TE_CHECK_OBJ(optimizer, TRAINING_ENGINE_ERROR_INVALID_PARAMETER);
- if (property.option.empty()) {
+ if (property.options.empty()) {
LOGE("invalid property.");
return TRAINING_ENGINE_ERROR_INVALID_PARAMETER;
}
- LOGI("optimizer option : %s", property.option.c_str());
+ LOGI("Optimizer property size : %zu", property.options.size());
- int ret = ml_train_optimizer_set_property(static_cast<ml_train_optimizer_h>(optimizer->optimizer_handle),
- property.option.c_str(), NULL);
- if (ret != ML_ERROR_NONE) {
- LOGE("Failed to set a optimizer property.");
- return TRAINING_ENGINE_ERROR_INVALID_OPERATION;
- }
+ for (auto& opt : property.options) {
+ LOGI("Set %s property", opt.c_str());
+ int ret = ml_train_optimizer_set_property(static_cast<ml_train_optimizer_h>(optimizer->optimizer_handle),
+ opt.c_str(), NULL);
+ if (ret != ML_ERROR_NONE) {
+ LOGE("Failed to set a optimizer property.");
+ return TRAINING_ENGINE_ERROR_INVALID_OPERATION;
+ }
+ }
LOGI("LEAVE");
TE_CHECK_OBJ(dataset, TRAINING_ENGINE_ERROR_INVALID_PARAMETER);
- if (property.option.empty()) {
+ if (property.options.empty()) {
LOGE("invalid property.");
return TRAINING_ENGINE_ERROR_INVALID_PARAMETER;
}
- LOGI("property option : %s", property.option.c_str());
+ LOGI("Dataset property size : %zu", property.options.size());
- int ret = ml_train_dataset_set_property(static_cast<ml_train_dataset_h>(dataset->dataset_handle),
- property.option.c_str(), NULL);
- if (ret != ML_ERROR_NONE) {
- LOGE("Failed to set a dataset property.");
- return TRAINING_ENGINE_ERROR_INVALID_OPERATION;
+ for (auto& opt : property.options) {
+ LOGI("Set %s property", opt.c_str());
+
+ int ret = ml_train_dataset_set_property(static_cast<ml_train_dataset_h>(dataset->dataset_handle),
+ opt.c_str(), NULL);
+ if (ret != ML_ERROR_NONE) {
+ LOGE("Failed to set a dataset property.");
+ return TRAINING_ENGINE_ERROR_INVALID_OPERATION;
+ }
}
LOGI("LEAVE");