Use u32 and u64 instead, that's the proper thing to do.
Cc: Scott Smedley <ss@aao.gov.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
-------------------------------------------------------------------
02-Aug-2002 NJC allocator now steps in 1MB increments, rather
than doubling its size each time.
- Also, allocator_init(u_int *) now returns
+ Also, allocator_init(u32 *) now returns
(in the first arg) the size of the free
space. This is no longer consistent with
using the allocator as a module, and some changes
* On cleanup everything is released. If the list is not empty, that a
* problem of our clients
*/
-int allocator_init(u_long *allocator_max)
+int allocator_init(u64 *allocator_max)
{
/* check how much free memory is there */
void *remapped;
void allocator_free_dma(unsigned long address);
unsigned long allocator_allocate_dma(unsigned long kilobytes, int priority);
-int allocator_init(u_long *);
+int allocator_init(u64 *);
void allocator_cleanup(void);
#define _DT3155_INC
#ifdef __KERNEL__
-#include <linux/types.h> /* u_int etc. */
+#include <linux/types.h>
#include <linux/time.h> /* struct timeval */
#else
#include <sys/ioctl.h>
/* Configuration structure */
struct dt3155_config_s {
- u_int acq_mode;
- u_int cols, rows;
- u_int continuous;
+ u32 acq_mode;
+ u32 cols, rows;
+ u32 continuous;
};
/* hold data for each frame */
typedef struct {
- u_long addr; /* address of the buffer with the frame */
- u_long tag; /* unique number for the frame */
+ u64 addr; /* address of the buffer with the frame */
+ u64 tag; /* unique number for the frame */
struct timeval time; /* time that capture took place */
} frame_info_t;
int locked_buf; /* Buffers used by user */
int ready_que[BOARD_MAX_BUFFS];
- u_long ready_head; /* The most recent buffer located here */
- u_long ready_len; /* The number of ready buffers */
+ u64 ready_head; /* The most recent buffer located here */
+ u64 ready_len; /* The number of ready buffers */
int even_happened;
int even_stopped;
int stop_acquire; /* Flag to stop interrupts */
- u_long frame_count; /* Counter for frames acquired by this card */
+ u64 frame_count; /* Counter for frames acquired by this card */
};
/* There is one status structure for each card. */
typedef struct dt3155_status_s {
int fixed_mode; /* if 1, we are in fixed frame mode */
- u_long reg_addr; /* Register address for a single card */
- u_long mem_addr; /* Buffer start addr for this card */
- u_long mem_size; /* This is the amount of mem available */
- u_int irq; /* this card's irq */
+ u64 reg_addr; /* Register address for a single card */
+ u64 mem_addr; /* Buffer start addr for this card */
+ u64 mem_size; /* This is the amount of mem available */
+ u32 irq; /* this card's irq */
struct dt3155_config_s config; /* configuration struct */
struct dt3155_fbuffer_s fbuffer; /* frame buffer state struct */
- u_long state; /* this card's state */
- u_int device_installed; /* Flag if installed. 1=installed */
+ u64 state; /* this card's state */
+ u32 device_installed; /* Flag if installed. 1=installed */
} dt3155_status_t;
/* Reference to global status structure */
/* User code will probably want to declare one of these for each card */
typedef struct dt3155_read_s {
- u_long offset;
- u_long frame_seq;
- u_long state;
+ u64 offset;
+ u64 frame_seq;
+ u64 state;
frame_info_t frame_info;
} dt3155_read_t;
/* DT3155 registers */
u8 *dt3155_bbase = NULL; /* kernel logical address of the *
* buffer region */
-u_int dt3155_dev_open[ MAXBOARDS ] = {0
+u32 dt3155_dev_open[ MAXBOARDS ] = {0
#if MAXBOARDS == 2
, 0
#endif
};
-u_int ndevices = 0;
-u_long unique_tag = 0;;
+u32 ndevices = 0;
+u64 unique_tag = 0;;
/*
int minor = -1;
int index;
unsigned long flags;
- u_long buffer_addr;
+ u64 buffer_addr;
/* find out who issued the interrupt */
for ( index = 0; index < ndevices; index++ ) {
{
/* GCS (Aug 2, 2002) -- In field mode, dma the odd field
into the lower half of the buffer */
- const u_long stride = dt3155_status[ minor ].config.cols;
+ const u64 stride = dt3155_status[ minor ].config.cols;
buffer_addr = dt3155_fbuffer[ minor ]->
frame_info[ dt3155_fbuffer[ minor ]->active_buf ].addr
+ (DT3155_MAX_ROWS / 2) * stride;
dt3155_fbuffer[ minor ]->stop_acquire = 0;
dt3155_fbuffer[ minor ]->even_stopped = 0;
- printk(KERN_DEBUG "dt3155: state is now %lx\n",
- dt3155_status[minor].state);
+ printk(KERN_DEBUG "dt3155: state is now %x\n",
+ (u32)dt3155_status[minor].state);
}
else
{
*****************************************************/
static void dt3155_init_isr(int minor)
{
- const u_long stride = dt3155_status[ minor ].config.cols;
+ const u64 stride = dt3155_status[ minor ].config.cols;
switch (dt3155_status[ minor ].state & DT3155_STATE_MODE)
{
* ioctl()
*
*****************************************************/
-static int dt3155_ioctl (
- struct inode *inode,
- struct file *file,
- u_int cmd,
- u_long arg)
+static int dt3155_ioctl(struct inode *inode,
+ struct file *file,
+ unsigned int cmd,
+ unsigned long arg)
{
int minor = MINOR(inode->i_rdev); /* What device are we ioctl()'ing? */
}
if (dt3155_status[ minor ].state != DT3155_STATE_IDLE) {
- printk ("DT3155: Not in idle state (state = %lx)\n",
- dt3155_status[ minor ].state);
+ printk ("DT3155: Not in idle state (state = %x)\n",
+ (u32)dt3155_status[ minor ].state);
return -EBUSY;
}
{
/* which device are we reading from? */
int minor = MINOR(filep->f_dentry->d_inode->i_rdev);
- u_long offset;
+ u64 offset;
int frame_index;
frame_info_t *frame_info_p;
offset = frame_info_p->addr - dt3155_status[minor].mem_addr;
put_user(offset, (unsigned int *) buf);
- buf += sizeof(u_long);
+ buf += sizeof(u64);
put_user( dt3155_status[minor].fbuffer.frame_count, (unsigned int *) buf);
- buf += sizeof(u_long);
+ buf += sizeof(u64);
put_user(dt3155_status[minor].state, (unsigned int *) buf);
- buf += sizeof(u_long);
+ buf += sizeof(u64);
if (copy_to_user(buf, frame_info_p, sizeof(frame_info_t)))
return -EFAULT;
/* Now, just go out and make sure that this/these device(s) is/are
actually mapped into the kernel address space */
if ((error = pci_read_config_dword( pci_dev, PCI_BASE_ADDRESS_0,
- (u_int *) &base)))
+ (u32 *) &base)))
{
printk("DT3155: Was not able to find device \n");
goto err;
dt3155_status[ pci_index-1 ].device_installed = 1;
printk("DT3155: Installing device %d w/irq %d and address %p\n",
pci_index,
- (u_int)dt3155_status[pci_index-1].irq,
+ (u32)dt3155_status[pci_index-1].irq,
dt3155_lbase[pci_index-1]);
}
return DT_3155_FAILURE;
}
-u_long allocatorAddr = 0;
+u64 allocatorAddr = 0;
/*****************************************************
* init_module()
dt3155_status[ index ].config.cols,
dt3155_status[ index ].config.rows);
printk("DT3155: m_addr = 0x%x; m_size = %ld; "
- "state = %ld; device_installed = %d\n",
- (u_int)dt3155_status[ index ].mem_addr,
- dt3155_status[ index ].mem_size,
- dt3155_status[ index ].state,
+ "state = %d; device_installed = %d\n",
+ (u32)dt3155_status[ index ].mem_addr,
+ (long int)dt3155_status[ index ].mem_size,
+ (u32)dt3155_status[ index ].state,
dt3155_status[ index ].device_installed);
}
#endif
/* number of devices */
-extern u_int ndevices;
+extern u32 ndevices;
extern int dt3155_errno;
/****** local copies of board's 32 bit registers ******/
-u_long even_dma_start_r; /* bit 0 should always be 0 */
-u_long odd_dma_start_r; /* .. */
-u_long even_dma_stride_r; /* bits 0&1 should always be 0 */
-u_long odd_dma_stride_r; /* .. */
-u_long even_pixel_fmt_r;
-u_long odd_pixel_fmt_r;
+u64 even_dma_start_r; /* bit 0 should always be 0 */
+u64 odd_dma_start_r; /* .. */
+u64 even_dma_stride_r; /* bits 0&1 should always be 0 */
+u64 odd_dma_stride_r; /* .. */
+u64 even_pixel_fmt_r;
+u64 odd_pixel_fmt_r;
FIFO_TRIGGER_R fifo_trigger_r;
XFER_MODE_R xfer_mode_r;
RETRY_WAIT_CNT_R retry_wait_cnt_r;
INT_CSR_R int_csr_r;
-u_long even_fld_mask_r;
-u_long odd_fld_mask_r;
+u64 even_fld_mask_r;
+u64 odd_fld_mask_r;
MASK_LENGTH_R mask_length_r;
FIFO_FLAG_CNT_R fifo_flag_cnt_r;
/* macros to access registers */
-#define WriteMReg(Address, Data) (*((u_long *)(Address)) = Data)
-#define ReadMReg(Address, Data) (Data = *((u_long *)(Address)))
+#define WriteMReg(Address, Data) (*((u64 *)(Address)) = Data)
+#define ReadMReg(Address, Data) (Data = *((u64 *)(Address)))
/***************** 32 bit register globals **************/
/******** Assignments and Typedefs for 32 bit Memory Mapped Registers ********/
typedef union fifo_trigger_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long PACKED:6;
- u_long :9;
- u_long PLANER:7;
- u_long :9;
+ u64 PACKED:6;
+ u64 :9;
+ u64 PLANER:7;
+ u64 :9;
} fld;
} FIFO_TRIGGER_R;
typedef union xfer_mode_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long :2;
- u_long FIELD_TOGGLE:1;
- u_long :5;
- u_long :2;
- u_long :22;
+ u64 :2;
+ u64 FIELD_TOGGLE:1;
+ u64 :5;
+ u64 :2;
+ u64 :22;
} fld;
} XFER_MODE_R;
typedef union csr1_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long CAP_CONT_EVE:1;
- u_long CAP_CONT_ODD:1;
- u_long CAP_SNGL_EVE:1;
- u_long CAP_SNGL_ODD:1;
- u_long FLD_DN_EVE :1;
- u_long FLD_DN_ODD :1;
- u_long SRST :1;
- u_long FIFO_EN :1;
- u_long FLD_CRPT_EVE:1;
- u_long FLD_CRPT_ODD:1;
- u_long ADDR_ERR_EVE:1;
- u_long ADDR_ERR_ODD:1;
- u_long CRPT_DIS :1;
- u_long RANGE_EN :1;
- u_long :16;
+ u64 CAP_CONT_EVE:1;
+ u64 CAP_CONT_ODD:1;
+ u64 CAP_SNGL_EVE:1;
+ u64 CAP_SNGL_ODD:1;
+ u64 FLD_DN_EVE :1;
+ u64 FLD_DN_ODD :1;
+ u64 SRST :1;
+ u64 FIFO_EN :1;
+ u64 FLD_CRPT_EVE:1;
+ u64 FLD_CRPT_ODD:1;
+ u64 ADDR_ERR_EVE:1;
+ u64 ADDR_ERR_ODD:1;
+ u64 CRPT_DIS :1;
+ u64 RANGE_EN :1;
+ u64 :16;
} fld;
} CSR1_R;
typedef union retry_wait_cnt_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long RTRY_WAIT_CNT:8;
- u_long :24;
+ u64 RTRY_WAIT_CNT:8;
+ u64 :24;
} fld;
} RETRY_WAIT_CNT_R;
typedef union int_csr_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long FLD_END_EVE :1;
- u_long FLD_END_ODD :1;
- u_long FLD_START :1;
- u_long :5;
- u_long FLD_END_EVE_EN:1;
- u_long FLD_END_ODD_EN:1;
- u_long FLD_START_EN :1;
- u_long :21;
+ u64 FLD_END_EVE :1;
+ u64 FLD_END_ODD :1;
+ u64 FLD_START :1;
+ u64 :5;
+ u64 FLD_END_EVE_EN:1;
+ u64 FLD_END_ODD_EN:1;
+ u64 FLD_START_EN :1;
+ u64 :21;
} fld;
} INT_CSR_R;
typedef union mask_length_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long MASK_LEN_EVE:5;
- u_long :11;
- u_long MASK_LEN_ODD:5;
- u_long :11;
+ u64 MASK_LEN_EVE:5;
+ u64 :11;
+ u64 MASK_LEN_ODD:5;
+ u64 :11;
} fld;
} MASK_LENGTH_R;
typedef union fifo_flag_cnt_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long AF_COUNT:7;
- u_long :9;
- u_long AE_COUNT:7;
- u_long :9;
+ u64 AF_COUNT:7;
+ u64 :9;
+ u64 AE_COUNT:7;
+ u64 :9;
} fld;
} FIFO_FLAG_CNT_R;
typedef union iic_clk_dur {
- u_long reg;
+ u64 reg;
struct {
- u_long PHASE_1:8;
- u_long PHASE_2:8;
- u_long PHASE_3:8;
- u_long PHASE_4:8;
+ u64 PHASE_1:8;
+ u64 PHASE_2:8;
+ u64 PHASE_3:8;
+ u64 PHASE_4:8;
} fld;
} IIC_CLK_DUR_R;
typedef union iic_csr1_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long AUTO_EN :1;
- u_long BYPASS :1;
- u_long SDA_OUT :1;
- u_long SCL_OUT :1;
- u_long :4;
- u_long AUTO_ABORT :1;
- u_long DIRECT_ABORT:1;
- u_long SDA_IN :1;
- u_long SCL_IN :1;
- u_long :4;
- u_long AUTO_ADDR :8;
- u_long RD_DATA :8;
+ u64 AUTO_EN :1;
+ u64 BYPASS :1;
+ u64 SDA_OUT :1;
+ u64 SCL_OUT :1;
+ u64 :4;
+ u64 AUTO_ABORT :1;
+ u64 DIRECT_ABORT:1;
+ u64 SDA_IN :1;
+ u64 SCL_IN :1;
+ u64 :4;
+ u64 AUTO_ADDR :8;
+ u64 RD_DATA :8;
} fld;
} IIC_CSR1_R;
* iic_csr2_tag
*/
typedef union iic_csr2_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long DIR_WR_DATA :8;
- u_long DIR_SUB_ADDR:8;
- u_long DIR_RD :1;
- u_long DIR_ADDR :7;
- u_long NEW_CYCLE :1;
- u_long :7;
+ u64 DIR_WR_DATA :8;
+ u64 DIR_SUB_ADDR:8;
+ u64 DIR_RD :1;
+ u64 DIR_ADDR :7;
+ u64 NEW_CYCLE :1;
+ u64 :7;
} fld;
} IIC_CSR2_R;
* dma_upper_lmt_tag
*/
typedef union dma_upper_lmt_tag {
- u_long reg;
+ u64 reg;
struct {
- u_long DMA_UPPER_LMT_VAL:24;
- u_long :8;
+ u64 DMA_UPPER_LMT_VAL:24;
+ u64 :8;
} fld;
} DMA_UPPER_LMT_R;
/*
* Global declarations of local copies of boards' 32 bit registers
*/
-extern u_long even_dma_start_r; /* bit 0 should always be 0 */
-extern u_long odd_dma_start_r; /* .. */
-extern u_long even_dma_stride_r; /* bits 0&1 should always be 0 */
-extern u_long odd_dma_stride_r; /* .. */
-extern u_long even_pixel_fmt_r;
-extern u_long odd_pixel_fmt_r;
+extern u64 even_dma_start_r; /* bit 0 should always be 0 */
+extern u64 odd_dma_start_r; /* .. */
+extern u64 even_dma_stride_r; /* bits 0&1 should always be 0 */
+extern u64 odd_dma_stride_r; /* .. */
+extern u64 even_pixel_fmt_r;
+extern u64 odd_pixel_fmt_r;
extern FIFO_TRIGGER_R fifo_trigger_r;
extern XFER_MODE_R xfer_mode_r;
extern RETRY_WAIT_CNT_R retry_wait_cnt_r;
extern INT_CSR_R int_csr_r;
-extern u_long even_fld_mask_r;
-extern u_long odd_fld_mask_r;
+extern u64 even_fld_mask_r;
+extern u64 odd_fld_mask_r;
extern MASK_LENGTH_R mask_length_r;
extern FIFO_FLAG_CNT_R fifo_flag_cnt_r;
* the start address up to the beginning of the
* next 4MB chunk (assuming bufsize < 4MB).
*****************************************************/
-u_long adjust_4MB (u_long buf_addr, u_long bufsize) {
+u64 adjust_4MB (u64 buf_addr, u64 bufsize) {
if (((buf_addr+bufsize) & UPPER_10_BITS) != (buf_addr & UPPER_10_BITS))
return (buf_addr+bufsize) & UPPER_10_BITS;
else
* buffers. If there is not enough free space
* try for less memory.
*****************************************************/
-void allocate_buffers (u_long *buf_addr, u_long* total_size_kbs,
- u_long bufsize)
+void allocate_buffers (u64 *buf_addr, u64* total_size_kbs,
+ u64 bufsize)
{
/* Compute the minimum amount of memory guaranteed to hold all
MAXBUFFERS such that no buffer crosses the 4MB boundary.
Store this value in the variable "full_size" */
- u_long allocator_max;
- u_long bufs_per_chunk = (FOUR_MB / bufsize);
- u_long filled_chunks = (MAXBUFFERS-1) / bufs_per_chunk;
- u_long leftover_bufs = MAXBUFFERS - filled_chunks * bufs_per_chunk;
+ u64 allocator_max;
+ u64 bufs_per_chunk = (FOUR_MB / bufsize);
+ u64 filled_chunks = (MAXBUFFERS-1) / bufs_per_chunk;
+ u64 leftover_bufs = MAXBUFFERS - filled_chunks * bufs_per_chunk;
- u_long full_size = bufsize /* possibly unusable part of 1st chunk */
+ u64 full_size = bufsize /* possibly unusable part of 1st chunk */
+ filled_chunks * FOUR_MB /* max # of completely filled 4mb chunks */
+ leftover_bufs * bufsize; /* these buffs will be in a partly filled
chunk at beginning or end */
- u_long full_size_kbs = 1 + (full_size-1) / 1024;
- u_long min_size_kbs = 2*ndevices*bufsize / 1024;
- u_long size_kbs;
+ u64 full_size_kbs = 1 + (full_size-1) / 1024;
+ u64 min_size_kbs = 2*ndevices*bufsize / 1024;
+ u64 size_kbs;
/* Now, try to allocate full_size. If this fails, keep trying for
less & less memory until it succeeds. */
#endif
size_kbs = full_size_kbs;
*buf_addr = 0;
- printk ("DT3155: We would like to get: %d KB\n", (u_int)(full_size_kbs));
- printk ("DT3155: ...but need at least: %d KB\n", (u_int)(min_size_kbs));
- printk ("DT3155: ...the allocator has: %d KB\n", (u_int)(allocator_max));
+ printk ("DT3155: We would like to get: %d KB\n", (u32)(full_size_kbs));
+ printk ("DT3155: ...but need at least: %d KB\n", (u32)(min_size_kbs));
+ printk ("DT3155: ...the allocator has: %d KB\n", (u32)(allocator_max));
size_kbs = (full_size_kbs <= allocator_max ? full_size_kbs : allocator_max);
if (size_kbs > min_size_kbs) {
if ((*buf_addr = allocator_allocate_dma (size_kbs, GFP_KERNEL)) != 0) {
- printk ("DT3155: Managed to allocate: %d KB\n", (u_int)size_kbs);
+ printk ("DT3155: Managed to allocate: %d KB\n", (u32)size_kbs);
*total_size_kbs = size_kbs;
return;
}
* 4MB boundary. Also, add error checking. This
* function will return -ENOMEM when not enough memory.
*****************************************************/
-u_long dt3155_setup_buffers(u_long *allocatorAddr)
+u64 dt3155_setup_buffers(u64 *allocatorAddr)
{
- u_long index;
- u_long rambuff_addr; /* start of allocation */
- u_long rambuff_size; /* total size allocated to driver */
- u_long rambuff_acm; /* accumlator, keep track of how much
+ u64 index;
+ u64 rambuff_addr; /* start of allocation */
+ u64 rambuff_size; /* total size allocated to driver */
+ u64 rambuff_acm; /* accumlator, keep track of how much
is left after being split up*/
- u_long rambuff_end; /* end of rambuff */
- u_long numbufs; /* number of useful buffers allocated (per device) */
- u_long bufsize = DT3155_MAX_ROWS * DT3155_MAX_COLS;
+ u64 rambuff_end; /* end of rambuff */
+ u64 numbufs; /* number of useful buffers allocated (per device) */
+ u64 bufsize = DT3155_MAX_ROWS * DT3155_MAX_COLS;
int m; /* minor # of device, looped for all devs */
/* zero the fbuffer status and address structure */
/* allocate a large contiguous chunk of RAM */
allocate_buffers (&rambuff_addr, &rambuff_size, bufsize);
printk( "DT3155: mem info\n" );
- printk( " - rambuf_addr = 0x%x \n", (u_int)rambuff_addr );
- printk( " - length (kb) = %u \n", (u_int)rambuff_size );
+ printk( " - rambuf_addr = 0x%x \n", (u32)rambuff_addr );
+ printk( " - length (kb) = %u \n", (u32)rambuff_size );
if( rambuff_addr == 0 )
{
printk( KERN_INFO
/* Following line is OK, will waste buffers if index
* not evenly divisible by ndevices -NJC*/
numbufs = index / ndevices;
- printk (" - numbufs = %u\n", (u_int) numbufs);
+ printk (" - numbufs = %u\n", (u32) numbufs);
if (numbufs < 2) {
printk( KERN_INFO
"DT3155: Error setup_buffers() couldn't allocate 2 bufs/board\n" );
/* Initialize the buffering system. This should */
/* be called prior to enabling interrupts */
-u_long dt3155_setup_buffers(u_long *allocatorAddr);
+u64 dt3155_setup_buffers(u64 *allocatorAddr);
/* Get the next frame of data if it is ready. Returns */
/* zero if no data is ready. If there is data but */