//! updates the predicted state from the measurement
CV_WRAP const Mat& correct( const Mat& measurement );
- //! sets predicted state
- CV_WRAP void setStatePre( const Mat& state ) { statePre = state; }
- //! sets corrected state
- CV_WRAP void setStatePost( const Mat& state ) { statePost = state; }
- //! sets transition matrix
- CV_WRAP void setTransitionMatrix( const Mat& transition ) { transitionMatrix = transition; }
- //! sets control matrix
- CV_WRAP void setControlMatrix( const Mat& control ) { controlMatrix = control; }
- //! sets measurement matrix
- CV_WRAP void setMeasurementMatrix( const Mat& measurement ) { measurementMatrix = measurement; }
- //! sets process noise covariance matrix
- CV_WRAP void setProcessNoiseCov( const Mat& noise ) { processNoiseCov = noise; }
- //! sets measurement noise covariance matrix
- CV_WRAP void setMeasurementNoiseCov( const Mat& noise ) { measurementNoiseCov = noise; }
- //! sets posteriori error covariance
- CV_WRAP void setErrorCovPost( const Mat& error ) { errorCovPost = error; }
-
- Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
- Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
- Mat transitionMatrix; //!< state transition matrix (A)
- Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
- Mat measurementMatrix; //!< measurement matrix (H)
- Mat processNoiseCov; //!< process noise covariance matrix (Q)
- Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
- Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
- Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
- Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
+ CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
+ CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
+ CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
+ CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
+ CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
+ CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
+ CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
+ CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
+ CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
+ CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
// temporary matrices
Mat temp1;
Pressing any key (except ESC) will reset the tracking with a different speed.
Pressing ESC will stop the program.
"""
-import urllib2
import cv2
-from math import cos, sin, sqrt
-import sys
+from math import cos, sin
import numpy as np
if __name__ == "__main__":
img_height = 500
img_width = 500
- img = np.array((img_height, img_width, 3), np.uint8)
kalman = cv2.KalmanFilter(2, 1, 0)
- state = np.zeros((2, 1)) # (phi, delta_phi)
- process_noise = np.zeros((2, 1))
- measurement = np.zeros((1, 1))
code = -1L
while True:
state = 0.1 * np.random.randn(2, 1)
- transition_matrix = np.array([[1., 1.], [0., 1.]])
- kalman.setTransitionMatrix(transition_matrix)
- measurement_matrix = 1. * np.ones((1, 2))
- kalman.setMeasurementMatrix(measurement_matrix)
-
- process_noise_cov = 1e-5
- kalman.setProcessNoiseCov(process_noise_cov * np.eye(2))
-
- measurement_noise_cov = 1e-1
- kalman.setMeasurementNoiseCov(measurement_noise_cov * np.ones((1, 1)))
-
- kalman.setErrorCovPost(1. * np.ones((2, 2)))
-
- kalman.setStatePost(0.1 * np.random.randn(2, 1))
+ kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
+ kalman.measurementMatrix = 1. * np.ones((1, 2))
+ kalman.processNoiseCov = 1e-5 * np.eye(2)
+ kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
+ kalman.errorCovPost = 1. * np.ones((2, 2))
+ kalman.statePost = 0.1 * np.random.randn(2, 1)
while True:
def calc_point(angle):
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
- np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
+ np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
state_angle = state[0, 0]
state_pt = calc_point(state_angle)
predict_angle = prediction[0, 0]
predict_pt = calc_point(predict_angle)
-
- measurement = measurement_noise_cov * np.random.randn(1, 1)
+ measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
# generate measurement
- measurement = np.dot(measurement_matrix, state) + measurement
+ measurement = np.dot(kalman.measurementMatrix, state) + measurement
measurement_angle = measurement[0, 0]
measurement_pt = calc_point(measurement_angle)
# plot points
def draw_cross(center, color, d):
- cv2.line(img, (center[0] - d, center[1] - d),
- (center[0] + d, center[1] + d), color, 1, cv2.LINE_AA, 0)
- cv2.line(img, (center[0] + d, center[1] - d),
- (center[0] - d, center[1] + d), color, 1, cv2.LINE_AA, 0)
+ cv2.line(img,
+ (center[0] - d, center[1] - d), (center[0] + d, center[1] + d),
+ color, 1, cv2.LINE_AA, 0)
+ cv2.line(img,
+ (center[0] + d, center[1] - d), (center[0] - d, center[1] + d),
+ color, 1, cv2.LINE_AA, 0)
img = np.zeros((img_height, img_width, 3), np.uint8)
draw_cross(np.int32(state_pt), (255, 255, 255), 3)
kalman.correct(measurement)
- process_noise = process_noise_cov * np.random.randn(2, 1)
- state = np.dot(transition_matrix, state) + process_noise
+ process_noise = kalman.processNoiseCov * np.random.randn(2, 1)
+ state = np.dot(kalman.transitionMatrix, state) + process_noise
cv2.imshow("Kalman", img)