0; i < ispi->nregions; i++) {
+ u32 region, base, limit;
+
+ region = readl(ispi->base + FREG(i));
+ base = region & FREG_BASE_MASK;
+ limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
+
+ if (base >= limit || (i > 0 && limit == 0))
+ dev_dbg(ispi->dev, " %02d disabled\n", i);
+ else
+ dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
+ i, base << 12, (limit << 12) | 0xfff);
+ }
+
+ dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
+ ispi->swseq_reg ? 'S' : 'H');
+ dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
+ ispi->swseq_erase ? 'S' : 'H');
+}
+
+/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
+static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
+{
+ size_t bytes;
+ int i = 0;
+
+ if (size > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ while (size > 0) {
+ bytes = min_t(size_t, size, 4);
+ memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
+ size -= bytes;
+ buf += bytes;
+ i++;
+ }
+
+ return 0;
+}
+
+/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
+static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
+ size_t size)
+{
+ size_t bytes;
+ int i = 0;
+
+ if (size > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ while (size > 0) {
+ bytes = min_t(size_t, size, 4);
+ memcpy_toio(ispi->base + FDATA(i), buf, bytes);
+ size -= bytes;
+ buf += bytes;
+ i++;
+ }
+
+ return 0;
+}
+
+static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
+{
+ u32 val;
+
+ return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
+ !(val & HSFSTS_CTL_SCIP), 0,
+ INTEL_SPI_TIMEOUT * 1000);
+}
+
+static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
+{
+ u32 val;
+
+ return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
+ !(val & SSFSTS_CTL_SCIP), 0,
+ INTEL_SPI_TIMEOUT * 1000);
+}
+
+static bool intel_spi_set_writeable(struct intel_spi *ispi)
+{
+ if (!ispi->info->set_writeable)
+ return false;
+
+ return ispi->info->set_writeable(ispi->base, ispi->info->data);
+}
+
+static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
+{
+ int i;
+ int preop;
+
+ if (ispi->locked) {
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
+ if (ispi->opcodes[i] == opcode)
+ return i;
+
+ return -EINVAL;
+ }
+
+ /* The lock is off, so just use index 0 */
+ writel(opcode, ispi->sregs + OPMENU0);
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
+
+ return 0;
+}
+
+static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
+{
+ u32 val, status;
+ int ret;
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
+
+ switch (opcode) {
+ case SPINOR_OP_RDID:
+ val |= HSFSTS_CTL_FCYCLE_RDID;
+ break;
+ case SPINOR_OP_WRSR:
+ val |= HSFSTS_CTL_FCYCLE_WRSR;
+ break;
+ case SPINOR_OP_RDSR:
+ val |= HSFSTS_CTL_FCYCLE_RDSR;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (len > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ return -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
+ int optype)
+{
+ u32 val = 0, status;
+ u8 atomic_preopcode;
+ int ret;
+
+ ret = intel_spi_opcode_index(ispi, opcode, optype);
+ if (ret < 0)
+ return ret;
+
+ if (len > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ /*
+ * Always clear it after each SW sequencer operation regardless
+ * of whether it is successful or not.
+ */
+ atomic_preopcode = ispi->atomic_preopcode;
+ ispi->atomic_preopcode = 0;
+
+ /* Only mark 'Data Cycle' bit when there is data to be transferred */
+ if (len > 0)
+ val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
+ val |= ret << SSFSTS_CTL_COP_SHIFT;
+ val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
+ val |= SSFSTS_CTL_SCGO;
+ if (atomic_preopcode) {
+ u16 preop;
+
+ switch (optype) {
+ case OPTYPE_WRITE_NO_ADDR:
+ case OPTYPE_WRITE_WITH_ADDR:
+ /* Pick matching preopcode for the atomic sequence */
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ if ((preop & 0xff) == atomic_preopcode)
+ ; /* Do nothing */
+ else if ((preop >> 8) == atomic_preopcode)
+ val |= SSFSTS_CTL_SPOP;
+ else
+ return -EINVAL;
+
+ /* Enable atomic sequence */
+ val |= SSFSTS_CTL_ACS;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+ }
+ writel(val, ispi->sregs + SSFSTS_CTL);
+
+ ret = intel_spi_wait_sw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->sregs + SSFSTS_CTL);
+ if (status & SSFSTS_CTL_FCERR)
+ return -EIO;
+ else if (status & SSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static int intel_spi_read_reg(struct intel_spi *ispi,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ size_t nbytes = op->data.nbytes;
+ u8 opcode = op->cmd.opcode;
+ int ret;
+
+ /* Address of the first chip */
+ writel(0, ispi->base + FADDR);
+
+ if (ispi->swseq_reg)
+ ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
+ OPTYPE_READ_NO_ADDR);
+ else
+ ret = intel_spi_hw_cycle(ispi, opcode, nbytes);
+
+ if (ret)
+ return ret;
+
+ return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
+}
+
+static int intel_spi_write_reg(struct intel_spi *ispi,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ size_t nbytes = op->data.nbytes;
+ u8 opcode = op->cmd.opcode;
+ int ret;
+
+ /*
+ * This is handled with atomic operation and preop code in Intel
+ * controller so we only verify that it is available. If the
+ * controller is not locked, program the opcode to the PREOP
+ * register for later use.
+ *
+ * When hardware sequencer is used there is no need to program
+ * any opcodes (it handles them automatically as part of a command).
+ */
+ if (opcode == SPINOR_OP_WREN) {
+ u16 preop;
+
+ if (!ispi->swseq_reg)
+ return 0;
+
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
+ if (ispi->locked)
+ return -EINVAL;
+ writel(opcode, ispi->sregs + PREOP_OPTYPE);
+ }
+
+ /*
+ * This enables atomic sequence on next SW sycle. Will
+ * be cleared after next operation.
+ */
+ ispi->atomic_preopcode = opcode;
+ return 0;
+ }
+
+ /*
+ * We hope that HW sequencer will do the right thing automatically and
+ * with the SW sequencer we cannot use preopcode anyway, so just ignore
+ * the Write Disable operation and pretend it was completed
+ * successfully.
+ */
+ if (opcode == SPINOR_OP_WRDI)
+ return 0;
+
+ writel(0, ispi->base + FADDR);
+
+ /* Write the value beforehand */
+ ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
+ if (ret)
+ return ret;
+
+ if (ispi->swseq_reg)
+ return intel_spi_sw_cycle(ispi, opcode, nbytes,
+ OPTYPE_WRITE_NO_ADDR);
+ return intel_spi_hw_cycle(ispi, opcode, nbytes);
+}
+
+static int intel_spi_read(struct intel_spi *ispi,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ void *read_buf = op->data.buf.in;
+ size_t block_size, nbytes = op->data.nbytes;
+ u32 addr = op->addr.val;
+ u32 val, status;
+ int ret;
+
+ /*
+ * Atomic sequence is not expected with HW sequencer reads. Make
+ * sure it is cleared regardless.
+ */
+ if (WARN_ON_ONCE(ispi->atomic_preopcode))
+ ispi->atomic_preopcode = 0;
+
+ while (nbytes > 0) {
+ block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
+
+ /* Read cannot cross 4K boundary */
+ block_size = min_t(loff_t, addr + block_size,
+ round_up(addr + 1, SZ_4K)) - addr;
+
+ writel(addr, ispi->base + FADDR);
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCYCLE_READ;
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ ret = -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ ret = -EACCES;
+
+ if (ret < 0) {
+ dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
+ return ret;
+ }
+
+ ret = intel_spi_read_block(ispi, read_buf, block_size);
+ if (ret)
+ return ret;
+
+ nbytes -= block_size;
+ addr += block_size;
+ read_buf += block_size;
+ }
+
+ return 0;
+}
+
+static int intel_spi_write(struct intel_spi *ispi,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ size_t block_size, nbytes = op->data.nbytes;
+ const void *write_buf = op->data.buf.out;
+ u32 addr = op->addr.val;
+ u32 val, status;
+ int ret;
+
+ /* Not needed with HW sequencer write, make sure it is cleared */
+ ispi->atomic_preopcode = 0;
+
+ while (nbytes > 0) {
+ block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
+
+ /* Write cannot cross 4K boundary */
+ block_size = min_t(loff_t, addr + block_size,
+ round_up(addr + 1, SZ_4K)) - addr;
+
+ writel(addr, ispi->base + FADDR);
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCYCLE_WRITE;
+
+ ret = intel_spi_write_block(ispi, write_buf, block_size);
+ if (ret) {
+ dev_err(ispi->dev, "failed to write block\n");
+ return ret;
+ }
+
+ /* Start the write now */
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret) {
+ dev_err(ispi->dev, "timeout\n");
+ return ret;
+ }
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ ret = -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ ret = -EACCES;
+
+ if (ret < 0) {
+ dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
+ return ret;
+ }
+
+ nbytes -= block_size;
+ addr += block_size;
+ write_buf += block_size;
+ }
+
+ return 0;
+}
+
+static int intel_spi_erase(struct intel_spi *ispi,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ u8 opcode = op->cmd.opcode;
+ u32 addr = op->addr.val;
+ u32 val, status;
+ int ret;
+
+ writel(addr, ispi->base + FADDR);
+
+ if (ispi->swseq_erase)
+ return intel_spi_sw_cycle(ispi, opcode, 0,
+ OPTYPE_WRITE_WITH_ADDR);
+
+ /* Not needed with HW sequencer erase, make sure it is cleared */
+ ispi->atomic_preopcode = 0;
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= HSFSTS_CTL_FGO;
+ val |= iop->replacement_op;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ return -EIO;
+ if (status & HSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
+ iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
+ iop->mem_op.cmd.dtr != op->cmd.dtr ||
+ iop->mem_op.cmd.opcode != op->cmd.opcode)
+ return false;
+
+ if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
+ iop->mem_op.addr.dtr != op->addr.dtr)
+ return false;
+
+ if (iop->mem_op.data.dir != op->data.dir ||
+ iop->mem_op.data.dtr != op->data.dtr)
+ return false;
+
+ if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
+ if (iop->mem_op.data.buswidth != op->data.buswidth)
+ return false;
+ }
+
+ return true;
+}
+
+static const struct intel_spi_mem_op *
+intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
+{
+ const struct intel_spi_mem_op *iop;
+
+ for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
+ if (intel_spi_cmp_mem_op(iop, op))
+ break;
+ }
+
+ return iop->mem_op.cmd.opcode ? iop : NULL;
+}
+
+static bool intel_spi_supports_mem_op(struct spi_mem *mem,
+ const struct spi_mem_op *op)
+{
+ struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
+ const struct intel_spi_mem_op *iop;
+
+ iop = intel_spi_match_mem_op(ispi, op);
+ if (!iop) {
+ dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
+ return false;
+ }
+
+ /*
+ * For software sequencer check that the opcode is actually
+ * present in the opmenu if it is locked.
+ */
+ if (ispi->swseq_reg && ispi->locked) {
+ int i;
+
+ /* Check if it is in the locked opcodes list */
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
+ if (ispi->opcodes[i] == op->cmd.opcode)
+ return true;
+ }
+
+ dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
+ return false;
+ }
+
+ return true;
+}
+
+static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
+{
+ struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
+ const struct intel_spi_mem_op *iop;
+
+ iop = intel_spi_match_mem_op(ispi, op);
+ if (!iop)
+ return -EOPNOTSUPP;
+
+ return iop->exec_op(ispi, iop, op);
+}
+
+static const char *intel_spi_get_name(struct spi_mem *mem)
+{
+ const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
+
+ /*
+ * Return name of the flash controller device to be compatible
+ * with the MTD version.
+ */
+ return dev_name(ispi->dev);
+}
+
+static const struct spi_controller_mem_ops intel_spi_mem_ops = {
+ .supports_op = intel_spi_supports_mem_op,
+ .exec_op = intel_spi_exec_mem_op,
+ .get_name = intel_spi_get_name,
+};
+
+#define INTEL_SPI_OP_ADDR(__nbytes) \
+ { \
+ .nbytes = __nbytes, \
+ }
+
+#define INTEL_SPI_OP_NO_DATA \
+ { \
+ .dir = SPI_MEM_NO_DATA, \
+ }
+
+#define INTEL_SPI_OP_DATA_IN(__buswidth) \
+ { \
+ .dir = SPI_MEM_DATA_IN, \
+ .buswidth = __buswidth, \
+ }
+
+#define INTEL_SPI_OP_DATA_OUT(__buswidth) \
+ { \
+ .dir = SPI_MEM_DATA_OUT, \
+ .buswidth = __buswidth, \
+ }
+
+#define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \
+ { \
+ .mem_op = { \
+ .cmd = __cmd, \
+ .addr = __addr, \
+ .data = __data, \
+ }, \
+ .exec_op = __exec_op, \
+ }
+
+#define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
+ { \
+ .mem_op = { \
+ .cmd = __cmd, \
+ .addr = __addr, \
+ .data = __data, \
+ }, \
+ .exec_op = __exec_op, \
+ .replacement_op = __repl, \
+ }
+
+/*
+ * The controller handles pretty much everything internally based on the
+ * SFDP data but we want to make sure we only support the operations
+ * actually possible. Only check buswidth and transfer direction, the
+ * core validates data.
+ */
+#define INTEL_SPI_GENERIC_OPS \
+ /* Status register operations */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read_reg), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read_reg), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write_reg), \
+ /* Normal read */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Fast read */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Read with 4-byte address opcode */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Fast read with 4-byte address opcode */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Write operations */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_write_reg), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_write_reg), \
+ /* Erase operations */ \
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_erase, \
+ HSFSTS_CTL_FCYCLE_ERASE), \
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_erase, \
+ HSFSTS_CTL_FCYCLE_ERASE), \
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_erase, \
+ HSFSTS_CTL_FCYCLE_ERASE) \
+
+static const struct intel_spi_mem_op generic_mem_ops[] = {
+ INTEL_SPI_GENERIC_OPS,
+ { },
+};
+
+static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
+ INTEL_SPI_GENERIC_OPS,
+ /* 64k sector erase operations */
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
+ INTEL_SPI_OP_ADDR(3),
+ SPI_MEM_OP_NO_DATA,
+ intel_spi_erase,
+ HSFSTS_CTL_FCYCLE_ERASE_64K),
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
+ INTEL_SPI_OP_ADDR(4),
+ SPI_MEM_OP_NO_DATA,
+ intel_spi_erase,
+ HSFSTS_CTL_FCYCLE_ERASE_64K),
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
+ INTEL_SPI_OP_ADDR(4),
+ SPI_MEM_OP_NO_DATA,
+ intel_spi_erase,
+ HSFSTS_CTL_FCYCLE_ERASE_64K),
+ { },
+};
+
+static int intel_spi_init(struct intel_spi *ispi)
+{
+ u32 opmenu0, opmenu1, lvscc, uvscc, val;
+ bool erase_64k = false;
+ int i;
+
+ switch (ispi->info->type) {
+ case INTEL_SPI_BYT:
+ ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + BYT_PR;
+ ispi->nregions = BYT_FREG_NUM;
+ ispi->pr_num = BYT_PR_NUM;
+ ispi->swseq_reg = true;
+ break;
+
+ case INTEL_SPI_LPT:
+ ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + LPT_PR;
+ ispi->nregions = LPT_FREG_NUM;
+ ispi->pr_num = LPT_PR_NUM;
+ ispi->swseq_reg = true;
+ break;
+
+ case INTEL_SPI_BXT:
+ ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + BXT_PR;
+ ispi->nregions = BXT_FREG_NUM;
+ ispi->pr_num = BXT_PR_NUM;
+ erase_64k = true;
+ break;
+
+ case INTEL_SPI_CNL:
+ ispi->sregs = NULL;
+ ispi->pregs = ispi->base + CNL_PR;
+ ispi->nregions = CNL_FREG_NUM;
+ ispi->pr_num = CNL_PR_NUM;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ /* Try to disable write protection if user asked to do so */
+ if (writeable && !intel_spi_set_writeable(ispi)) {
+ dev_warn(ispi->dev, "can't disable chip write protection\n");
+ writeable = false;
+ }
+
+ /* Disable #SMI generation from HW sequencer */
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~HSFSTS_CTL_FSMIE;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ /*
+ * Determine whether erase operation should use HW or SW sequencer.
+ *
+ * The HW sequencer has a predefined list of opcodes, with only the
+ * erase opcode being programmable in LVSCC and UVSCC registers.
+ * If these registers don't contain a valid erase opcode, erase
+ * cannot be done using HW sequencer.
+ */
+ lvscc = readl(ispi->base + LVSCC);
+ uvscc = readl(ispi->base + UVSCC);
+ if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
+ ispi->swseq_erase = true;
+ /* SPI controller on Intel BXT supports 64K erase opcode */
+ if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
+ if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
+ !(uvscc & ERASE_64K_OPCODE_MASK))
+ erase_64k = false;
+
+ if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
+ dev_err(ispi->dev, "software sequencer not supported, but required\n");
+ return -EINVAL;
+ }
+
+ /*
+ * Some controllers can only do basic operations using hardware
+ * sequencer. All other operations are supposed to be carried out
+ * using software sequencer.
+ */
+ if (ispi->swseq_reg) {
+ /* Disable #SMI generation from SW sequencer */
+ val = readl(ispi->sregs + SSFSTS_CTL);
+ val &= ~SSFSTS_CTL_FSMIE;
+ writel(val, ispi->sregs + SSFSTS_CTL);
+ }
+
+ /* Check controller's lock status */
+ val = readl(ispi->base + HSFSTS_CTL);
+ ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
+
+ if (ispi->locked && ispi->sregs) {
+ /*
+ * BIOS programs allowed opcodes and then locks down the
+ * register. So read back what opcodes it decided to support.
+ * That's the set we are going to support as well.
+ */
+ opmenu0 = readl(ispi->sregs + OPMENU0);
+ opmenu1 = readl(ispi->sregs + OPMENU1);
+
+ if (opmenu0 && opmenu1) {
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
+ ispi->opcodes[i] = opmenu0 >> i * 8;
+ ispi->opcodes[i + 4] = opmenu1 >> i * 8;
+ }
+ }
+ }
+
+ if (erase_64k) {
+ dev_dbg(ispi->dev, "Using erase_64k memory operations");
+ ispi->mem_ops = erase_64k_mem_ops;
+ } else {
+ dev_dbg(ispi->dev, "Using generic memory operations");
+ ispi->mem_ops = generic_mem_ops;
+ }
+
+ intel_spi_dump_regs(ispi);
+ return 0;
+}
+
+static bool intel_spi_is_protected(const struct intel_spi *ispi,
+ unsigned int base, unsigned int limit)
+{
+ int i;
+
+ for (i = 0; i < ispi->pr_num; i++) {
+ u32 pr_base, pr_limit, pr_value;
+
+ pr_value = readl(ispi->pregs + PR(i));
+ if (!(pr_value & (PR_WPE | PR_RPE)))
+ continue;
+
+ pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
+ pr_base = pr_value & PR_BASE_MASK;
+
+ if (pr_base >= base && pr_limit <= limit)
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * There will be a single partition holding all enabled flash regions. We
+ * call this "BIOS".
+ */
+static void intel_spi_fill_partition(struct intel_spi *ispi,
+ struct mtd_partition *part)
+{
+ u64 end;
+ int i;
+
+ memset(part, 0, sizeof(*part));
+
+ /* Start from the mandatory descriptor region */
+ part->size = 4096;
+ part->name = "BIOS";
+
+ /*
+ * Now try to find where this partition ends based on the flash
+ * region registers.
+ */
+ for (i = 1; i < ispi->nregions; i++) {
+ u32 region, base, limit;
+
+ region = readl(ispi->base + FREG(i));
+ base = region & FREG_BASE_MASK;
+ limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
+
+ if (base >= limit || limit == 0)
+ continue;
+
+ /*
+ * If any of the regions have protection bits set, make the
+ * whole partition read-only to be on the safe side.
+ *
+ * Also if the user did not ask the chip to be writeable
+ * mask the bit too.
+ */
+ if (!writeable || intel_spi_is_protected(ispi, base, limit))
+ part->mask_flags |= MTD_WRITEABLE;
+
+ end = (limit << 12) + 4096;
+ if (end > part->size)
+ part->size = end;
+ }
+}
+
+static int intel_spi_populate_chip(struct intel_spi *ispi)
+{
+ struct flash_platform_data *pdata;
+ struct spi_board_info chip;
+
+ pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ pdata->nr_parts = 1;
+ pdata->parts = devm_kcalloc(ispi->dev, sizeof(*pdata->parts),
+ pdata->nr_parts, GFP_KERNEL);
+ if (!pdata->parts)
+ return -ENOMEM;
+
+ intel_spi_fill_partition(ispi, pdata->parts);
+
+ memset(&chip, 0, sizeof(chip));
+ snprintf(chip.modalias, 8, "spi-nor");
+ chip.platform_data = pdata;
+
+ return spi_new_device(ispi->master, &chip) ? 0 : -ENODEV;
+}
+
+/**
+ * intel_spi_probe() - Probe the Intel SPI flash controller
+ * @dev: Pointer to the parent device
+ * @mem: MMIO resource
+ * @info: Platform spefific information
+ *
+ * Probes Intel SPI flash controller and creates the flash chip device.
+ * Returns %0 on success and negative errno in case of failure.
+ */
+int intel_spi_probe(struct device *dev, struct resource *mem,
+ const struct intel_spi_boardinfo *info)
+{
+ struct spi_controller *master;
+ struct intel_spi *ispi;
+ int ret;
+
+ master = devm_spi_alloc_master(dev, sizeof(*ispi));
+ if (!master)
+ return -ENOMEM;
+
+ master->mem_ops = &intel_spi_mem_ops;
+
+ ispi = spi_master_get_devdata(master);
+
+ ispi->base = devm_ioremap_resource(dev, mem);
+ if (IS_ERR(ispi->base))
+ return PTR_ERR(ispi->base);
+
+ ispi->dev = dev;
+ ispi->master = master;
+ ispi->info = info;
+
+ ret = intel_spi_init(ispi);
+ if (ret)
+ return ret;
+
+ ret = devm_spi_register_master(dev, master);
+ if (ret)
+ return ret;
+
+ return intel_spi_populate_chip(ispi);
+}
+EXPORT_SYMBOL_GPL(intel_spi_probe);
+
+MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
+MODULE_LICENSE("GPL v2");
--- /dev/null
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Intel PCH/PCU SPI flash driver.
+ *
+ * Copyright (C) 2016 - 2022, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#ifndef SPI_INTEL_H
+#define SPI_INTEL_H
+
+#include <linux/platform_data/x86/spi-intel.h>
+
+struct resource;
+
+int intel_spi_probe(struct device *dev, struct resource *mem,
+ const struct intel_spi_boardinfo *info);
+
+#endif /* SPI_INTEL_H */
#ifndef LPC_ICH_H
#define LPC_ICH_H
-#include <linux/platform_data/x86/intel-spi.h>
+#include <linux/platform_data/x86/spi-intel.h>
/* GPIO resources */
#define ICH_RES_GPIO 0
+++ /dev/null
-/* SPDX-License-Identifier: GPL-2.0-only */
-/*
- * Intel PCH/PCU SPI flash driver.
- *
- * Copyright (C) 2016, Intel Corporation
- * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
- */
-
-#ifndef INTEL_SPI_PDATA_H
-#define INTEL_SPI_PDATA_H
-
-enum intel_spi_type {
- INTEL_SPI_BYT = 1,
- INTEL_SPI_LPT,
- INTEL_SPI_BXT,
- INTEL_SPI_CNL,
-};
-
-/**
- * struct intel_spi_boardinfo - Board specific data for Intel SPI driver
- * @type: Type which this controller is compatible with
- * @set_writeable: Try to make the chip writeable (optional)
- * @data: Data to be passed to @set_writeable can be %NULL
- */
-struct intel_spi_boardinfo {
- enum intel_spi_type type;
- bool (*set_writeable)(void __iomem *base, void *data);
- void *data;
-};
-
-#endif /* INTEL_SPI_PDATA_H */
--- /dev/null
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Intel PCH/PCU SPI flash driver.
+ *
+ * Copyright (C) 2016, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#ifndef SPI_INTEL_PDATA_H
+#define SPI_INTEL_PDATA_H
+
+enum intel_spi_type {
+ INTEL_SPI_BYT = 1,
+ INTEL_SPI_LPT,
+ INTEL_SPI_BXT,
+ INTEL_SPI_CNL,
+};
+
+/**
+ * struct intel_spi_boardinfo - Board specific data for Intel SPI driver
+ * @type: Type which this controller is compatible with
+ * @set_writeable: Try to make the chip writeable (optional)
+ * @data: Data to be passed to @set_writeable can be %NULL
+ */
+struct intel_spi_boardinfo {
+ enum intel_spi_type type;
+ bool (*set_writeable)(void __iomem *base, void *data);
+ void *data;
+};
+
+#endif /* SPI_INTEL_PDATA_H */