Add SkDefaultXform as a catch-all to handle color conversions
authormsarett <msarett@google.com>
Mon, 6 Jun 2016 19:02:31 +0000 (12:02 -0700)
committerCommit bot <commit-bot@chromium.org>
Mon, 6 Jun 2016 19:02:31 +0000 (12:02 -0700)
I'd like to start optimizing the common case for color xforms,
but before doing that, I think it makes sense to have correct
code to support all xforms.

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2038823002

Review-Url: https://codereview.chromium.org/2038823002

src/core/SkColorSpace.cpp
src/core/SkColorSpaceXform.cpp
src/core/SkColorSpaceXform.h
src/core/SkColorSpace_Base.h
tests/ColorSpaceXformTest.cpp [new file with mode: 0644]

index 1652de3..6bc897c 100644 (file)
@@ -719,19 +719,21 @@ bool load_matrix(SkMatrix44* toXYZ, const uint8_t* src, size_t len) {
         return false;
     }
 
+    // For this matrix to behave like our "to XYZ D50" matrices, it needs to be scaled.
+    constexpr float scale = 65535.0 / 32768.0;
     float array[16];
-    array[ 0] = SkFixedToFloat(read_big_endian_int(src));
-    array[ 1] = SkFixedToFloat(read_big_endian_int(src + 4));
-    array[ 2] = SkFixedToFloat(read_big_endian_int(src + 8));
-    array[ 3] = SkFixedToFloat(read_big_endian_int(src + 36)); // translate R
-    array[ 4] = SkFixedToFloat(read_big_endian_int(src + 12));
-    array[ 5] = SkFixedToFloat(read_big_endian_int(src + 16));
-    array[ 6] = SkFixedToFloat(read_big_endian_int(src + 20));
-    array[ 7] = SkFixedToFloat(read_big_endian_int(src + 40)); // translate G
-    array[ 8] = SkFixedToFloat(read_big_endian_int(src + 24));
-    array[ 9] = SkFixedToFloat(read_big_endian_int(src + 28));
-    array[10] = SkFixedToFloat(read_big_endian_int(src + 32));
-    array[11] = SkFixedToFloat(read_big_endian_int(src + 44)); // translate B
+    array[ 0] = scale * SkFixedToFloat(read_big_endian_int(src));
+    array[ 1] = scale * SkFixedToFloat(read_big_endian_int(src + 4));
+    array[ 2] = scale * SkFixedToFloat(read_big_endian_int(src + 8));
+    array[ 3] = scale * SkFixedToFloat(read_big_endian_int(src + 36)); // translate R
+    array[ 4] = scale * SkFixedToFloat(read_big_endian_int(src + 12));
+    array[ 5] = scale * SkFixedToFloat(read_big_endian_int(src + 16));
+    array[ 6] = scale * SkFixedToFloat(read_big_endian_int(src + 20));
+    array[ 7] = scale * SkFixedToFloat(read_big_endian_int(src + 40)); // translate G
+    array[ 8] = scale * SkFixedToFloat(read_big_endian_int(src + 24));
+    array[ 9] = scale * SkFixedToFloat(read_big_endian_int(src + 28));
+    array[10] = scale * SkFixedToFloat(read_big_endian_int(src + 32));
+    array[11] = scale * SkFixedToFloat(read_big_endian_int(src + 44)); // translate B
     array[12] = 0.0f;
     array[13] = 0.0f;
     array[14] = 0.0f;
index 473e715..216e993 100644 (file)
@@ -9,8 +9,8 @@
 #include "SkColorSpace_Base.h"
 #include "SkColorSpaceXform.h"
 
-bool compute_gamut_xform(SkMatrix44* srcToDst, const SkMatrix44& srcToXYZ,
-                         const SkMatrix44& dstToXYZ) {
+static inline bool compute_gamut_xform(SkMatrix44* srcToDst, const SkMatrix44& srcToXYZ,
+                                       const SkMatrix44& dstToXYZ) {
     if (!dstToXYZ.invert(srcToDst)) {
         return false;
     }
@@ -22,15 +22,21 @@ bool compute_gamut_xform(SkMatrix44* srcToDst, const SkMatrix44& srcToXYZ,
 std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform::New(const sk_sp<SkColorSpace>& srcSpace,
                                                           const sk_sp<SkColorSpace>& dstSpace) {
     if (!srcSpace || !dstSpace) {
+        // Invalid input
         return nullptr;
     }
 
-    if (as_CSB(srcSpace)->gammas()->isValues() && as_CSB(dstSpace)->gammas()->isValues()) {
-        SkMatrix44 srcToDst(SkMatrix44::kUninitialized_Constructor);
-        if (!compute_gamut_xform(&srcToDst, srcSpace->xyz(), dstSpace->xyz())) {
-            return nullptr;
-        }
+    if (as_CSB(srcSpace)->colorLUT() || as_CSB(dstSpace)->colorLUT()) {
+        // Unimplemented
+        return nullptr;
+    }
 
+    SkMatrix44 srcToDst(SkMatrix44::kUninitialized_Constructor);
+    if (!compute_gamut_xform(&srcToDst, srcSpace->xyz(), dstSpace->xyz())) {
+        return nullptr;
+    }
+
+    if (as_CSB(srcSpace)->gammas()->isValues() && as_CSB(dstSpace)->gammas()->isValues()) {
         float srcGammas[3];
         float dstGammas[3];
         srcGammas[0] = as_CSB(srcSpace)->gammas()->fRed.fValue;
@@ -44,21 +50,17 @@ std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform::New(const sk_sp<SkColorSpa
                 new SkGammaByValueXform(srcGammas, srcToDst, dstGammas));
     }
 
-    // Unimplemeted
-    return nullptr;
+    return std::unique_ptr<SkColorSpaceXform>(
+            new SkDefaultXform(as_CSB(srcSpace)->gammas(), srcToDst, as_CSB(dstSpace)->gammas()));
 }
 
 ///////////////////////////////////////////////////////////////////////////////////////////////////
 
-SkGammaByValueXform::SkGammaByValueXform(float srcGammas[3], const SkMatrix44& srcToDst,
-                                         float dstGammas[3])
-    : fSrcToDst(srcToDst)
-{
-    memcpy(fSrcGammas, srcGammas, 3 * sizeof(float));
-    memcpy(fDstGammas, dstGammas, 3 * sizeof(float));
+static inline float byte_to_float(uint8_t v) {
+    return ((float) v) * (1.0f / 255.0f);
 }
 
-static uint8_t clamp_float_to_byte(float v) {
+static inline uint8_t clamp_float_to_byte(float v) {
     v = v * 255.0f;
     if (v > 255.0f) {
         return 255;
@@ -69,12 +71,22 @@ static uint8_t clamp_float_to_byte(float v) {
     }
 }
 
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+SkGammaByValueXform::SkGammaByValueXform(float srcGammas[3], const SkMatrix44& srcToDst,
+                                         float dstGammas[3])
+    : fSrcToDst(srcToDst)
+{
+    memcpy(fSrcGammas, srcGammas, 3 * sizeof(float));
+    memcpy(fDstGammas, dstGammas, 3 * sizeof(float));
+}
+
 void SkGammaByValueXform::xform_RGBA_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const {
     while (len-- > 0) {
         float srcFloats[3];
-        srcFloats[0] = ((*src >>  0) & 0xFF) * (1.0f / 255.0f);
-        srcFloats[1] = ((*src >>  8) & 0xFF) * (1.0f / 255.0f);
-        srcFloats[2] = ((*src >> 16) & 0xFF) * (1.0f / 255.0f);
+        srcFloats[0] = byte_to_float((*src >>  0) & 0xFF);
+        srcFloats[1] = byte_to_float((*src >>  8) & 0xFF);
+        srcFloats[2] = byte_to_float((*src >> 16) & 0xFF);
 
         // Convert to linear.
         srcFloats[0] = pow(srcFloats[0], fSrcGammas[0]);
@@ -107,3 +119,153 @@ void SkGammaByValueXform::xform_RGBA_8888(uint32_t* dst, const uint32_t* src, ui
         src++;
     }
 }
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+// Interpolating lookup in a variably sized table.
+static inline float interp_lut(uint8_t byte, float* table, size_t tableSize) {
+    float index = byte_to_float(byte) * (tableSize - 1);
+    float diff = index - sk_float_floor2int(index);
+    return table[(int) sk_float_floor2int(index)] * (1.0f - diff) +
+            table[(int) sk_float_ceil2int(index)] * diff;
+}
+
+// Inverse table lookup.  Ex: what index corresponds to the input value?  This will
+// have strange results when the table is non-increasing.  But any sane gamma
+// function will be increasing.
+// FIXME (msarett):
+// This is a placeholder implementation for inverting table gammas.  First, I need to
+// verify if there are actually destination profiles that require this functionality.
+// Next, there are certainly faster and more robust approaches to solving this problem.
+// The LUT based approach in QCMS would be a good place to start.
+static inline float interp_lut_inv(float input, float* table, size_t tableSize) {
+    if (input <= table[0]) {
+        return table[0];
+    } else if (input >= table[tableSize - 1]) {
+        return 1.0f;
+    }
+
+    for (uint32_t i = 1; i < tableSize; i++) {
+        if (table[i] >= input) {
+            // We are guaranteed that input is greater than table[i - 1].
+            float diff = input - table[i - 1];
+            float distance = table[i] - table[i - 1];
+            float index = (i - 1) + diff / distance;
+            return index / (tableSize - 1);
+        }
+    }
+
+    // Should be unreachable, since we'll return before the loop if input is
+    // larger than the last entry.
+    SkASSERT(false);
+    return 0.0f;
+}
+
+SkDefaultXform::SkDefaultXform(const sk_sp<SkGammas>& srcGammas, const SkMatrix44& srcToDst,
+                               const sk_sp<SkGammas>& dstGammas)
+    : fSrcGammas(srcGammas)
+    , fSrcToDst(srcToDst)
+    , fDstGammas(dstGammas)
+{}
+
+void SkDefaultXform::xform_RGBA_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const {
+    while (len-- > 0) {
+        // Convert to linear.
+        // FIXME (msarett):
+        // Rather than support three different strategies of transforming gamma, QCMS
+        // builds a 256 entry float lookup table from the gamma info.  This handles
+        // the gamma transform and the conversion from bytes to floats.  This may
+        // be simpler and faster than our current approach.
+        float srcFloats[3];
+        for (int i = 0; i < 3; i++) {
+            const SkGammaCurve& gamma = (*fSrcGammas)[i];
+            uint8_t byte = (*src >> (8 * i)) & 0xFF;
+            if (gamma.isValue()) {
+                srcFloats[i] = pow(byte_to_float(byte), gamma.fValue);
+            } else if (gamma.isTable()) {
+                srcFloats[i] = interp_lut(byte, gamma.fTable.get(), gamma.fTableSize);
+            } else {
+                SkASSERT(gamma.isParametric());
+                float component = byte_to_float(byte);
+                if (component < gamma.fD) {
+                    // Y = E * X + F
+                    srcFloats[i] = gamma.fE * component + gamma.fF;
+                } else {
+                    // Y = (A * X + B)^G + C
+                    srcFloats[i] = pow(gamma.fA * component + gamma.fB, gamma.fG) + gamma.fC;
+                }
+            }
+        }
+
+        // Convert to dst gamut.
+        float dstFloats[3];
+        dstFloats[0] = srcFloats[0] * fSrcToDst.getFloat(0, 0) +
+                       srcFloats[1] * fSrcToDst.getFloat(1, 0) +
+                       srcFloats[2] * fSrcToDst.getFloat(2, 0) + fSrcToDst.getFloat(3, 0);
+        dstFloats[1] = srcFloats[0] * fSrcToDst.getFloat(0, 1) +
+                       srcFloats[1] * fSrcToDst.getFloat(1, 1) +
+                       srcFloats[2] * fSrcToDst.getFloat(2, 1) + fSrcToDst.getFloat(3, 1);
+        dstFloats[2] = srcFloats[0] * fSrcToDst.getFloat(0, 2) +
+                       srcFloats[1] * fSrcToDst.getFloat(1, 2) +
+                       srcFloats[2] * fSrcToDst.getFloat(2, 2) + fSrcToDst.getFloat(3, 2);
+
+        // Convert to dst gamma.
+        // FIXME (msarett):
+        // Rather than support three different strategies of transforming inverse gamma,
+        // QCMS builds a large float lookup table from the gamma info.  Is this faster or
+        // better than our approach?
+        for (int i = 0; i < 3; i++) {
+            const SkGammaCurve& gamma = (*fDstGammas)[i];
+            if (gamma.isValue()) {
+                dstFloats[i] = pow(dstFloats[i], 1.0f / gamma.fValue);
+            } else if (gamma.isTable()) {
+                // FIXME (msarett):
+                // An inverse table lookup is particularly strange and non-optimal.
+                dstFloats[i] = interp_lut_inv(dstFloats[i], gamma.fTable.get(), gamma.fTableSize);
+            } else {
+                SkASSERT(gamma.isParametric());
+                // FIXME (msarett):
+                // This is a placeholder implementation for inverting parametric gammas.
+                // First, I need to verify if there are actually destination profiles that
+                // require this functionality. Next, I need to explore other possibilities
+                // for this implementation.  The LUT based approach in QCMS would be a good
+                // place to start.
+
+                // We need to take the inverse of a piecewise function.  Assume that
+                // the gamma function is continuous, or this won't make much sense
+                // anyway.
+                // Plug in |fD| to the first equation to calculate the new piecewise
+                // interval.  Then simply use the inverse of the original functions.
+                float interval = gamma.fE * gamma.fD + gamma.fF;
+                if (dstFloats[i] < interval) {
+                    // X = (Y - F) / E
+                    if (0.0f == gamma.fE) {
+                        // The gamma curve for this segment is constant, so the inverse
+                        // is undefined.
+                        dstFloats[i] = 0.0f;
+                    } else {
+                        dstFloats[i] = (dstFloats[i] - gamma.fF) / gamma.fE;
+                    }
+                } else {
+                    // X = ((Y - C)^(1 / G) - B) / A
+                    if (0.0f == gamma.fA || 0.0f == gamma.fG) {
+                        // The gamma curve for this segment is constant, so the inverse
+                        // is undefined.
+                        dstFloats[i] = 0.0f;
+                    } else {
+                        dstFloats[i] = (pow(dstFloats[i] - gamma.fC, 1.0f / gamma.fG) - gamma.fB)
+                                       / gamma.fA;
+                    }
+                }
+            }
+        }
+
+        *dst = SkPackARGB32NoCheck(((*src >> 24) & 0xFF),
+                                   clamp_float_to_byte(dstFloats[0]),
+                                   clamp_float_to_byte(dstFloats[1]),
+                                   clamp_float_to_byte(dstFloats[2]));
+
+        dst++;
+        src++;
+    }
+}
index c3010f0..d54d1b8 100644 (file)
@@ -9,8 +9,9 @@
 #define SkColorSpaceXform_DEFINED
 
 #include "SkColorSpace.h"
+#include "SkColorSpace_Base.h"
 
-class SkColorSpaceXform {
+class SkColorSpaceXform : SkNoncopyable {
 public:
 
     /**
@@ -48,4 +49,24 @@ private:
     friend class SkColorSpaceXform;
 };
 
+/**
+ *  Works for any valid src and dst profiles.
+ */
+class SkDefaultXform : public SkColorSpaceXform {
+public:
+
+    void xform_RGBA_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const override;
+
+private:
+    SkDefaultXform(const sk_sp<SkGammas>& srcGammas, const SkMatrix44& srcToDst,
+                   const sk_sp<SkGammas>& dstGammas);
+
+    sk_sp<SkGammas>  fSrcGammas;
+    const SkMatrix44 fSrcToDst;
+    sk_sp<SkGammas>  fDstGammas;
+
+    friend class SkColorSpaceXform;
+    friend class ColorSpaceXformTest;
+};
+
 #endif
index 68514d0..ffab17a 100644 (file)
@@ -78,6 +78,11 @@ public:
         return fRed.isValue() && fGreen.isValue() && fBlue.isValue();
     }
 
+    const SkGammaCurve& operator[](int i) {
+        SkASSERT(0 <= i && i < 3);
+        return (&fRed)[i];
+    }
+
     const SkGammaCurve fRed;
     const SkGammaCurve fGreen;
     const SkGammaCurve fBlue;
@@ -117,6 +122,8 @@ public:
 
     const sk_sp<SkGammas>& gammas() const { return fGammas; }
 
+    SkColorLookUpTable* colorLUT() const { return fColorLUT.get(); }
+
     /**
      *  Writes this object as an ICC profile.
      */
diff --git a/tests/ColorSpaceXformTest.cpp b/tests/ColorSpaceXformTest.cpp
new file mode 100644 (file)
index 0000000..220509b
--- /dev/null
@@ -0,0 +1,103 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "Resources.h"
+#include "SkCodec.h"
+#include "SkColorPriv.h"
+#include "SkColorSpace.h"
+#include "SkColorSpace_Base.h"
+#include "SkColorSpaceXform.h"
+#include "Test.h"
+
+class ColorSpaceXformTest {
+public:
+    static SkDefaultXform* CreateDefaultXform(const sk_sp<SkGammas>& srcGamma,
+            const SkMatrix44& srcToDst, const sk_sp<SkGammas>& dstGamma) {
+        return new SkDefaultXform(srcGamma, srcToDst, dstGamma);
+    }
+};
+
+static void test_xform(skiatest::Reporter* r, const sk_sp<SkGammas>& gammas) {
+    // Arbitrary set of 10 pixels
+    constexpr int width = 10;
+    constexpr uint32_t srcPixels[width] = {
+            0xFFABCDEF, 0xFF146829, 0xFF382759, 0xFF184968, 0xFFDE8271,
+            0xFF32AB52, 0xFF0383BC, 0xFF000000, 0xFFFFFFFF, 0xFFDDEEFF, };
+    uint32_t dstPixels[width];
+
+    // Identity matrix
+    SkMatrix44 srcToDst = SkMatrix44::I();
+
+    // Create and perform xform
+    std::unique_ptr<SkColorSpaceXform> xform(
+            ColorSpaceXformTest::CreateDefaultXform(gammas, srcToDst, gammas));
+    xform->xform_RGBA_8888(dstPixels, srcPixels, width);
+
+    // Since the matrix is the identity, and the gamma curves match, the pixels
+    // should be unchanged.
+    for (int i = 0; i < width; i++) {
+        // TODO (msarett):
+        // As the implementation changes, we may want to use a tolerance here.
+        REPORTER_ASSERT(r, ((srcPixels[i] >>  0) & 0xFF) == SkGetPackedR32(dstPixels[i]));
+        REPORTER_ASSERT(r, ((srcPixels[i] >>  8) & 0xFF) == SkGetPackedG32(dstPixels[i]));
+        REPORTER_ASSERT(r, ((srcPixels[i] >> 16) & 0xFF) == SkGetPackedB32(dstPixels[i]));
+        REPORTER_ASSERT(r, ((srcPixels[i] >> 24) & 0xFF) == SkGetPackedA32(dstPixels[i]));
+    }
+}
+
+DEF_TEST(ColorSpaceXform_TableGamma, r) {
+    // Lookup-table based gamma curves
+    SkGammaCurve red, green, blue;
+    constexpr size_t tableSize = 10;
+    red.fTable = std::unique_ptr<float[]>(new float[tableSize]);
+    green.fTable = std::unique_ptr<float[]>(new float[tableSize]);
+    blue.fTable = std::unique_ptr<float[]>(new float[tableSize]);
+    red.fTableSize = green.fTableSize = blue.fTableSize = 10;
+    red.fTable[0] = green.fTable[0] = blue.fTable[0] = 0.00f;
+    red.fTable[1] = green.fTable[1] = blue.fTable[1] = 0.05f;
+    red.fTable[2] = green.fTable[2] = blue.fTable[2] = 0.10f;
+    red.fTable[3] = green.fTable[3] = blue.fTable[3] = 0.15f;
+    red.fTable[4] = green.fTable[4] = blue.fTable[4] = 0.25f;
+    red.fTable[5] = green.fTable[5] = blue.fTable[5] = 0.35f;
+    red.fTable[6] = green.fTable[6] = blue.fTable[6] = 0.45f;
+    red.fTable[7] = green.fTable[7] = blue.fTable[7] = 0.60f;
+    red.fTable[8] = green.fTable[8] = blue.fTable[8] = 0.75f;
+    red.fTable[9] = green.fTable[9] = blue.fTable[9] = 1.00f;
+    sk_sp<SkGammas> gammas =
+            sk_make_sp<SkGammas>(std::move(red), std::move(green), std::move(blue));
+    test_xform(r, gammas);
+}
+
+DEF_TEST(ColorSpaceXform_ParametricGamma, r) {
+    // Parametric gamma curves
+    SkGammaCurve red, green, blue;
+
+    // Interval, switch xforms at 0.5f
+    red.fD = green.fD = blue.fD = 0.5f;
+
+    // First equation, Y = 0.5f * X
+    red.fE = green.fE = blue.fE = 0.5f;
+
+    // Second equation, Y = ((1.0f * X) + 0.0f) ^ 3.0f + 0.125f
+    // Note that the function is continuous:
+    // 0.5f * 0.5f = ((1.0f * 0.5f) + 0.0f) ^ 3.0f + 0.125f = 0.25f
+    red.fA = green.fA = blue.fA = 1.0f;
+    red.fB = green.fB = blue.fB = 0.0f;
+    red.fC = green.fC = blue.fC = 0.125f;
+    red.fG = green.fG = blue.fG = 3.0f;
+    sk_sp<SkGammas> gammas = sk_make_sp<SkGammas>(std::move(red), std::move(green), std::move(blue));
+    test_xform(r, gammas);
+}
+
+DEF_TEST(ColorSpaceXform_ExponentialGamma, r) {
+    // Exponential gamma curves
+    SkGammaCurve red, green, blue;
+    red.fValue = green.fValue = blue.fValue = 4.0f;
+    sk_sp<SkGammas> gammas =
+            sk_make_sp<SkGammas>(std::move(red), std::move(green), std::move(blue));
+    test_xform(r, gammas);
+}