This update addresses an issue with the zswap reclaim mechanism, which
hinders the efficient offloading of cold pages to disk, thereby
compromising the preservation of the LRU order and consequently
diminishing, if not inverting, its performance benefits.
The functioning of the zswap shrink worker was found to be inadequate, as
shown by basic benchmark test. For the test, a kernel build was utilized
as a reference, with its memory confined to 1G via a cgroup and a 5G swap
file provided. The results are presented below, these are averages of
three runs without the use of zswap:
real 46m26s
user 35m4s
sys 7m37s
With zswap (zbud) enabled and max_pool_percent set to 1 (in a 32G
system), the results changed to:
real 56m4s
user 35m13s
sys 8m43s
written_back_pages: 18
reject_reclaim_fail: 0
pool_limit_hit:1478
Besides the evident regression, one thing to notice from this data is the
extremely low number of written_back_pages and pool_limit_hit.
The pool_limit_hit counter, which is increased in zswap_frontswap_store
when zswap is completely full, doesn't account for a particular scenario:
once zswap hits his limit, zswap_pool_reached_full is set to true; with
this flag on, zswap_frontswap_store rejects pages if zswap is still above
the acceptance threshold. Once we include the rejections due to
zswap_pool_reached_full && !zswap_can_accept(), the number goes from 1478
to a significant
21578266.
Zswap is stuck in an undesirable state where it rejects pages because it's
above the acceptance threshold, yet fails to attempt memory reclaimation.
This happens because the shrink work is only queued when
zswap_frontswap_store detects that it's full and the work itself only
reclaims one page per run.
This state results in hot pages getting written directly to disk, while
cold ones remain memory, waiting only to be invalidated. The LRU order is
completely broken and zswap ends up being just an overhead without
providing any benefits.
This commit applies 2 changes: a) the shrink worker is set to reclaim
pages until the acceptance threshold is met and b) the task is also
enqueued when zswap is not full but still above the threshold.
Testing this suggested update showed much better numbers:
real 36m37s
user 35m8s
sys 9m32s
written_back_pages:
10459423
reject_reclaim_fail: 12896
pool_limit_hit: 75653
Link: https://lkml.kernel.org/r/20230526183227.793977-1-cerasuolodomenico@gmail.com
Fixes: 45190f01dd40 ("mm/zswap.c: add allocation hysteresis if pool limit is hit")
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
#include <linux/workqueue.h>
#include "swap.h"
+#include "internal.h"
/*********************************
* statistics
{
struct zswap_pool *pool = container_of(w, typeof(*pool),
shrink_work);
+ int ret, failures = 0;
- if (zpool_shrink(pool->zpool, 1, NULL))
- zswap_reject_reclaim_fail++;
+ do {
+ ret = zpool_shrink(pool->zpool, 1, NULL);
+ if (ret) {
+ zswap_reject_reclaim_fail++;
+ if (ret != -EAGAIN)
+ break;
+ if (++failures == MAX_RECLAIM_RETRIES)
+ break;
+ }
+ cond_resched();
+ } while (!zswap_can_accept());
zswap_pool_put(pool);
}
if (zswap_pool_reached_full) {
if (!zswap_can_accept()) {
ret = -ENOMEM;
- goto reject;
+ goto shrink;
} else
zswap_pool_reached_full = false;
}