"src/core/CL/kernels/CLPadLayerKernel.cpp",
"src/core/CL/kernels/CLPermuteKernel.cpp",
"src/core/CL/kernels/CLPixelWiseMultiplicationKernel.cpp",
- "src/core/CL/kernels/CLPoolingLayerKernel.cpp",
"src/core/CL/kernels/CLPriorBoxLayerKernel.cpp",
"src/core/CL/kernels/CLQLSTMLayerNormalizationKernel.cpp",
"src/core/CL/kernels/CLQuantizationLayerKernel.cpp",
"src/core/gpu/cl/kernels/ClElementwiseUnaryKernel.cpp",
"src/core/gpu/cl/kernels/ClFloorKernel.cpp",
"src/core/gpu/cl/kernels/ClHeightConcatenateKernel.cpp",
+ "src/core/gpu/cl/kernels/ClPoolingKernel.cpp",
"src/core/gpu/cl/kernels/ClWidthConcatenate2TensorsKernel.cpp",
"src/core/gpu/cl/kernels/ClWidthConcatenate4TensorsKernel.cpp",
"src/core/gpu/cl/kernels/ClWidthConcatenateKernel.cpp",
"src/runtime/gpu/cl/operators/ClElementwiseUnary.cpp",
"src/runtime/gpu/cl/operators/ClFloor.cpp",
"src/runtime/gpu/cl/operators/ClLogicalNot.cpp",
+ "src/runtime/gpu/cl/operators/ClPooling.cpp",
"src/runtime/gpu/cl/operators/ClSub.cpp",
"utils/CommonGraphOptions.cpp",
"utils/GraphUtils.cpp",
/*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
#ifndef ARM_COMPUTE_CLPOOLINGLAYER_H
#define ARM_COMPUTE_CLPOOLINGLAYER_H
-#include "arm_compute/runtime/CL/ICLSimpleFunction.h"
+#include "arm_compute/runtime/IFunction.h"
-#include "arm_compute/core/Error.h"
#include "arm_compute/core/Types.h"
+#include <memory>
+
namespace arm_compute
{
class CLCompileContext;
class ICLTensor;
class ITensorInfo;
-/** Basic function to simulate a pooling layer with the specified pooling operation. This function calls the following OpenCL kernels:
- *
- * -# @ref CLFillBorderKernel (executed if padding size is different from zero)
- * -# @ref CLPoolingLayerKernel
- */
-class CLPoolingLayer : public ICLSimpleFunction
+/** Basic function to run @ref opencl::ClPooling */
+class CLPoolingLayer : public IFunction
{
public:
+ /** Default Constructor */
+ CLPoolingLayer();
+ /** Default Destructor */
+ ~CLPoolingLayer();
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLPoolingLayer(const CLPoolingLayer &) = delete;
+ /** Default move constructor */
+ CLPoolingLayer(CLPoolingLayer &&) = default;
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLPoolingLayer &operator=(const CLPoolingLayer &) = delete;
+ /** Default move assignment operator */
+ CLPoolingLayer &operator=(CLPoolingLayer &&) = default;
/** Set the input and output tensors.
*
* @param[in,out] input Source tensor. (Written to only when padding != 0) Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
* @return a status
*/
static Status validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices = nullptr);
+
+ // Inherited methods overridden:
+ void run() override;
+
+private:
+ struct Impl;
+ std::unique_ptr<Impl> _impl;
};
} // namespace arm_compute
#endif /* ARM_COMPUTE_CLPOOLINGLAYER_H */
- CLBatchConcatenateLayerKernel
- CLElementwiseOperationKernel
- @ref CLBatchNormalizationLayerKernel
- - @ref CLPoolingLayerKernel
+ - CLPoolingLayerKernel
- @ref CLWinogradInputTransformKernel
- @ref CLGEMMLowpMatrixMultiplyNativeKernel
- @ref CLGEMMLowpMatrixAReductionKernel
- @ref NEDepthwiseConvolutionLayer
- Added FP16 mixed-precision support for:
- @ref CLGEMMMatrixMultiplyReshapedKernel
- - @ref CLPoolingLayerKernel
+ - CLPoolingLayerKernel
- Added FP32 and FP16 ELU activation for:
- @ref CLActivationLayer
- @ref NEActivationLayer
v17.02.1 Sources preview
- New OpenCL kernels / functions:
- CLLogits1DMaxKernel, CLLogits1DShiftExpSumKernel, @ref CLLogits1DNormKernel / @ref CLSoftmaxLayer
- - @ref CLPoolingLayerKernel / @ref CLPoolingLayer
+ - CLPoolingLayerKernel / @ref CLPoolingLayer
- @ref CLIm2ColKernel, @ref CLCol2ImKernel, CLConvolutionLayerWeightsReshapeKernel / @ref CLConvolutionLayer
- @ref CLRemapKernel / @ref CLRemap
- @ref CLGaussianPyramidHorKernel, @ref CLGaussianPyramidVertKernel / @ref CLGaussianPyramid, @ref CLGaussianPyramidHalf, @ref CLGaussianPyramidOrb
#include "src/core/CL/kernels/CLPadLayerKernel.h"
#include "src/core/CL/kernels/CLPermuteKernel.h"
#include "src/core/CL/kernels/CLPixelWiseMultiplicationKernel.h"
-#include "src/core/CL/kernels/CLPoolingLayerKernel.h"
#include "src/core/CL/kernels/CLPriorBoxLayerKernel.h"
#include "src/core/CL/kernels/CLQLSTMLayerNormalizationKernel.h"
#include "src/core/CL/kernels/CLQuantizationLayerKernel.h"
/*
- * Copyright (c) 2020 Arm Limited.
+ * Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
* @param[in] indices Tensor containing the offset to store the input elements in the output tensor.
- * @ref CLPoolingLayerKernel with indices should precede this function in order to
+ * @ref opencl::ClPooling with indices should precede this function in order to
* properly reconstruct the output tensor.
* The tensor shape of this tensor has to be equal to the input tensor shape. Data type supported: U32.
* @param[out] output Destination tensor. Data types supported: Same as @p input.
* @param[in] input Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
* @param[in] output Destination tensor info. Data types supported: Same as @p input.
* @param[in] indices TensorInfo associated to the tensor containing the offset to store the input elements in the output tensor.
- * @ref CLPoolingLayerKernel with indices should precede this function in order to
+ * @ref opencl::ClPooling with indices should precede this function in order to
* properly reconstruct the output tensor.
* The tensor shape of this tensor has to be equal to the input tensor shape. Data type supported: U32.
* @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
+++ /dev/null
-/*
- * Copyright (c) 2017-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/CL/kernels/CLPoolingLayerKernel.h"
-
-#include "arm_compute/core/CL/CLHelpers.h"
-#include "arm_compute/core/CL/CLKernelLibrary.h"
-#include "arm_compute/core/CL/ICLTensor.h"
-#include "arm_compute/core/CL/OpenCL.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/AccessWindowStatic.h"
-#include "src/core/CL/CLValidate.h"
-#include "src/core/CL/ICLKernel.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-#include "support/StringSupport.h"
-
-#include <set>
-#include <string>
-#include <tuple>
-
-namespace arm_compute
-{
-using namespace arm_compute::misc::shape_calculator;
-
-namespace
-{
-// Internal window config info
-using CLPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
-
-void auto_init(const ITensorInfo *input, ITensorInfo *output, ITensorInfo *indices, PoolingLayerInfo pool_info)
-{
- TensorShape out_shape = compute_pool_shape(*input, pool_info);
- auto_init_if_empty(*output, input->clone()->set_tensor_shape(out_shape));
- if(indices)
- {
- auto_init_if_empty(*indices, input->clone()->set_tensor_shape(out_shape).set_data_type(DataType::U32));
- }
-}
-
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(input->data_type()) && pool_info.pool_type == PoolingType::L2),
- "Unsupported combination of parameters!");
-
- // Check indices
- if(indices)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_info.pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
-
- if(indices->total_size() != 0)
- {
- TensorInfo idx_info(TensorInfo(compute_pool_shape(*input, pool_info), 1, DataType::U32));
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(indices, &idx_info);
- }
- }
-
- // Checks performed when output is configured
- if(output->total_size() != 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
- TensorInfo out_info(TensorInfo(compute_pool_shape(*input, pool_info), 1, output->data_type()));
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &out_info);
- }
-
- return Status{};
-}
-
-std::tuple<Status, Window, CLPoolingConfig> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info, ITensorInfo *indices = nullptr)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-
- // Get data layout
- const DataLayout data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->data_layout() : pool_info.data_layout;
- const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
- const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- unsigned int pooled_w = 0;
- unsigned int pooled_h = 0;
- int pool_size_x = pool_info.is_global_pooling ? input->dimension(idx_width) : pool_info.pool_size.width;
- int pool_size_y = pool_info.is_global_pooling ? input->dimension(idx_height) : pool_info.pool_size.height;
- const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
- std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
- const int pool_pad_right = pad_stride_info.pad_right();
- const int pool_pad_top = pad_stride_info.pad_top();
- const int pool_pad_left = pad_stride_info.pad_left();
- const int pool_pad_bottom = pad_stride_info.pad_bottom();
- BorderSize border_size = BorderSize();
-
- auto_init(input, output, indices, pool_info);
- pooled_w = output->tensor_shape()[idx_width];
- pooled_h = output->tensor_shape()[idx_height];
-
- const DataType data_type = input->data_type();
-
- const int input_width = input->dimension(idx_width);
- const int input_height = input->dimension(idx_height);
-
- unsigned int num_elems_processed_per_iteration = 0;
- bool window_changed = false;
- Window win{};
- switch(data_layout)
- {
- case DataLayout::NCHW:
- {
- // Initialize border size
- border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
- // Change the number of elements processed per iteration
- // for pooling 3x3 with stride less equal than 3
- const bool can_optimize = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3) && !is_data_type_quantized(data_type);
- num_elems_processed_per_iteration = can_optimize ? 4 : 1;
- const unsigned int num_elems_read_per_iteration = (num_elems_processed_per_iteration - 1) * pool_stride_x + pool_size_x;
-
- // Number of iterations in X dimension
- const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
-
- // Upper limit for the number of right/bottom border elements that are accessed
- const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - input_width;
- const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - input_height;
-
- border_size.right = std::max(upper_bound_w, pool_pad_right);
- border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
-
- win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
-
- AccessWindowRectangle input_access(input, -pool_pad_left, -pool_pad_top, num_elems_read_per_iteration, pool_size_y,
- pool_stride_x, pool_stride_y);
- AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
-
- // Update indices window
- if(indices)
- {
- AccessWindowHorizontal indices_access(indices, 0, num_elems_processed_per_iteration);
- window_changed = update_window_and_padding(win, input_access, output_access, indices_access);
- indices_access.set_valid_region(win, ValidRegion(Coordinates(), indices->tensor_shape()));
- }
- else
- {
- window_changed = update_window_and_padding(win, input_access, output_access);
- }
-
- output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
- break;
- }
- case DataLayout::NHWC:
- {
- // Initialize border size
- border_size = BorderSize();
- num_elems_processed_per_iteration = adjust_vec_size(4, output->dimension(0));
- win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
-
- if(indices != nullptr)
- {
- indices->set_valid_region(ValidRegion(Coordinates(), indices->tensor_shape()));
- }
-
- output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
- break;
- }
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
-
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_tuple(err, win, CLPoolingConfig(num_elems_processed_per_iteration, border_size));
-}
-} // namespace
-
-CLPoolingLayerKernel::CLPoolingLayerKernel()
- : _input(nullptr), _output(nullptr), _indices(nullptr), _pool_info(), _data_layout(DataLayout::UNKNOWN), _border_size(0), _num_elems_processed_per_iteration(1)
-{
-}
-
-BorderSize CLPoolingLayerKernel::border_size() const
-{
- return _border_size;
-}
-
-void CLPoolingLayerKernel::configure(const ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info, ICLTensor *indices)
-{
- configure(CLKernelLibrary::get().get_compile_context(), input, output, pool_info, indices);
-}
-
-void CLPoolingLayerKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info, ICLTensor *indices)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-
- auto padding_info = get_padding_info({ input, output, indices });
-
- // Set instance variables
- _input = input;
- _output = output;
- _pool_info = pool_info;
- _data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->info()->data_layout() : pool_info.data_layout;
- _indices = indices;
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- const PoolingType pool_type = pool_info.pool_type;
- const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
- const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
- const int idx_channel = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
- const int idx_batch_size = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::BATCHES);
- const int pool_size_x = pool_info.is_global_pooling ? input->info()->dimension(idx_width) : pool_info.pool_size.width;
- const int pool_size_y = pool_info.is_global_pooling ? input->info()->dimension(idx_height) : pool_info.pool_size.height;
- const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
- const bool exclude_padding = pool_info.exclude_padding;
- std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
- const int pool_pad_top = pad_stride_info.pad_top();
- const int pool_pad_left = pad_stride_info.pad_left();
-
- // Set build options
- CLBuildOptions build_opts;
- const DataType data_type = input->info()->data_type();
-
- // Configure kernel window
- auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info, (indices ? indices->info() : nullptr));
-
- ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
- ICLKernel::configure_internal(std::get<1>(win_config));
-
- CLPoolingConfig pooling_config = std::get<2>(win_config);
- _num_elems_processed_per_iteration = pooling_config.first;
- _border_size = pooling_config.second;
-
- build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(_num_elems_processed_per_iteration));
-
- // Tensor paddings are used to calculate the indicies for MAX pooling
- if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && _indices && is_data_type_float(data_type))
- {
- build_opts.add_option("-DPAD_TENSOR_LEFT=" + support::cpp11::to_string(input->info()->padding().left));
- build_opts.add_option("-DPAD_TENSOR_RIGHT=" + support::cpp11::to_string(input->info()->padding().right));
- build_opts.add_option("-DPAD_TENSOR_TOP=" + support::cpp11::to_string(input->info()->padding().top));
- build_opts.add_option("-DPAD_TENSOR_BOTTOM=" + support::cpp11::to_string(input->info()->padding().bottom));
- build_opts.add_option("-DTENSOR_CHANNEL=" + support::cpp11::to_string(input->info()->dimension(idx_channel)));
- build_opts.add_option("-DTENSOR_WIDTH=" + support::cpp11::to_string(input->info()->dimension(idx_width)));
- build_opts.add_option("-DTENSOR_HEIGHT=" + support::cpp11::to_string(input->info()->dimension(idx_height)));
- }
-
- if(is_data_type_quantized_asymmetric(data_type) && input->info()->quantization_info() != output->info()->quantization_info())
- {
- const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
- const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform();
-
- build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset));
- build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset));
- build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale));
- build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
- }
-
- // Check output dimensions
- auto_init(input->info(), output->info(), indices ? indices->info() : nullptr, pool_info);
-
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, (indices) ? indices->info() : nullptr));
-
- build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
- build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type));
- build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x));
- build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y));
- build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_left));
- build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_top));
- build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x));
- build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y));
-
- // Set the initial value for the pooling operation accordingly with the data type
- if(pool_type == PoolingType::MAX)
- {
- if(is_data_type_quantized(data_type))
- {
- PixelValue type_min{};
- std::tie(type_min, std::ignore) = get_min_max(data_type);
- build_opts.add_option("-DINITIAL_VALUE=" + support::cpp11::to_string(type_min.get<int32_t>()));
- }
- else
- {
- build_opts.add_option("-DINITIAL_VALUE=" + float_to_string_with_full_precision(std::numeric_limits<float>::lowest()));
- }
- }
- else
- {
- // Pool AVG and Pool L2 initial value
- build_opts.add_option("-DINITIAL_VALUE=0");
- }
-
- build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(input->info()->dimension(idx_width) + (exclude_padding ? 0 : pool_pad_left)));
- build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(input->info()->dimension(idx_height) + (exclude_padding ? 0 : pool_pad_top)));
-
- // Create kernel
- switch(_data_layout)
- {
- case DataLayout::NCHW:
- {
- const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision;
- const auto use_wider_accumulator = use_fp_mixed_precision && (pool_type != PoolingType::MAX);
- const auto acc_data_type = get_cl_type_from_data_type(use_wider_accumulator ? DataType::F32 : data_type);
- build_opts.add_option("-DACC_DATA_TYPE=" + acc_data_type);
- build_opts.add_option_if(use_wider_accumulator, "-DFP_MIXED_PRECISION");
-
- if(pool_type != PoolingType::MAX)
- {
- build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
- }
-
- if((pool_size_x == 3) && (pool_size_y == 3) && !is_data_type_quantized_asymmetric(data_type))
- {
- // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where
- // each thread computes 4 output elements
- const bool is_pool3x3_stride_le3 = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3);
-
- std::string kernel_name = ((is_pool3x3_stride_le3) ? "pooling_layer_optimized_" : "pooling_layer_")
- + support::cpp11::to_string(pool_size_x);
- _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
- }
- else if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && _indices && is_data_type_float(data_type))
- {
- // For max pooling with pool2x2, store indicies which will be used in max unpooling
- if(data_type == DataType::F32)
- {
- std::string kernel_name = "pooling_layer_2_nchw_indices_fp32";
- _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
- }
- else if(data_type == DataType::F16)
- {
- std::string kernel_name = "pooling_layer_2_nchw_indices_fp16";
- _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
- }
- }
- else // Run general case
- {
- std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nchw" : "pooling_layer_MxN_nchw";
- _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
- }
- break;
- }
- case DataLayout::NHWC:
- {
- // Floating point mixed precision is support on F16 only
- const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision && pool_type != PoolingType::MAX;
-
- // Wider accumulation is required to avoid accuracy loss
- // Case 1: Floating point mixed precision (fp16 input data and fp32 accumulation)
- // Cast 2: Quantized (int8/uint8 input data and int32 accumulation )
- DataType acc_data_type = data_type;
-
- if(use_fp_mixed_precision)
- {
- acc_data_type = DataType::F32;
- }
- else if(is_data_type_quantized(data_type) && pool_type != PoolingType::MAX)
- {
- acc_data_type = DataType::S32;
- }
-
- build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(acc_data_type));
- build_opts.add_option_if(use_fp_mixed_precision, "-DFP_MIXED_PRECISION");
- build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
- build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(input->info()->dimension(idx_width)));
- build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(input->info()->dimension(idx_height)));
- build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(output->info()->dimension(idx_height)));
- build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(output->info()->dimension(idx_channel)));
- build_opts.add_option("-DDST_BATCH_SIZE=" + support::cpp11::to_string(output->info()->dimension(idx_batch_size)));
- build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(input->info()->dimension(0) % _num_elems_processed_per_iteration));
- if(pool_info.pool_size == Size2D(2, 2) && is_data_type_float(data_type))
- {
- build_opts.add_option_if(_indices != nullptr && pool_type == PoolingType::MAX, "-DEXTRACT_MAX_INDEX");
-
- std::string kernel_name = "pooling_layer_2x2_nhwc";
- _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
- }
- else
- {
- std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nhwc" : "pooling_layer_MxN_nhwc";
- _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
- }
- break;
- }
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
-
- // Set config_id for enabling LWS tuning
- _config_id = "pooling_layer_";
- _config_id += lower_string(string_from_data_type(data_type));
- _config_id += "_";
- _config_id += lower_string(string_from_data_layout(_data_layout));
- _config_id += "_";
- _config_id += support::cpp11::to_string(output->info()->dimension(idx_width));
- _config_id += "_";
- _config_id += support::cpp11::to_string(output->info()->dimension(idx_height));
- _config_id += "_";
- _config_id += support::cpp11::to_string(output->info()->dimension(idx_channel));
- _config_id += "_";
- _config_id += lower_string(string_from_data_layout(input->info()->data_layout()));
-
- ARM_COMPUTE_ERROR_ON(input->info()->data_layout() == DataLayout::NHWC && has_padding_changed(padding_info));
-}
-
-Status CLPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
-{
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, indices));
- ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info)));
-
- return Status{};
-}
-
-void CLPoolingLayerKernel::run(const Window &window, cl::CommandQueue &queue)
-{
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
-
- unsigned int pool_stride_x = 0;
- unsigned int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-
- // Collapse window
- Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
-
- switch(_data_layout)
- {
- case DataLayout::NCHW:
- {
- Window slice = window_collapsed.first_slice_window_3D();
- do
- {
- // Upsample input by pool size
- Window in_slice(slice);
- in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - _pool_info.pad_stride_info.pad_left(),
- (in_slice.x().end() - _pool_info.pad_stride_info.pad_left()) * pool_stride_x,
- pool_stride_x * _num_elems_processed_per_iteration));
- in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - _pool_info.pad_stride_info.pad_top(),
- (in_slice.y().end() - _pool_info.pad_stride_info.pad_top()) * pool_stride_y,
- pool_stride_y));
-
- // Set inputs
- unsigned int idx = 0;
- add_3D_tensor_argument(idx, _input, in_slice);
- add_3D_tensor_argument(idx, _output, slice);
- if(_indices && is_data_type_float(_input->info()->data_type()) && (_pool_info.pool_size == Size2D(2, 2)))
- {
- add_3D_tensor_argument(idx, _indices, slice);
- }
- enqueue(queue, *this, slice, lws_hint());
- }
- while(window_collapsed.slide_window_slice_3D(slice));
- break;
- }
- case DataLayout::NHWC:
- {
- const size_t batch_size = _output->info()->tensor_shape().total_size_upper(3);
-
- Window slice = window_collapsed.first_slice_window_4D();
- Window in_slice = window_collapsed.first_slice_window_4D();
- in_slice.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _num_elems_processed_per_iteration));
- in_slice.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), pool_stride_x));
- in_slice.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), pool_stride_y));
- in_slice.set(3, Window::Dimension(0, batch_size, 1));
- do
- {
- // Set inputs
- unsigned int idx = 0;
- add_4D_tensor_argument(idx, _input, in_slice);
- add_4D_tensor_argument(idx, _output, slice);
- if(_indices && is_data_type_float(_input->info()->data_type()) && (_pool_info.pool_type == PoolingType::MAX) && (_pool_info.pool_size == Size2D(2, 2)))
- {
- add_4D_tensor_argument(idx, _indices, slice);
- }
- enqueue(queue, *this, slice, lws_hint());
- }
- while(window.slide_window_slice_4D(slice) && window.slide_window_slice_4D(in_slice));
- break;
- }
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
-}
-} // namespace arm_compute
+++ /dev/null
-/*
- * Copyright (c) 2017-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_CLPOOLINGLAYERKERNEL_H
-#define ARM_COMPUTE_CLPOOLINGLAYERKERNEL_H
-
-#include "src/core/CL/ICLKernel.h"
-
-#include "arm_compute/core/Error.h"
-
-namespace arm_compute
-{
-class ICLTensor;
-
-/** Interface for the pooling layer kernel */
-class CLPoolingLayerKernel : public ICLKernel
-{
-public:
- /** Default constructor */
- CLPoolingLayerKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- CLPoolingLayerKernel(const CLPoolingLayerKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- CLPoolingLayerKernel &operator=(const CLPoolingLayerKernel &) = delete;
- /** Allow instances of this class to be moved */
- CLPoolingLayerKernel(CLPoolingLayerKernel &&) = default;
- /** Allow instances of this class to be moved */
- CLPoolingLayerKernel &operator=(CLPoolingLayerKernel &&) = default;
- /** Default destructor */
- ~CLPoolingLayerKernel() = default;
-
- /** Set the input and output tensors.
- *
- *
- * @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[out] output Destination tensor. Data types supported: Same as @p input.
- * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
- * @param[out] indices (optional) The indices of the maximal values. Data type supported: U32.
- */
- void configure(const ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info, ICLTensor *indices = nullptr);
- /** Set the input and output tensors.
- *
- *
- * @param[in] compile_context The compile context to be used.
- * @param[in] input Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[out] output Destination tensor. Data types supported: Same as @p input.
- * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
- * @param[out] indices (optional) The indices of the maximal values. Data type supported: U32.
- */
- void configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info, ICLTensor *indices = nullptr);
- /** Static function to check if given info will lead to a valid configuration of @ref CLPoolingLayerKernel
- *
- * @param[in] input Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] output Destination tensor info. Data types supported: Same as @p input.
- * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
- * @param[in] indices (optional) The indices of the maximal values. Data type supported: U32.
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices = nullptr);
-
- // Inherited methods overridden:
- void run(const Window &window, cl::CommandQueue &queue) override;
- BorderSize border_size() const override;
-
-public:
- const ICLTensor *_input;
- ICLTensor *_output;
- ICLTensor *_indices;
- PoolingLayerInfo _pool_info;
- DataLayout _data_layout;
- BorderSize _border_size;
- unsigned int _num_elems_processed_per_iteration;
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_CLPOOLINGLAYERKERNEL_H */
--- /dev/null
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/gpu/cl/kernels/ClPoolingKernel.h"
+
+#include "arm_compute/core/CL/CLHelpers.h"
+#include "arm_compute/core/CL/CLKernelLibrary.h"
+#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "src/core/CL/CLValidate.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+#include "support/Cast.h"
+#include "support/StringSupport.h"
+
+namespace arm_compute
+{
+namespace opencl
+{
+namespace kernels
+{
+using namespace arm_compute::misc::shape_calculator;
+
+namespace
+{
+// Internal window config info
+using ClPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
+
+void auto_init(const ITensorInfo *src, ITensorInfo *dst, ITensorInfo *indices, PoolingLayerInfo pool_info)
+{
+ TensorShape out_shape = compute_pool_shape(*src, pool_info);
+ auto_init_if_empty(*dst, src->clone()->set_tensor_shape(out_shape));
+ if(indices)
+ {
+ auto_init_if_empty(*indices, src->clone()->set_tensor_shape(out_shape).set_data_type(DataType::U32));
+ }
+}
+
+Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(src->data_type()) && pool_info.pool_type == PoolingType::L2),
+ "Unsupported combination of parameters!");
+
+ // Check indices
+ if(indices)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_info.pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
+
+ if(indices->total_size() != 0)
+ {
+ TensorInfo idx_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, DataType::U32));
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(indices, &idx_info);
+ }
+ }
+
+ // Checks performed when dst is configured
+ if(dst->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst);
+ TensorInfo out_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, dst->data_type()));
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &out_info);
+ }
+
+ return Status{};
+}
+
+std::tuple<Status, Window, ClPoolingConfig> validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices = nullptr)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+
+ // Get data layout
+ const DataLayout data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
+ const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+ const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ unsigned int pooled_w = 0;
+ unsigned int pooled_h = 0;
+ int pool_size_x = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
+ int pool_size_y = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
+ const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
+ std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
+ const int pool_pad_right = pad_stride_info.pad_right();
+ const int pool_pad_top = pad_stride_info.pad_top();
+ const int pool_pad_left = pad_stride_info.pad_left();
+ const int pool_pad_bottom = pad_stride_info.pad_bottom();
+ BorderSize border_size = BorderSize();
+
+ auto_init(src, dst, indices, pool_info);
+ pooled_w = dst->tensor_shape()[idx_width];
+ pooled_h = dst->tensor_shape()[idx_height];
+
+ const DataType data_type = src->data_type();
+
+ const int src_width = src->dimension(idx_width);
+ const int src_height = src->dimension(idx_height);
+
+ unsigned int num_elems_processed_per_iteration = 0;
+ bool window_changed = false;
+ Window win{};
+ switch(data_layout)
+ {
+ case DataLayout::NCHW:
+ {
+ // Initialize border size
+ border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
+ // Change the number of elements processed per iteration
+ // for pooling 3x3 with stride less equal than 3
+ const bool can_optimize = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3) && !is_data_type_quantized(data_type);
+ num_elems_processed_per_iteration = can_optimize ? 4 : 1;
+ const unsigned int num_elems_read_per_iteration = (num_elems_processed_per_iteration - 1) * pool_stride_x + pool_size_x;
+
+ // Number of iterations in X dimension
+ const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
+
+ // Upper limit for the number of right/bottom border elements that are accessed
+ const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - src_width;
+ const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - src_height;
+
+ border_size.right = std::max(upper_bound_w, pool_pad_right);
+ border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
+
+ win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration));
+
+ AccessWindowRectangle src_access(src, -pool_pad_left, -pool_pad_top, num_elems_read_per_iteration, pool_size_y,
+ pool_stride_x, pool_stride_y);
+ AccessWindowHorizontal dst_access(dst, 0, num_elems_processed_per_iteration);
+
+ // Update indices window
+ if(indices)
+ {
+ AccessWindowHorizontal indices_access(indices, 0, num_elems_processed_per_iteration);
+ window_changed = update_window_and_padding(win, src_access, dst_access, indices_access);
+ indices_access.set_valid_region(win, ValidRegion(Coordinates(), indices->tensor_shape()));
+ }
+ else
+ {
+ window_changed = update_window_and_padding(win, src_access, dst_access);
+ }
+
+ dst_access.set_valid_region(win, ValidRegion(Coordinates(), dst->tensor_shape()));
+ break;
+ }
+ case DataLayout::NHWC:
+ {
+ // Initialize border size
+ border_size = BorderSize();
+ num_elems_processed_per_iteration = adjust_vec_size(4, dst->dimension(0));
+ win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration));
+
+ if(indices != nullptr)
+ {
+ indices->set_valid_region(ValidRegion(Coordinates(), indices->tensor_shape()));
+ }
+
+ dst->set_valid_region(ValidRegion(Coordinates(), dst->tensor_shape()));
+ break;
+ }
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+
+ Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+ return std::make_tuple(err, win, ClPoolingConfig(num_elems_processed_per_iteration, border_size));
+}
+} // namespace
+
+ClPoolingKernel::ClPoolingKernel()
+ : _pool_info(), _data_layout(DataLayout::UNKNOWN), _border_size(0), _num_elems_processed_per_iteration(1)
+{
+}
+
+BorderSize ClPoolingKernel::border_size() const
+{
+ return _border_size;
+}
+
+void ClPoolingKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+
+ auto padding_info = get_padding_info({ src, dst, indices });
+
+ // Set instance variables
+ _pool_info = pool_info;
+ _data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ const PoolingType pool_type = pool_info.pool_type;
+ const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
+ const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
+ const int idx_channel = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
+ const int idx_batch_size = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::BATCHES);
+ const int pool_size_x = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
+ const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
+ const bool exclude_padding = pool_info.exclude_padding;
+ std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
+ const int pool_pad_top = pad_stride_info.pad_top();
+ const int pool_pad_left = pad_stride_info.pad_left();
+
+ // Set build options
+ CLBuildOptions build_opts;
+ const DataType data_type = src->data_type();
+
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(src, dst, pool_info, indices);
+
+ ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
+ ICLKernel::configure_internal(std::get<1>(win_config));
+
+ ClPoolingConfig pooling_config = std::get<2>(win_config);
+ _num_elems_processed_per_iteration = pooling_config.first;
+ _border_size = pooling_config.second;
+
+ build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(_num_elems_processed_per_iteration));
+
+ // Tensor paddings are used to calculate the indicies for MAX pooling
+ if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
+ {
+ build_opts.add_option("-DPAD_TENSOR_LEFT=" + support::cpp11::to_string(src->padding().left));
+ build_opts.add_option("-DPAD_TENSOR_RIGHT=" + support::cpp11::to_string(src->padding().right));
+ build_opts.add_option("-DPAD_TENSOR_TOP=" + support::cpp11::to_string(src->padding().top));
+ build_opts.add_option("-DPAD_TENSOR_BOTTOM=" + support::cpp11::to_string(src->padding().bottom));
+ build_opts.add_option("-DTENSOR_CHANNEL=" + support::cpp11::to_string(src->dimension(idx_channel)));
+ build_opts.add_option("-DTENSOR_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
+ build_opts.add_option("-DTENSOR_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
+ }
+
+ if(is_data_type_quantized_asymmetric(data_type) && src->quantization_info() != dst->quantization_info())
+ {
+ const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
+ const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
+
+ build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset));
+ build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset));
+ build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale));
+ build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
+ }
+
+ // Check dst dimensions
+ auto_init(src, dst, indices, pool_info);
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices));
+
+ build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
+ build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type));
+ build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x));
+ build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y));
+ build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_left));
+ build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_top));
+ build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x));
+ build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y));
+
+ // Set the initial value for the pooling operation accordingly with the data type
+ if(pool_type == PoolingType::MAX)
+ {
+ if(is_data_type_quantized(data_type))
+ {
+ PixelValue type_min{};
+ std::tie(type_min, std::ignore) = get_min_max(data_type);
+ build_opts.add_option("-DINITIAL_VALUE=" + support::cpp11::to_string(type_min.get<int32_t>()));
+ }
+ else
+ {
+ build_opts.add_option("-DINITIAL_VALUE=" + float_to_string_with_full_precision(std::numeric_limits<float>::lowest()));
+ }
+ }
+ else
+ {
+ // Pool AVG and Pool L2 initial value
+ build_opts.add_option("-DINITIAL_VALUE=0");
+ }
+
+ build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width) + (exclude_padding ? 0 : pool_pad_left)));
+ build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height) + (exclude_padding ? 0 : pool_pad_top)));
+
+ // Create kernel
+ switch(_data_layout)
+ {
+ case DataLayout::NCHW:
+ {
+ const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision;
+ const auto use_wider_accumulator = use_fp_mixed_precision && (pool_type != PoolingType::MAX);
+ const auto acc_data_type = get_cl_type_from_data_type(use_wider_accumulator ? DataType::F32 : data_type);
+ build_opts.add_option("-DACC_DATA_TYPE=" + acc_data_type);
+ build_opts.add_option_if(use_wider_accumulator, "-DFP_MIXED_PRECISION");
+
+ if(pool_type != PoolingType::MAX)
+ {
+ build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
+ }
+
+ if((pool_size_x == 3) && (pool_size_y == 3) && !is_data_type_quantized_asymmetric(data_type))
+ {
+ // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where
+ // each thread computes 4 dst elements
+ const bool is_pool3x3_stride_le3 = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3);
+
+ std::string kernel_name = ((is_pool3x3_stride_le3) ? "pooling_layer_optimized_" : "pooling_layer_")
+ + support::cpp11::to_string(pool_size_x);
+ _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
+ }
+ else if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
+ {
+ // For max pooling with pool2x2, store indicies which will be used in max unpooling
+ if(data_type == DataType::F32)
+ {
+ std::string kernel_name = "pooling_layer_2_nchw_indices_fp32";
+ _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
+ }
+ else if(data_type == DataType::F16)
+ {
+ std::string kernel_name = "pooling_layer_2_nchw_indices_fp16";
+ _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
+ }
+ }
+ else // Run general case
+ {
+ std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nchw" : "pooling_layer_MxN_nchw";
+ _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
+ }
+ break;
+ }
+ case DataLayout::NHWC:
+ {
+ // Floating point mixed precision is support on F16 only
+ const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision && pool_type != PoolingType::MAX;
+
+ // Wider accumulation is required to avoid accuracy loss
+ // Case 1: Floating point mixed precision (fp16 src data and fp32 accumulation)
+ // Cast 2: Quantized (int8/uint8 src data and int32 accumulation )
+ DataType acc_data_type = data_type;
+
+ if(use_fp_mixed_precision)
+ {
+ acc_data_type = DataType::F32;
+ }
+ else if(is_data_type_quantized(data_type) && pool_type != PoolingType::MAX)
+ {
+ acc_data_type = DataType::S32;
+ }
+
+ build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(acc_data_type));
+ build_opts.add_option_if(use_fp_mixed_precision, "-DFP_MIXED_PRECISION");
+ build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
+ build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
+ build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
+ build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(idx_height)));
+ build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(dst->dimension(idx_channel)));
+ build_opts.add_option("-DDST_BATCH_SIZE=" + support::cpp11::to_string(dst->dimension(idx_batch_size)));
+ build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(src->dimension(0) % _num_elems_processed_per_iteration));
+ if(pool_info.pool_size == Size2D(2, 2) && is_data_type_float(data_type))
+ {
+ build_opts.add_option_if(indices != nullptr && pool_type == PoolingType::MAX, "-DEXTRACT_MAX_INDEX");
+
+ std::string kernel_name = "pooling_layer_2x2_nhwc";
+ _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
+ }
+ else
+ {
+ std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nhwc" : "pooling_layer_MxN_nhwc";
+ _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
+ }
+ break;
+ }
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+
+ // Set config_id for enabling LWS tuning
+ _config_id = "pooling_layer_";
+ _config_id += lower_string(string_from_data_type(data_type));
+ _config_id += "_";
+ _config_id += lower_string(string_from_data_layout(_data_layout));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(dst->dimension(idx_width));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(dst->dimension(idx_height));
+ _config_id += "_";
+ _config_id += support::cpp11::to_string(dst->dimension(idx_channel));
+ _config_id += "_";
+ _config_id += lower_string(string_from_data_layout(src->data_layout()));
+
+ ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::NHWC && has_padding_changed(padding_info));
+}
+
+Status ClPoolingKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, indices));
+ ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(src->clone().get(), dst->clone().get(), pool_info)));
+
+ return Status{};
+}
+
+void ClPoolingKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
+
+ unsigned int pool_stride_x = 0;
+ unsigned int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
+
+ const auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
+ auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST_0));
+ auto indices = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST_1));
+
+ // Collapse window
+ Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
+
+ switch(_data_layout)
+ {
+ case DataLayout::NCHW:
+ {
+ Window slice = window_collapsed.first_slice_window_3D();
+ do
+ {
+ // Upsample src by pool size
+ Window in_slice(slice);
+ in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - _pool_info.pad_stride_info.pad_left(),
+ (in_slice.x().end() - _pool_info.pad_stride_info.pad_left()) * pool_stride_x,
+ pool_stride_x * _num_elems_processed_per_iteration));
+ in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - _pool_info.pad_stride_info.pad_top(),
+ (in_slice.y().end() - _pool_info.pad_stride_info.pad_top()) * pool_stride_y,
+ pool_stride_y));
+
+ // Set srcs
+ unsigned int idx = 0;
+ add_3D_tensor_argument(idx, src, in_slice);
+ add_3D_tensor_argument(idx, dst, slice);
+ if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_size == Size2D(2, 2)))
+ {
+ add_3D_tensor_argument(idx, indices, slice);
+ }
+ enqueue(queue, *this, slice, lws_hint());
+ }
+ while(window_collapsed.slide_window_slice_3D(slice));
+ break;
+ }
+ case DataLayout::NHWC:
+ {
+ const size_t batch_size = dst->info()->tensor_shape().total_size_upper(3);
+
+ Window slice = window_collapsed.first_slice_window_4D();
+ Window in_slice = window_collapsed.first_slice_window_4D();
+ in_slice.set(Window::DimX, Window::Dimension(0, src->info()->dimension(0), _num_elems_processed_per_iteration));
+ in_slice.set(Window::DimY, Window::Dimension(0, src->info()->dimension(1), pool_stride_x));
+ in_slice.set(Window::DimZ, Window::Dimension(0, src->info()->dimension(2), pool_stride_y));
+ in_slice.set(3, Window::Dimension(0, batch_size, 1));
+ do
+ {
+ // Set srcs
+ unsigned int idx = 0;
+ add_4D_tensor_argument(idx, src, in_slice);
+ add_4D_tensor_argument(idx, dst, slice);
+ if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_type == PoolingType::MAX) && (_pool_info.pool_size == Size2D(2, 2)))
+ {
+ add_4D_tensor_argument(idx, indices, slice);
+ }
+ enqueue(queue, *this, slice, lws_hint());
+ }
+ while(window.slide_window_slice_4D(slice) && window.slide_window_slice_4D(in_slice));
+ break;
+ }
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+}
+} // namespace kernels
+} // namespace opencl
+} // namespace arm_compute
--- /dev/null
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CL_POOLING_KERNEL_H
+#define ARM_COMPUTE_CL_POOLING_KERNEL_H
+
+#include "src/core/common/Macros.h"
+#include "src/core/gpu/cl/ClCompileContext.h"
+#include "src/core/gpu/cl/IClKernel.h"
+
+namespace arm_compute
+{
+namespace opencl
+{
+namespace kernels
+{
+/** Interface for the pooling layer kernel */
+class ClPoolingKernel : public IClKernel
+{
+public:
+ /** Default constructor */
+ ClPoolingKernel();
+ ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(ClPoolingKernel);
+
+ /** Configure kernel for a given list of arguments
+ *
+ *
+ * @param[in] compile_context The compile context to be used.
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[out] dst Destination tensor info. Data types supported: same as @p src.
+ * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
+ * @param[out] indices (optional) The indices of the maximal values. Data type supported: U32.
+ */
+ void configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices = nullptr);
+ /** Static function to check if given info will lead to a valid configuration of @ref ClPoolingKernel
+ *
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[in] dst Destination tensor info. Data types supported: same as @p src.
+ * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
+ * @param[in] indices (optional) The indices of the maximal values. Data type supported: U32.
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices = nullptr);
+
+ // Inherited methods overridden:
+ void run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue) override;
+ BorderSize border_size() const override;
+
+public:
+ PoolingLayerInfo _pool_info;
+ DataLayout _data_layout;
+ BorderSize _border_size;
+ unsigned int _num_elems_processed_per_iteration;
+};
+} // namespace kernels
+} // namespace opencl
+} // namespace arm_compute
+#endif /*ARM_COMPUTE_CL_POOLING_KERNEL_H */
/*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
*/
#include "arm_compute/runtime/CL/functions/CLPoolingLayer.h"
+#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
-#include "arm_compute/runtime/CL/CLScheduler.h"
-#include "src/core/CL/kernels/CLFillBorderKernel.h"
-#include "src/core/CL/kernels/CLPoolingLayerKernel.h"
+#include "src/core/CL/ICLKernel.h"
+#include "src/runtime/gpu/cl/operators/ClPooling.h"
namespace arm_compute
{
+struct CLPoolingLayer::Impl
+{
+ const ICLTensor *src{ nullptr };
+ ICLTensor *dst{ nullptr };
+ ICLTensor *indices{ nullptr };
+ std::unique_ptr<opencl::ClPooling> op{ nullptr };
+};
+
+CLPoolingLayer::CLPoolingLayer()
+ : _impl(std::make_unique<Impl>())
+{
+}
+CLPoolingLayer::~CLPoolingLayer() = default;
+
void CLPoolingLayer::configure(ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info, ICLTensor *indices)
{
configure(CLKernelLibrary::get().get_compile_context(), input, output, pool_info, indices);
void CLPoolingLayer::configure(const CLCompileContext &compile_context, ICLTensor *input, ICLTensor *output, const PoolingLayerInfo &pool_info, ICLTensor *indices)
{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input);
- // Configure pooling kernel
- auto k = std::make_unique<CLPoolingLayerKernel>();
- k->set_target(CLScheduler::get().target());
- k->configure(compile_context, input, output, pool_info, indices);
- _kernel = std::move(k);
-
- const DataType data_type = input->info()->data_type();
+ _impl->src = input;
+ _impl->dst = output;
+ _impl->indices = indices;
- // Configure border depending on operation required (quantize border in case of asymmetric data_type)
- BorderMode border_mode{};
- PixelValue pixel_value(0.f);
- if(is_data_type_quantized_asymmetric(data_type) && !pool_info.exclude_padding)
- {
- pixel_value = PixelValue(0, data_type, input->info()->quantization_info());
- }
-
- // Data layout
- const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->info()->data_layout() : pool_info.data_layout;
-
- switch(data_layout)
- {
- case DataLayout::NCHW:
- border_mode = (PoolingType::MAX == pool_info.pool_type) ? BorderMode::REPLICATE : BorderMode::CONSTANT;
- break;
- case DataLayout::NHWC:
- border_mode = BorderMode::CONSTANT;
- if(PoolingType::MAX == pool_info.pool_type)
- {
- if(is_data_type_quantized(data_type))
- {
- std::tie(pixel_value, std::ignore) = get_min_max(data_type);
- }
- else
- {
- pixel_value = PixelValue(std::numeric_limits<float>::lowest());
- }
- }
- break;
- default:
- ARM_COMPUTE_ERROR("Data layout not supported");
- }
- _border_handler->configure(compile_context, input, _kernel->border_size(), border_mode, pixel_value);
-
- // Tune kernels
- CLScheduler::get().tune_kernel_static(*_kernel);
+ _impl->op = std::make_unique<opencl::ClPooling>();
+ _impl->op->configure(compile_context, input->info(), output->info(), pool_info, (indices) ? indices->info() : nullptr);
}
Status CLPoolingLayer::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
{
- return CLPoolingLayerKernel::validate(input, output, pool_info, indices);
+ return opencl::ClPooling::validate(input, output, pool_info, indices);
+}
+
+void CLPoolingLayer::run()
+{
+ ITensorPack pack;
+ pack.add_tensor(TensorType::ACL_SRC, _impl->src);
+ pack.add_tensor(TensorType::ACL_DST_0, _impl->dst);
+ pack.add_tensor(TensorType::ACL_DST_1, _impl->indices);
+ _impl->op->run(pack);
}
} // namespace arm_compute
/*
- * Copyright (c) 2018-2020 Arm Limited.
+ * Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
#include "src/core/CL/CLKernels.h"
#include "support/Cast.h"
+#include "src/core/gpu/cl/kernels/ClPoolingKernel.h"
+
namespace arm_compute
{
namespace tuners
k.set_lws_hint(lws_hint);
}
-void tune_pooling_kernel(CLPoolingLayerKernel &k)
+void tune_pooling_kernel(opencl::kernels::ClPoolingKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
// On Bifrost, this works for up to 35x35xC filters, for which the pooling_layer_3_optimized
// kernel is launched with gws=(9, 33, C). In any case, the hint will be ignored if it is
// invalid (e.g. exceeds the maximum workgroup size that the kernel can be launched with).
- if(k._input->info()->data_layout() == DataLayout::NCHW)
+ if(k._pool_info.data_layout == DataLayout::NCHW)
{
if(gpu_target_is_in(gpu_target,
GPUTarget::G71, GPUTarget::G72, GPUTarget::G76,
{
tune_gemm_kernel(*utils::cast::polymorphic_downcast<CLGEMMMatrixMultiplyKernel *>(&kernel));
}
- else if(dynamic_cast<CLPoolingLayerKernel *>(&kernel) != nullptr)
+ else if(dynamic_cast<opencl::kernels::ClPoolingKernel *>(&kernel) != nullptr)
{
- tune_pooling_kernel(*utils::cast::polymorphic_downcast<CLPoolingLayerKernel *>(&kernel));
+ tune_pooling_kernel(*utils::cast::polymorphic_downcast<opencl::kernels::ClPoolingKernel *>(&kernel));
}
else if(dynamic_cast<CLScaleKernel *>(&kernel) != nullptr)
{
--- /dev/null
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/runtime/gpu/cl/operators/ClPooling.h"
+
+#include "arm_compute/runtime/CL/CLScheduler.h"
+
+#include "src/core/CL/kernels/CLFillBorderKernel.h"
+#include "src/core/gpu/cl/ClCompileContext.h"
+#include "src/core/gpu/cl/kernels/ClPoolingKernel.h"
+
+namespace arm_compute
+{
+namespace opencl
+{
+void ClPooling::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, ITensorInfo *indices)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src);
+ // Configure pooling kernel
+ auto k = std::make_unique<kernels::ClPoolingKernel>();
+ k->set_target(CLScheduler::get().target());
+ k->configure(compile_context, src, dst, info, indices);
+ _pooling = std::move(k);
+
+ const DataType data_type = src->data_type();
+
+ // Configure border depending on operation required (quantize border in case of asymmetric data_type)
+ BorderMode border_mode{};
+ PixelValue pixel_value(0.f);
+ if(is_data_type_quantized_asymmetric(data_type) && !info.exclude_padding)
+ {
+ pixel_value = PixelValue(0, data_type, src->quantization_info());
+ }
+
+ // Data layout
+ const auto data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout;
+
+ switch(data_layout)
+ {
+ case DataLayout::NCHW:
+ border_mode = (PoolingType::MAX == info.pool_type) ? BorderMode::REPLICATE : BorderMode::CONSTANT;
+ break;
+ case DataLayout::NHWC:
+ border_mode = BorderMode::CONSTANT;
+ if(PoolingType::MAX == info.pool_type)
+ {
+ if(is_data_type_quantized(data_type))
+ {
+ std::tie(pixel_value, std::ignore) = get_min_max(data_type);
+ }
+ else
+ {
+ pixel_value = PixelValue(std::numeric_limits<float>::lowest());
+ }
+ }
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Data layout not supported");
+ }
+ auto b = std::make_unique<CLFillBorderKernel>();
+ b->configure(compile_context, src, _pooling->border_size(), border_mode, pixel_value);
+ _border_handler = std::move(b);
+
+ // Tune kernels
+ CLScheduler::get().tune_kernel_static(*_pooling);
+}
+
+Status ClPooling::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info, const ITensorInfo *indices)
+{
+ return kernels::ClPoolingKernel::validate(src, dst, info, indices);
+}
+
+void ClPooling::run(ITensorPack &tensors)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
+
+ CLScheduler::get().enqueue_op(*_border_handler.get(), tensors, false);
+ CLScheduler::get().enqueue_op(*_pooling.get(), tensors, false);
+}
+} // namespace opencl
+} // namespace arm_compute
--- /dev/null
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CL_POOLING_H
+#define ARM_COMPUTE_CL_POOLING_H
+
+#include "src/core/gpu/cl/ClCompileContext.h"
+#include "src/runtime/gpu/cl/IClOperator.h"
+
+#include <memory>
+
+namespace arm_compute
+{
+namespace opencl
+{
+/** Basic function to simulate a pooling layer with the specified pooling operation. This function calls the following OpenCL kernels:
+ *
+ * -# @ref CLFillBorderKernel (executed if padding size is different from zero)
+ * -# @ref opencl::ClPooling
+ */
+class ClPooling : public IClOperator
+{
+public:
+ /** Constructor */
+ ClPooling() = default;
+ /** Configure operator for a given list of arguments
+ *
+ * @param[in] compile_context The compile context to be used.
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[out] dst Destination tensor info. Data type supported: same as @p src
+ * @param[in] info Pooling layer parameters.
+ * @param[out] indices (optional) The indices info of the maximal values. Data type supported: U32.
+ */
+ void configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, ITensorInfo *indices = nullptr);
+ /** Static function to check if given info will lead to a valid configuration of @ref ClPooling
+ *
+ * @param[in] src Source tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
+ * @param[out] dst Destination tensor info. Data type supported: same as @p src
+ * @param[in] info Pooling layer parameters.
+ * @param[out] indices (optional) The indices info of the maximal values. Data type supported: U32.
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info, const ITensorInfo *indices = nullptr);
+
+ // Inherited method overridden
+ void run(ITensorPack &tensors) override;
+
+private:
+ std::unique_ptr<ICLKernel> _pooling{ nullptr };
+ std::unique_ptr<ICLKernel> _border_handler{ nullptr };
+};
+} // namespace opencl
+} // namespace arm_compute
+#endif /* ARM_COMPUTE_CL_POOLING_H */