typedef struct DCTContext DCTContext;
+enum DCTTransformType {
+ DCT_II = 0,
+ DCT_III,
+ DCT_I,
+ DST_I,
+};
+
/**
- * Set up (Inverse)DCT.
- * @param nbits log2 of the length of the input array
- * @param inverse >0 forward transform, <0 inverse transform
+ * Sets up DCT.
+ * @param nbits size of the input array:
+ * (1 << nbits) for DCT-II, DCT-III and DST-I
+ * (1 << nbits) + 1 for DCT-I
+ *
+ * @note the first element of the input of DST-I is ignored
*/
-DCTContext *av_dct_init(int nbits, int inverse);
+DCTContext *av_dct_init(int nbits, enum DCTTransformType type);
void av_dct_calc(DCTContext *s, FFTSample *data);
void av_dct_end (DCTContext *s);
/* cos((M_PI * x / (2*n)) */
#define COS(s,n,x) (s->costab[x])
+static void ff_dst_calc_I_c(DCTContext *ctx, FFTSample *data)
+{
+ int n = 1 << ctx->nbits;
+ int i;
+
+ data[0] = 0;
+ for(i = 1; i < n/2; i++) {
+ float tmp1 = data[i ];
+ float tmp2 = data[n - i];
+ float s = SIN(ctx, n, 2*i);
+
+ s *= tmp1 + tmp2;
+ tmp1 = (tmp1 - tmp2) * 0.5f;
+ data[i ] = s + tmp1;
+ data[n - i] = s - tmp1;
+ }
+
+ data[n/2] *= 2;
+ ff_rdft_calc(&ctx->rdft, data);
+
+ data[0] *= 0.5f;
+
+ for(i = 1; i < n-2; i += 2) {
+ data[i + 1] += data[i - 1];
+ data[i ] = -data[i + 2];
+ }
+
+ data[n-1] = 0;
+}
+
+static void ff_dct_calc_I_c(DCTContext *ctx, FFTSample *data)
+{
+ int n = 1 << ctx->nbits;
+ int i;
+ float next = -0.5f * (data[0] - data[n]);
+
+ for(i = 0; i < n/2; i++) {
+ float tmp1 = data[i ];
+ float tmp2 = data[n - i];
+ float s = SIN(ctx, n, 2*i);
+ float c = COS(ctx, n, 2*i);
+
+ c *= tmp1 - tmp2;
+ s *= tmp1 - tmp2;
+
+ next += c;
+
+ tmp1 = (tmp1 + tmp2) * 0.5f;
+ data[i ] = tmp1 - s;
+ data[n - i] = tmp1 + s;
+ }
+
+ ff_rdft_calc(&ctx->rdft, data);
+ data[n] = data[1];
+ data[1] = next;
+
+ for(i = 3; i <= n; i += 2)
+ data[i] = data[i - 2] - data[i];
+}
+
static void ff_dct_calc_III_c(DCTContext *ctx, FFTSample *data)
{
int n = 1 << ctx->nbits;
s->dct_calc(s, data);
}
-av_cold int ff_dct_init(DCTContext *s, int nbits, int inverse)
+av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
{
int n = 1 << nbits;
int i;
s->csc2 = av_malloc(n/2 * sizeof(FFTSample));
- if (ff_rdft_init(&s->rdft, nbits, inverse) < 0) {
+ if (ff_rdft_init(&s->rdft, nbits, inverse == DCT_III) < 0) {
av_free(s->csc2);
return -1;
}
for (i = 0; i < n/2; i++)
s->csc2[i] = 0.5 / sin((M_PI / (2*n) * (2*i + 1)));
- if(inverse) {
- s->dct_calc = ff_dct_calc_III_c;
- } else
- s->dct_calc = ff_dct_calc_II_c;
-
+ switch(inverse) {
+ case DCT_I : s->dct_calc = ff_dct_calc_I_c; break;
+ case DCT_II : s->dct_calc = ff_dct_calc_II_c ; break;
+ case DCT_III: s->dct_calc = ff_dct_calc_III_c; break;
+ case DST_I : s->dct_calc = ff_dst_calc_I_c; break;
+ }
return 0;
}
};
/**
- * Sets up (Inverse)DCT.
- * @param nbits log2 of the length of the input array
- * @param inverse >0 forward transform, <0 inverse transform
+ * Sets up DCT.
+ * @param nbits size of the input array:
+ * (1 << nbits) for DCT-II, DCT-III and DST-I
+ * (1 << nbits) + 1 for DCT-I
+ *
+ * @note the first element of the input of DST-I is ignored
*/
-int ff_dct_init(DCTContext *s, int nbits, int inverse);
+int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType type);
void ff_dct_calc(DCTContext *s, FFTSample *data);
void ff_dct_end (DCTContext *s);