}
#endif
+/* in s: 2 int16_t samples
+ * in v: 2 int32_t volumes, fixed point 16:16
+ * out s: contains scaled and clamped int16_t samples.
+ *
+ * We calculate the high 32 bits of a 32x16 multiply which we then
+ * clamp to 16 bits. The calulcation is:
+ *
+ * vl = (v & 0xffff)
+ * vh = (v >> 16)
+ * s = ((s * vl) >> 16) + (s * vh);
+ *
+ * For the first multiply we have to do a sign correction as we need to
+ * multiply a signed int with an unsigned int. Hacker's delight 8-3 gives a
+ * simple formula to correct the sign of the high word after the signed
+ * multiply.
+ */
#define VOLUME_32x16(s,v) /* .. | vh | vl | */ \
" pxor %%mm4, %%mm4 \n\t" /* .. | 0 | 0 | */ \
" punpcklwd %%mm4, "#s" \n\t" /* .. | 0 | p0 | */ \
" pmaddwd "#s", "#v" \n\t" /* .. | p0 * v0 | */ \
" packssdw "#v", "#v" \n\t" /* .. | p1*v1 | p0*v0 | */
+/* approximately advances %3 = (%3 + a) % b. This function requires that
+ * a <= b. */
#define MOD_ADD(a,b) \
" add "#a", %3 \n\t" \
" mov %3, %4 \n\t" \