ConstantFolding.cpp: Whitespace.
authorNAKAMURA Takumi <geek4civic@gmail.com>
Mon, 5 Nov 2012 00:11:11 +0000 (00:11 +0000)
committerNAKAMURA Takumi <geek4civic@gmail.com>
Mon, 5 Nov 2012 00:11:11 +0000 (00:11 +0000)
llvm-svn: 167377

llvm/lib/Analysis/ConstantFolding.cpp

index b7bf044..5cac8ca 100644 (file)
@@ -41,7 +41,7 @@ using namespace llvm;
 // Constant Folding internal helper functions
 //===----------------------------------------------------------------------===//
 
-/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with 
+/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
 /// DataLayout.  This always returns a non-null constant, but it may be a
 /// ConstantExpr if unfoldable.
 static Constant *FoldBitCast(Constant *C, Type *DestTy,
@@ -59,9 +59,9 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
       return ConstantExpr::getBitCast(C, DestTy);
 
     unsigned NumSrcElts = CDV->getType()->getNumElements();
-    
+
     Type *SrcEltTy = CDV->getType()->getElementType();
-    
+
     // If the vector is a vector of floating point, convert it to vector of int
     // to simplify things.
     if (SrcEltTy->isFloatingPointTy()) {
@@ -72,7 +72,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
       C = ConstantExpr::getBitCast(C, SrcIVTy);
       CDV = cast<ConstantDataVector>(C);
     }
-    
+
     // Now that we know that the input value is a vector of integers, just shift
     // and insert them into our result.
     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
@@ -84,43 +84,43 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
       else
         Result |= CDV->getElementAsInteger(i);
     }
-   
+
     return ConstantInt::get(IT, Result);
   }
-  
+
   // The code below only handles casts to vectors currently.
   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
   if (DestVTy == 0)
     return ConstantExpr::getBitCast(C, DestTy);
-  
+
   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
   // vector so the code below can handle it uniformly.
   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
     Constant *Ops = C; // don't take the address of C!
     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
   }
-  
+
   // If this is a bitcast from constant vector -> vector, fold it.
   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
     return ConstantExpr::getBitCast(C, DestTy);
-  
+
   // If the element types match, VMCore can fold it.
   unsigned NumDstElt = DestVTy->getNumElements();
   unsigned NumSrcElt = C->getType()->getVectorNumElements();
   if (NumDstElt == NumSrcElt)
     return ConstantExpr::getBitCast(C, DestTy);
-  
+
   Type *SrcEltTy = C->getType()->getVectorElementType();
   Type *DstEltTy = DestVTy->getElementType();
-  
-  // Otherwise, we're changing the number of elements in a vector, which 
+
+  // Otherwise, we're changing the number of elements in a vector, which
   // requires endianness information to do the right thing.  For example,
   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
   // folds to (little endian):
   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
   // and to (big endian):
   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
-  
+
   // First thing is first.  We only want to think about integer here, so if
   // we have something in FP form, recast it as integer.
   if (DstEltTy->isFloatingPointTy()) {
@@ -130,11 +130,11 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
     // Recursively handle this integer conversion, if possible.
     C = FoldBitCast(C, DestIVTy, TD);
-    
+
     // Finally, VMCore can handle this now that #elts line up.
     return ConstantExpr::getBitCast(C, DestTy);
   }
-  
+
   // Okay, we know the destination is integer, if the input is FP, convert
   // it to integer first.
   if (SrcEltTy->isFloatingPointTy()) {
@@ -148,13 +148,13 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
         !isa<ConstantDataVector>(C))
       return C;
   }
-  
+
   // Now we know that the input and output vectors are both integer vectors
   // of the same size, and that their #elements is not the same.  Do the
   // conversion here, which depends on whether the input or output has
   // more elements.
   bool isLittleEndian = TD.isLittleEndian();
-  
+
   SmallVector<Constant*, 32> Result;
   if (NumDstElt < NumSrcElt) {
     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
@@ -170,15 +170,15 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
         if (!Src)  // Reject constantexpr elements.
           return ConstantExpr::getBitCast(C, DestTy);
-        
+
         // Zero extend the element to the right size.
         Src = ConstantExpr::getZExt(Src, Elt->getType());
-        
+
         // Shift it to the right place, depending on endianness.
-        Src = ConstantExpr::getShl(Src, 
+        Src = ConstantExpr::getShl(Src,
                                    ConstantInt::get(Src->getType(), ShiftAmt));
         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
-        
+
         // Mix it in.
         Elt = ConstantExpr::getOr(Elt, Src);
       }
@@ -186,30 +186,30 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
     }
     return ConstantVector::get(Result);
   }
-  
+
   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
   unsigned Ratio = NumDstElt/NumSrcElt;
   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
-  
+
   // Loop over each source value, expanding into multiple results.
   for (unsigned i = 0; i != NumSrcElt; ++i) {
     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
     if (!Src)  // Reject constantexpr elements.
       return ConstantExpr::getBitCast(C, DestTy);
-    
+
     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
     for (unsigned j = 0; j != Ratio; ++j) {
       // Shift the piece of the value into the right place, depending on
       // endianness.
-      Constant *Elt = ConstantExpr::getLShr(Src, 
+      Constant *Elt = ConstantExpr::getLShr(Src,
                                   ConstantInt::get(Src->getType(), ShiftAmt));
       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
-      
+
       // Truncate and remember this piece.
       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
     }
   }
-  
+
   return ConstantVector::get(Result);
 }
 
@@ -224,28 +224,28 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
     Offset = 0;
     return true;
   }
-  
+
   // Otherwise, if this isn't a constant expr, bail out.
   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
   if (!CE) return false;
-  
+
   // Look through ptr->int and ptr->ptr casts.
   if (CE->getOpcode() == Instruction::PtrToInt ||
       CE->getOpcode() == Instruction::BitCast)
     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
-  
-  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
+
+  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
   if (CE->getOpcode() == Instruction::GetElementPtr) {
     // Cannot compute this if the element type of the pointer is missing size
     // info.
     if (!cast<PointerType>(CE->getOperand(0)->getType())
                  ->getElementType()->isSized())
       return false;
-    
+
     // If the base isn't a global+constant, we aren't either.
     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
       return false;
-    
+
     // Otherwise, add any offset that our operands provide.
     gep_type_iterator GTI = gep_type_begin(CE);
     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
@@ -253,7 +253,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
       if (!CI) return false;  // Index isn't a simple constant?
       if (CI->isZero()) continue;  // Not adding anything.
-      
+
       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
         // N = N + Offset
         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
@@ -264,7 +264,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
     }
     return true;
   }
-  
+
   return false;
 }
 
@@ -277,27 +277,27 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
                                const DataLayout &TD) {
   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
          "Out of range access");
-  
+
   // If this element is zero or undefined, we can just return since *CurPtr is
   // zero initialized.
   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
     return true;
-  
+
   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
     if (CI->getBitWidth() > 64 ||
         (CI->getBitWidth() & 7) != 0)
       return false;
-    
+
     uint64_t Val = CI->getZExtValue();
     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
-    
+
     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
       ++ByteOffset;
     }
     return true;
   }
-  
+
   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
     if (CFP->getType()->isDoubleTy()) {
       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
@@ -309,13 +309,13 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
     }
     return false;
   }
-  
+
   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
     const StructLayout *SL = TD.getStructLayout(CS->getType());
     unsigned Index = SL->getElementContainingOffset(ByteOffset);
     uint64_t CurEltOffset = SL->getElementOffset(Index);
     ByteOffset -= CurEltOffset;
-    
+
     while (1) {
       // If the element access is to the element itself and not to tail padding,
       // read the bytes from the element.
@@ -325,9 +325,9 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
                               BytesLeft, TD))
         return false;
-      
+
       ++Index;
-      
+
       // Check to see if we read from the last struct element, if so we're done.
       if (Index == CS->getType()->getNumElements())
         return true;
@@ -375,11 +375,11 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
     }
     return true;
   }
-      
+
   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
     if (CE->getOpcode() == Instruction::IntToPtr &&
-        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext())) 
-      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 
+        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
+      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
                                 BytesLeft, TD);
   }
 
@@ -391,7 +391,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
                                                  const DataLayout &TD) {
   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
-  
+
   // If this isn't an integer load we can't fold it directly.
   if (!IntType) {
     // If this is a float/double load, we can try folding it as an int32/64 load
@@ -415,15 +415,15 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
       return FoldBitCast(Res, LoadTy, TD);
     return 0;
   }
-  
+
   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
-  
+
   GlobalValue *GVal;
   int64_t Offset;
   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
     return 0;
-  
+
   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
       !GV->getInitializer()->getType()->isSized())
@@ -432,11 +432,11 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
   // If we're loading off the beginning of the global, some bytes may be valid,
   // but we don't try to handle this.
   if (Offset < 0) return 0;
-  
+
   // If we're not accessing anything in this constant, the result is undefined.
   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
     return UndefValue::get(IntType);
-  
+
   unsigned char RawBytes[32] = {0};
   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
                           BytesLoaded, TD))
@@ -464,15 +464,15 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
   // If the loaded value isn't a constant expr, we can't handle it.
   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
   if (!CE) return 0;
-  
+
   if (CE->getOpcode() == Instruction::GetElementPtr) {
     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
       if (GV->isConstant() && GV->hasDefinitiveInitializer())
-        if (Constant *V = 
+        if (Constant *V =
              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
           return V;
   }
-  
+
   // Instead of loading constant c string, use corresponding integer value
   // directly if string length is small enough.
   StringRef Str;
@@ -500,14 +500,14 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
         SingleChar = 0;
         StrVal = (StrVal << 8) | SingleChar;
       }
-      
+
       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
       if (Ty->isFloatingPointTy())
         Res = ConstantExpr::getBitCast(Res, Ty);
       return Res;
     }
   }
-  
+
   // If this load comes from anywhere in a constant global, and if the global
   // is all undef or zero, we know what it loads.
   if (GlobalVariable *GV =
@@ -520,7 +520,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
         return UndefValue::get(ResTy);
     }
   }
-  
+
   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
   // currently don't do any of this for big endian systems.  It can be
   // generalized in the future if someone is interested.
@@ -531,7 +531,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
 
 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
   if (LI->isVolatile()) return 0;
-  
+
   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
     return ConstantFoldLoadFromConstPtr(C, TD);
 
@@ -540,23 +540,23 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
 
 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
 /// Attempt to symbolically evaluate the result of a binary operator merging
-/// these together.  If target data info is available, it is provided as TD, 
+/// these together.  If target data info is available, it is provided as TD,
 /// otherwise TD is null.
 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
                                            Constant *Op1, const DataLayout *TD){
   // SROA
-  
+
   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
   // bits.
-  
-  
+
+
   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
   // constant.  This happens frequently when iterating over a global array.
   if (Opc == Instruction::Sub && TD) {
     GlobalValue *GV1, *GV2;
     int64_t Offs1, Offs2;
-    
+
     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
           GV1 == GV2) {
@@ -564,7 +564,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
       }
   }
-    
+
   return 0;
 }
 
@@ -628,14 +628,14 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
       !Ptr->getType()->isPointerTy())
     return 0;
-  
+
   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
 
   // If this is a constant expr gep that is effectively computing an
   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
     if (!isa<ConstantInt>(Ops[i])) {
-      
+
       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
       // "inttoptr (sub (ptrtoint Ptr), V)"
       if (Ops.size() == 2 &&
@@ -709,12 +709,12 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
         // The only pointer indexing we'll do is on the first index of the GEP.
         if (!NewIdxs.empty())
           break;
-       
+
         // Only handle pointers to sized types, not pointers to functions.
         if (!ATy->getElementType()->isSized())
           return 0;
       }
-        
+
       // Determine which element of the array the offset points into.
       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
@@ -837,7 +837,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
                                            TD, TLI);
-  
+
   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
     return ConstantFoldLoadInst(LI, TD);
 
@@ -887,19 +887,19 @@ Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
 /// information, due to only being passed an opcode and operands. Constant
 /// folding using this function strips this information.
 ///
-Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, 
+Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
                                          ArrayRef<Constant *> Ops,
                                          const DataLayout *TD,
-                                         const TargetLibraryInfo *TLI) {                                         
+                                         const TargetLibraryInfo *TLI) {
   // Handle easy binops first.
   if (Instruction::isBinaryOp(Opcode)) {
     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
         return C;
-    
+
     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
   }
-  
+
   switch (Opcode) {
   default: return 0;
   case Instruction::ICmp:
@@ -917,7 +917,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
         Constant *Input = CE->getOperand(0);
         unsigned InWidth = Input->getType()->getScalarSizeInBits();
         if (TD->getPointerSizeInBits() < InWidth) {
-          Constant *Mask = 
+          Constant *Mask =
             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
                                                   TD->getPointerSizeInBits()));
           Input = ConstantExpr::getAnd(Input, Mask);
@@ -965,7 +965,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
       return C;
     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
       return C;
-    
+
     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
   }
 }
@@ -975,7 +975,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
 /// returns a constant expression of the specified operands.
 ///
 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
-                                                Constant *Ops0, Constant *Ops1, 
+                                                Constant *Ops0, Constant *Ops1,
                                                 const DataLayout *TD,
                                                 const TargetLibraryInfo *TLI) {
   // fold: icmp (inttoptr x), null         -> icmp x, 0
@@ -996,17 +996,17 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
         Constant *Null = Constant::getNullValue(C->getType());
         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
       }
-      
+
       // Only do this transformation if the int is intptrty in size, otherwise
       // there is a truncation or extension that we aren't modeling.
-      if (CE0->getOpcode() == Instruction::PtrToInt && 
+      if (CE0->getOpcode() == Instruction::PtrToInt &&
           CE0->getType() == IntPtrTy) {
         Constant *C = CE0->getOperand(0);
         Constant *Null = Constant::getNullValue(C->getType());
         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
       }
     }
-    
+
     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
@@ -1030,24 +1030,24 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
                                                  CE1->getOperand(0), TD, TLI);
       }
     }
-    
+
     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
-      Constant *LHS = 
+      Constant *LHS =
         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
                                         TD, TLI);
-      Constant *RHS = 
+      Constant *RHS =
         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
                                         TD, TLI);
-      unsigned OpC = 
+      unsigned OpC =
         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
       Constant *Ops[] = { LHS, RHS };
       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
     }
   }
-  
+
   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
 }
 
@@ -1055,7 +1055,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
 /// getelementptr constantexpr, return the constant value being addressed by the
 /// constant expression, or null if something is funny and we can't decide.
-Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
+Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
                                                        ConstantExpr *CE) {
   if (!CE->getOperand(1)->isNullValue())
     return 0;  // Do not allow stepping over the value!
@@ -1125,14 +1125,14 @@ llvm::canConstantFoldCallTo(const Function *F) {
 
   if (!F->hasName()) return false;
   StringRef Name = F->getName();
-  
+
   // In these cases, the check of the length is required.  We don't want to
   // return true for a name like "cos\0blah" which strcmp would return equal to
   // "cos", but has length 8.
   switch (Name[0]) {
   default: return false;
   case 'a':
-    return Name == "acos" || Name == "asin" || 
+    return Name == "acos" || Name == "asin" ||
       Name == "atan" || Name == "atan2";
   case 'c':
     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
@@ -1152,7 +1152,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
   }
 }
 
-static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
+static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
                                 Type *Ty) {
   sys::llvm_fenv_clearexcept();
   V = NativeFP(V);
@@ -1160,7 +1160,7 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
     sys::llvm_fenv_clearexcept();
     return 0;
   }
-  
+
   if (Ty->isFloatTy())
     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   if (Ty->isDoubleTy())
@@ -1176,7 +1176,7 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
     sys::llvm_fenv_clearexcept();
     return 0;
   }
-  
+
   if (Ty->isFloatTy())
     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   if (Ty->isDoubleTy())
@@ -1270,7 +1270,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
       case 'e':
         if (Name == "exp" && TLI->has(LibFunc::exp))
           return ConstantFoldFP(exp, V, Ty);
-  
+
         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
           // C99 library.
@@ -1346,7 +1346,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
     }
 
     // Support ConstantVector in case we have an Undef in the top.
-    if (isa<ConstantVector>(Operands[0]) || 
+    if (isa<ConstantVector>(Operands[0]) ||
         isa<ConstantDataVector>(Operands[0])) {
       Constant *Op = cast<Constant>(Operands[0]);
       switch (F->getIntrinsicID()) {
@@ -1365,11 +1365,11 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
       case Intrinsic::x86_sse2_cvttsd2si64:
         if (ConstantFP *FPOp =
               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
-          return ConstantFoldConvertToInt(FPOp->getValueAPF(), 
+          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
                                           /*roundTowardZero=*/true, Ty);
       }
     }
-  
+
     if (isa<UndefValue>(Operands[0])) {
       if (F->getIntrinsicID() == Intrinsic::bswap)
         return Operands[0];
@@ -1383,14 +1383,14 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
         return 0;
-      double Op1V = Ty->isFloatTy() ? 
+      double Op1V = Ty->isFloatTy() ?
                       (double)Op1->getValueAPF().convertToFloat() :
                       Op1->getValueAPF().convertToDouble();
       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
         if (Op2->getType() != Op1->getType())
           return 0;
 
-        double Op2V = Ty->isFloatTy() ? 
+        double Op2V = Ty->isFloatTy() ?
                       (double)Op2->getValueAPF().convertToFloat():
                       Op2->getValueAPF().convertToDouble();
 
@@ -1417,7 +1417,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
       }
       return 0;
     }
-    
+
     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
         switch (F->getIntrinsicID()) {
@@ -1467,7 +1467,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
         }
       }
-      
+
       return 0;
     }
     return 0;