test: lib: lmb: add lmb test for multiple RAM banks
authorSimon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Fri, 1 Feb 2019 20:23:59 +0000 (21:23 +0100)
committerTom Rini <trini@konsulko.com>
Sat, 2 Feb 2019 13:23:33 +0000 (08:23 -0500)
This adds one test case that checks that allocation with multiple
DRAM banks works correctly.

Signed-off-by: Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
test/lib/lmb.c

index 9a22852..ec68227 100644 (file)
@@ -15,9 +15,11 @@ static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
                     phys_addr_t base2, phys_size_t size2,
                     phys_addr_t base3, phys_size_t size3)
 {
-       ut_asserteq(lmb->memory.cnt, 1);
-       ut_asserteq(lmb->memory.region[0].base, ram_base);
-       ut_asserteq(lmb->memory.region[0].size, ram_size);
+       if (ram_size) {
+               ut_asserteq(lmb->memory.cnt, 1);
+               ut_asserteq(lmb->memory.region[0].base, ram_base);
+               ut_asserteq(lmb->memory.region[0].size, ram_size);
+       }
 
        ut_asserteq(lmb->reserved.cnt, num_reserved);
        if (num_reserved > 0) {
@@ -45,8 +47,9 @@ static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
  * Test helper function that reserves 64 KiB somewhere in the simulated RAM and
  * then does some alloc + free tests.
  */
-static int test_multi_alloc(struct unit_test_state *uts,
-                           const phys_addr_t ram, const phys_size_t ram_size,
+static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram,
+                           const phys_size_t ram_size, const phys_addr_t ram0,
+                           const phys_size_t ram0_size,
                            const phys_addr_t alloc_64k_addr)
 {
        const phys_addr_t ram_end = ram + ram_size;
@@ -65,82 +68,119 @@ static int test_multi_alloc(struct unit_test_state *uts,
 
        lmb_init(&lmb);
 
+       if (ram0_size) {
+               ret = lmb_add(&lmb, ram0, ram0_size);
+               ut_asserteq(ret, 0);
+       }
+
        ret = lmb_add(&lmb, ram, ram_size);
        ut_asserteq(ret, 0);
 
+       if (ram0_size) {
+               ut_asserteq(lmb.memory.cnt, 2);
+               ut_asserteq(lmb.memory.region[0].base, ram0);
+               ut_asserteq(lmb.memory.region[0].size, ram0_size);
+               ut_asserteq(lmb.memory.region[1].base, ram);
+               ut_asserteq(lmb.memory.region[1].size, ram_size);
+       } else {
+               ut_asserteq(lmb.memory.cnt, 1);
+               ut_asserteq(lmb.memory.region[0].base, ram);
+               ut_asserteq(lmb.memory.region[0].size, ram_size);
+       }
+
        /* reserve 64KiB somewhere */
        ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
        ut_asserteq(ret, 0);
-       ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+       ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
                   0, 0, 0, 0);
 
        /* allocate somewhere, should be at the end of RAM */
        a = lmb_alloc(&lmb, 4, 1);
        ut_asserteq(a, ram_end - 4);
-       ASSERT_LMB(&lmb, ram, ram_size, 2, alloc_64k_addr, 0x10000,
+       ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr, 0x10000,
                   ram_end - 4, 4, 0, 0);
        /* alloc below end of reserved region -> below reserved region */
        b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
        ut_asserteq(b, alloc_64k_addr - 4);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
 
        /* 2nd time */
        c = lmb_alloc(&lmb, 4, 1);
        ut_asserteq(c, ram_end - 8);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
        d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
        ut_asserteq(d, alloc_64k_addr - 8);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
 
        ret = lmb_free(&lmb, a, 4);
        ut_asserteq(ret, 0);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
        /* allocate again to ensure we get the same address */
        a2 = lmb_alloc(&lmb, 4, 1);
        ut_asserteq(a, a2);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
        ret = lmb_free(&lmb, a2, 4);
        ut_asserteq(ret, 0);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
 
        ret = lmb_free(&lmb, b, 4);
        ut_asserteq(ret, 0);
-       ASSERT_LMB(&lmb, ram, ram_size, 3,
+       ASSERT_LMB(&lmb, 0, 0, 3,
                   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
                   ram_end - 8, 4);
        /* allocate again to ensure we get the same address */
        b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
        ut_asserteq(b, b2);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
        ret = lmb_free(&lmb, b2, 4);
        ut_asserteq(ret, 0);
-       ASSERT_LMB(&lmb, ram, ram_size, 3,
+       ASSERT_LMB(&lmb, 0, 0, 3,
                   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
                   ram_end - 8, 4);
 
        ret = lmb_free(&lmb, c, 4);
        ut_asserteq(ret, 0);
-       ASSERT_LMB(&lmb, ram, ram_size, 2,
+       ASSERT_LMB(&lmb, 0, 0, 2,
                   alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
        ret = lmb_free(&lmb, d, 4);
        ut_asserteq(ret, 0);
-       ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+       ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
                   0, 0, 0, 0);
 
+       if (ram0_size) {
+               ut_asserteq(lmb.memory.cnt, 2);
+               ut_asserteq(lmb.memory.region[0].base, ram0);
+               ut_asserteq(lmb.memory.region[0].size, ram0_size);
+               ut_asserteq(lmb.memory.region[1].base, ram);
+               ut_asserteq(lmb.memory.region[1].size, ram_size);
+       } else {
+               ut_asserteq(lmb.memory.cnt, 1);
+               ut_asserteq(lmb.memory.region[0].base, ram);
+               ut_asserteq(lmb.memory.region[0].size, ram_size);
+       }
+
        return 0;
 }
 
 static int test_multi_alloc_512mb(struct unit_test_state *uts,
                                  const phys_addr_t ram)
 {
-       return test_multi_alloc(uts, ram, 0x20000000, ram + 0x10000000);
+       return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000);
+}
+
+static int test_multi_alloc_512mb_x2(struct unit_test_state *uts,
+                                    const phys_addr_t ram,
+                                    const phys_addr_t ram0)
+{
+       return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000,
+                               ram + 0x10000000);
 }
 
 /* Create a memory region with one reserved region and allocate */
@@ -159,6 +199,22 @@ static int lib_test_lmb_simple(struct unit_test_state *uts)
 
 DM_TEST(lib_test_lmb_simple, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
 
+/* Create two memory regions with one reserved region and allocate */
+static int lib_test_lmb_simple_x2(struct unit_test_state *uts)
+{
+       int ret;
+
+       /* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */
+       ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000);
+       if (ret)
+               return ret;
+
+       /* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */
+       return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000);
+}
+
+DM_TEST(lib_test_lmb_simple_x2,  DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
 /* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
 static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
 {