}
+// UInteger32 is an integer that can be represented as an unsigned 32-bit
+// integer. It has to be in the range [0, 2^32 - 1].
+// We also have to check for negative 0 as it is not a UInteger32.
+static inline bool IsUint32Double(double value) {
+ return !IsMinusZero(value) &&
+ value >= 0 &&
+ value <= kMaxUInt32 &&
+ value == FastUI2D(FastD2UI(value));
+}
+
+
// Convert from Number object to C integer.
inline int32_t NumberToInt32(Object* number) {
if (number->IsSmi()) return Smi::cast(number)->value();
if (expected_obj->Is(Type::Undefined(zone()))) {
// This is already done by HChange.
- *expected = Type::Union(expected_number, Type::Float(zone()), zone());
+ *expected = Type::Union(expected_number, Type::Number(zone()), zone());
return value;
}
TypeImpl<Config>* TypeImpl<Config>::cast(typename Config::Base* object) {
TypeImpl* t = static_cast<TypeImpl*>(object);
ASSERT(t->IsBitset() || t->IsClass() || t->IsConstant() ||
- t->IsUnion() || t->IsArray() || t->IsFunction());
+ t->IsUnion() || t->IsArray() || t->IsFunction() || t->IsContext());
return t;
}
return kArray;
} else if (type->IsFunction()) {
return kFunction;
+ } else if (type->IsContext()) {
+ return kInternal & kTaggedPtr;
} else {
UNREACHABLE();
return kNone;
template<class Config>
int TypeImpl<Config>::BitsetType::Lub(i::Object* value) {
DisallowHeapAllocation no_allocation;
- if (value->IsSmi()) return kSignedSmall & kTaggedInt;
- i::Map* map = i::HeapObject::cast(value)->map();
- if (map->instance_type() == HEAP_NUMBER_TYPE) {
- int32_t i;
- uint32_t u;
- return kTaggedPtr & (
- value->ToInt32(&i) ? (Smi::IsValid(i) ? kSignedSmall : kOtherSigned32) :
- value->ToUint32(&u) ? kUnsigned32 : kFloat);
- }
- return Lub(map);
+ if (value->IsNumber()) {
+ return Lub(value->Number()) & (value->IsSmi() ? kTaggedInt : kTaggedPtr);
+ }
+ return Lub(i::HeapObject::cast(value)->map());
+}
+
+
+template<class Config>
+int TypeImpl<Config>::BitsetType::Lub(double value) {
+ DisallowHeapAllocation no_allocation;
+ if (i::IsMinusZero(value)) return kMinusZero;
+ if (std::isnan(value)) return kNaN;
+ if (IsUint32Double(value)) return Lub(FastD2UI(value));
+ if (IsInt32Double(value)) return Lub(FastD2I(value));
+ return kOtherNumber;
+}
+
+
+template<class Config>
+int TypeImpl<Config>::BitsetType::Lub(int32_t value) {
+ if (value >= 0x40000000) {
+ return i::SmiValuesAre31Bits() ? kOtherUnsigned31 : kUnsignedSmall;
+ }
+ if (value >= 0) return kUnsignedSmall;
+ if (value >= -0x40000000) return kOtherSignedSmall;
+ return i::SmiValuesAre31Bits() ? kOtherSigned32 : kOtherSignedSmall;
+}
+
+
+template<class Config>
+int TypeImpl<Config>::BitsetType::Lub(uint32_t value) {
+ DisallowHeapAllocation no_allocation;
+ if (value >= 0x80000000u) return kOtherUnsigned32;
+ if (value >= 0x40000000u) {
+ return i::SmiValuesAre31Bits() ? kOtherUnsigned31 : kUnsignedSmall;
+ }
+ return kUnsignedSmall;
}
return kInternal & kTaggedPtr;
}
case HEAP_NUMBER_TYPE:
- return kFloat & kTaggedPtr;
+ return kNumber & kTaggedPtr;
case JS_VALUE_TYPE:
case JS_DATE_TYPE:
case JS_OBJECT_TYPE:
return kDetectable;
case DECLARED_ACCESSOR_INFO_TYPE:
case EXECUTABLE_ACCESSOR_INFO_TYPE:
+ case SHARED_FUNCTION_INFO_TYPE:
case ACCESSOR_PAIR_TYPE:
case FIXED_ARRAY_TYPE:
case FOREIGN_TYPE:
return this->IsConstant()
&& *this->AsConstant()->Value() == *that->AsConstant()->Value();
}
+ if (that->IsContext()) {
+ return this->IsContext()
+ && this->AsContext()->Outer()->Equals(that->AsContext()->Outer());
+ }
if (that->IsArray()) {
return this->IsArray()
&& this->AsArray()->Element()->Equals(that->AsArray()->Element());
return that->IsConstant()
&& *this->AsConstant()->Value() == *that->AsConstant()->Value();
}
+ if (this->IsContext()) {
+ return this->Equals(that);
+ }
if (this->IsArray()) {
// There is no variance!
return this->Equals(that);
} else if (!type->IsBitset()) {
// For all structural types, subtyping implies equivalence.
ASSERT(type->IsClass() || type->IsConstant() ||
- type->IsArray() || type->IsFunction());
+ type->IsArray() || type->IsFunction() ||
+ type->IsContext());
if (!type->InUnion(result, old_size)) {
result->Set(current_size++, type);
}
} else if (!type->IsBitset()) {
// For all structural types, subtyping implies equivalence.
ASSERT(type->IsClass() || type->IsConstant() ||
- type->IsArray() || type->IsFunction());
+ type->IsArray() || type->IsFunction() || type->IsContext());
if (type->Is(other) && !type->InUnion(result, old_size)) {
result->Set(current_size++, type);
}
return ClassType::New(type->AsClass()->Map(), region);
} else if (type->IsConstant()) {
return ConstantType::New(type->AsConstant()->Value(), region);
+ } else if (type->IsContext()) {
+ TypeHandle outer = Convert<OtherType>(type->AsContext()->Outer(), region);
+ return ContextType::New(outer, region);
} else if (type->IsUnion()) {
int length = type->AsUnion()->Length();
UnionHandle unioned = UnionType::New(length, region);
}
-template<class Config>
-void TypeImpl<Config>::TypePrint(PrintDimension dim) {
- TypePrint(stdout, dim);
- PrintF(stdout, "\n");
- Flush(stdout);
-}
-
-
template<class Config>
const char* TypeImpl<Config>::BitsetType::Name(int bitset) {
switch (bitset) {
- case kAny & kRepresentation: return "Any";
- #define PRINT_COMPOSED_TYPE(type, value) \
- case k##type & kRepresentation: return #type;
- REPRESENTATION_BITSET_TYPE_LIST(PRINT_COMPOSED_TYPE)
- #undef PRINT_COMPOSED_TYPE
+ case REPRESENTATION(kAny): return "Any";
+ #define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \
+ case REPRESENTATION(k##type): return #type;
+ REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE)
+ #undef RETURN_NAMED_REPRESENTATION_TYPE
- #define PRINT_COMPOSED_TYPE(type, value) \
- case k##type & kSemantic: return #type;
- SEMANTIC_BITSET_TYPE_LIST(PRINT_COMPOSED_TYPE)
- #undef PRINT_COMPOSED_TYPE
+ #define RETURN_NAMED_SEMANTIC_TYPE(type, value) \
+ case SEMANTIC(k##type): return #type;
+ SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
+ #undef RETURN_NAMED_SEMANTIC_TYPE
default:
return NULL;
template<class Config>
-void TypeImpl<Config>::BitsetType::BitsetTypePrint(FILE* out, int bitset) {
+void TypeImpl<Config>::BitsetType::PrintTo(StringStream* stream, int bitset) {
DisallowHeapAllocation no_allocation;
const char* name = Name(bitset);
if (name != NULL) {
- PrintF(out, "%s", name);
+ stream->Add("%s", name);
} else {
static const int named_bitsets[] = {
- #define BITSET_CONSTANT(type, value) k##type & kRepresentation,
+ #define BITSET_CONSTANT(type, value) REPRESENTATION(k##type),
REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT)
#undef BITSET_CONSTANT
- #define BITSET_CONSTANT(type, value) k##type & kSemantic,
+ #define BITSET_CONSTANT(type, value) SEMANTIC(k##type),
SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT)
#undef BITSET_CONSTANT
};
bool is_first = true;
- PrintF(out, "(");
+ stream->Add("(");
for (int i(ARRAY_SIZE(named_bitsets) - 1); bitset != 0 && i >= 0; --i) {
int subset = named_bitsets[i];
if ((bitset & subset) == subset) {
- if (!is_first) PrintF(out, " | ");
+ if (!is_first) stream->Add(" | ");
is_first = false;
- PrintF(out, "%s", Name(subset));
+ stream->Add("%s", Name(subset));
bitset -= subset;
}
}
ASSERT(bitset == 0);
- PrintF(out, ")");
+ stream->Add(")");
}
}
template<class Config>
-void TypeImpl<Config>::TypePrint(FILE* out, PrintDimension dim) {
+void TypeImpl<Config>::PrintTo(StringStream* stream, PrintDimension dim) {
DisallowHeapAllocation no_allocation;
if (this->IsBitset()) {
int bitset = this->AsBitset();
switch (dim) {
case BOTH_DIMS:
- BitsetType::BitsetTypePrint(out, bitset & BitsetType::kSemantic);
- PrintF(out, "/");
- BitsetType::BitsetTypePrint(out, bitset & BitsetType::kRepresentation);
+ BitsetType::PrintTo(stream, SEMANTIC(bitset));
+ stream->Add("/");
+ BitsetType::PrintTo(stream, REPRESENTATION(bitset));
break;
case SEMANTIC_DIM:
- BitsetType::BitsetTypePrint(out, bitset & BitsetType::kSemantic);
+ BitsetType::PrintTo(stream, SEMANTIC(bitset));
break;
case REPRESENTATION_DIM:
- BitsetType::BitsetTypePrint(out, bitset & BitsetType::kRepresentation);
+ BitsetType::PrintTo(stream, REPRESENTATION(bitset));
break;
}
} else if (this->IsConstant()) {
- PrintF(out, "Constant(%p : ",
+ stream->Add("Constant(%p : ",
static_cast<void*>(*this->AsConstant()->Value()));
- BitsetType::New(BitsetType::Lub(this))->TypePrint(out, dim);
- PrintF(out, ")");
+ BitsetType::New(BitsetType::Lub(this))->PrintTo(stream, dim);
+ stream->Add(")");
} else if (this->IsClass()) {
- PrintF(out, "Class(%p < ", static_cast<void*>(*this->AsClass()->Map()));
- BitsetType::New(BitsetType::Lub(this))->TypePrint(out, dim);
- PrintF(out, ")");
+ stream->Add("Class(%p < ", static_cast<void*>(*this->AsClass()->Map()));
+ BitsetType::New(BitsetType::Lub(this))->PrintTo(stream, dim);
+ stream->Add(")");
+ } else if (this->IsContext()) {
+ stream->Add("Context(");
+ this->AsContext()->Outer()->PrintTo(stream, dim);
+ stream->Add(")");
} else if (this->IsUnion()) {
- PrintF(out, "(");
+ stream->Add("(");
UnionHandle unioned = handle(this->AsUnion());
for (int i = 0; i < unioned->Length(); ++i) {
TypeHandle type_i = unioned->Get(i);
- if (i > 0) PrintF(out, " | ");
- type_i->TypePrint(out, dim);
+ if (i > 0) stream->Add(" | ");
+ type_i->PrintTo(stream, dim);
}
- PrintF(out, ")");
+ stream->Add(")");
} else if (this->IsArray()) {
- PrintF(out, "[");
- AsArray()->Element()->TypePrint(out, dim);
- PrintF(out, "]");
+ stream->Add("[");
+ AsArray()->Element()->PrintTo(stream, dim);
+ stream->Add("]");
} else if (this->IsFunction()) {
if (!this->AsFunction()->Receiver()->IsAny()) {
- this->AsFunction()->Receiver()->TypePrint(out, dim);
- PrintF(out, ".");
+ this->AsFunction()->Receiver()->PrintTo(stream, dim);
+ stream->Add(".");
}
- PrintF(out, "(");
+ stream->Add("(");
for (int i = 0; i < this->AsFunction()->Arity(); ++i) {
- if (i > 0) PrintF(out, ", ");
- this->AsFunction()->Parameter(i)->TypePrint(out, dim);
+ if (i > 0) stream->Add(", ");
+ this->AsFunction()->Parameter(i)->PrintTo(stream, dim);
}
- PrintF(out, ")->");
- this->AsFunction()->Result()->TypePrint(out, dim);
+ stream->Add(")->");
+ this->AsFunction()->Result()->PrintTo(stream, dim);
} else {
UNREACHABLE();
}
}
+template<class Config>
+void TypeImpl<Config>::TypePrint(FILE* out, PrintDimension dim) {
+ HeapStringAllocator allocator;
+ StringStream stream(&allocator);
+ PrintTo(&stream, dim);
+ stream.OutputToFile(out);
+}
+
+
+template<class Config>
+void TypeImpl<Config>::TypePrint(PrintDimension dim) {
+ TypePrint(stdout, dim);
+ PrintF(stdout, "\n");
+ Flush(stdout);
+}
+
+
template class TypeImpl<ZoneTypeConfig>;
template class TypeImpl<ZoneTypeConfig>::Iterator<i::Map>;
template class TypeImpl<ZoneTypeConfig>::Iterator<i::Object>;
// Constant(x) < T iff instance_type(map(x)) < T
// Array(T) < Array
// Function(R, S, T0, T1, ...) < Function
+// Context(T) < Internal
//
-// Both structural Array and Function types are invariant in all parameters.
-// Relaxing this would make Union and Intersect operations more involved.
-// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
+// Both structural Array and Function types are invariant in all parameters;
+// relaxing this would make Union and Intersect operations more involved.
+// There is no subtyping relation between Array, Function, or Context types
+// and respective Constant types, since these types cannot be reconstructed
+// for arbitrary heap values.
+// Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
#define MASK_BITSET_TYPE_LIST(V) \
- V(Representation, static_cast<int>(0xff800000)) \
- V(Semantic, static_cast<int>(0x007fffff))
+ V(Representation, static_cast<int>(0xffc00000)) \
+ V(Semantic, static_cast<int>(0x003fffff))
-#define REPRESENTATION(k) ((k) & kRepresentation)
-#define SEMANTIC(k) ((k) & kSemantic)
+#define REPRESENTATION(k) ((k) & BitsetType::kRepresentation)
+#define SEMANTIC(k) ((k) & BitsetType::kSemantic)
#define REPRESENTATION_BITSET_TYPE_LIST(V) \
V(None, 0) \
+ V(UntaggedInt1, 1 << 22 | kSemantic) \
V(UntaggedInt8, 1 << 23 | kSemantic) \
V(UntaggedInt16, 1 << 24 | kSemantic) \
V(UntaggedInt32, 1 << 25 | kSemantic) \
V(TaggedInt, 1 << 29 | kSemantic) \
V(TaggedPtr, -1 << 30 | kSemantic) /* MSB has to be sign-extended */ \
\
- V(UntaggedInt, kUntaggedInt8 | kUntaggedInt16 | kUntaggedInt32) \
- V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
- V(UntaggedNumber, kUntaggedInt | kUntaggedFloat) \
- V(Untagged, kUntaggedNumber | kUntaggedPtr) \
+ V(UntaggedInt, kUntaggedInt1 | kUntaggedInt8 | \
+ kUntaggedInt16 | kUntaggedInt32) \
+ V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
+ V(UntaggedNumber, kUntaggedInt | kUntaggedFloat) \
+ V(Untagged, kUntaggedNumber | kUntaggedPtr) \
V(Tagged, kTaggedInt | kTaggedPtr)
#define SEMANTIC_BITSET_TYPE_LIST(V) \
V(Null, 1 << 0 | REPRESENTATION(kTaggedPtr)) \
V(Undefined, 1 << 1 | REPRESENTATION(kTaggedPtr)) \
V(Boolean, 1 << 2 | REPRESENTATION(kTaggedPtr)) \
- V(SignedSmall, 1 << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \
- V(OtherSigned32, 1 << 4 | REPRESENTATION(kTagged | kUntaggedNumber)) \
- V(Unsigned32, 1 << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \
- V(Float, 1 << 6 | REPRESENTATION(kTagged | kUntaggedNumber)) \
- V(Symbol, 1 << 7 | REPRESENTATION(kTaggedPtr)) \
- V(InternalizedString, 1 << 8 | REPRESENTATION(kTaggedPtr)) \
- V(OtherString, 1 << 9 | REPRESENTATION(kTaggedPtr)) \
- V(Undetectable, 1 << 10 | REPRESENTATION(kTaggedPtr)) \
- V(Array, 1 << 11 | REPRESENTATION(kTaggedPtr)) \
- V(Function, 1 << 12 | REPRESENTATION(kTaggedPtr)) \
- V(RegExp, 1 << 13 | REPRESENTATION(kTaggedPtr)) \
- V(OtherObject, 1 << 14 | REPRESENTATION(kTaggedPtr)) \
- V(Proxy, 1 << 15 | REPRESENTATION(kTaggedPtr)) \
- V(Internal, 1 << 16 | REPRESENTATION(kTagged | kUntagged)) \
+ V(UnsignedSmall, 1 << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(OtherSignedSmall, 1 << 4 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(OtherUnsigned31, 1 << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(OtherUnsigned32, 1 << 6 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(OtherSigned32, 1 << 7 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(MinusZero, 1 << 8 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(NaN, 1 << 9 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(OtherNumber, 1 << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \
+ V(Symbol, 1 << 11 | REPRESENTATION(kTaggedPtr)) \
+ V(InternalizedString, 1 << 12 | REPRESENTATION(kTaggedPtr)) \
+ V(OtherString, 1 << 13 | REPRESENTATION(kTaggedPtr)) \
+ V(Undetectable, 1 << 14 | REPRESENTATION(kTaggedPtr)) \
+ V(Array, 1 << 15 | REPRESENTATION(kTaggedPtr)) \
+ V(Buffer, 1 << 16 | REPRESENTATION(kTaggedPtr)) \
+ V(Function, 1 << 17 | REPRESENTATION(kTaggedPtr)) \
+ V(RegExp, 1 << 18 | REPRESENTATION(kTaggedPtr)) \
+ V(OtherObject, 1 << 19 | REPRESENTATION(kTaggedPtr)) \
+ V(Proxy, 1 << 20 | REPRESENTATION(kTaggedPtr)) \
+ V(Internal, 1 << 21 | REPRESENTATION(kTagged | kUntagged)) \
\
- V(Signed32, kSignedSmall | kOtherSigned32) \
- V(Number, kSigned32 | kUnsigned32 | kFloat) \
- V(String, kInternalizedString | kOtherString) \
- V(UniqueName, kSymbol | kInternalizedString) \
- V(Name, kSymbol | kString) \
- V(NumberOrString, kNumber | kString) \
- V(DetectableObject, kArray | kFunction | kRegExp | kOtherObject) \
- V(DetectableReceiver, kDetectableObject | kProxy) \
- V(Detectable, kDetectableReceiver | kNumber | kName) \
- V(Object, kDetectableObject | kUndetectable) \
- V(Receiver, kObject | kProxy) \
- V(NonNumber, kBoolean | kName | kNull | kReceiver | \
- kUndefined | kInternal) \
+ V(SignedSmall, kUnsignedSmall | kOtherSignedSmall) \
+ V(Signed32, kSignedSmall | kOtherUnsigned31 | kOtherSigned32) \
+ V(Unsigned32, kUnsignedSmall | kOtherUnsigned31 | kOtherUnsigned32) \
+ V(Integral32, kSigned32 | kUnsigned32) \
+ V(Number, kIntegral32 | kMinusZero | kNaN | kOtherNumber) \
+ V(String, kInternalizedString | kOtherString) \
+ V(UniqueName, kSymbol | kInternalizedString) \
+ V(Name, kSymbol | kString) \
+ V(NumberOrString, kNumber | kString) \
+ V(Primitive, kNumber | kName | kBoolean | kNull | kUndefined) \
+ V(DetectableObject, kArray | kFunction | kRegExp | kOtherObject) \
+ V(DetectableReceiver, kDetectableObject | kProxy) \
+ V(Detectable, kDetectableReceiver | kNumber | kName) \
+ V(Object, kDetectableObject | kUndetectable) \
+ V(Receiver, kObject | kProxy) \
+ V(NonNumber, kBoolean | kName | kNull | kReceiver | \
+ kUndefined | kInternal) \
V(Any, -1)
#define BITSET_TYPE_LIST(V) \
class ClassType;
class ConstantType;
+ class ContextType;
class ArrayType;
class FunctionType;
typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
typedef typename Config::template Handle<ClassType>::type ClassHandle;
typedef typename Config::template Handle<ConstantType>::type ConstantHandle;
+ typedef typename Config::template Handle<ContextType>::type ContextHandle;
typedef typename Config::template Handle<ArrayType>::type ArrayHandle;
typedef typename Config::template Handle<FunctionType>::type FunctionHandle;
typedef typename Config::template Handle<UnionType>::type UnionHandle;
static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
return ConstantType::New(value, region);
}
+ static TypeHandle Context(TypeHandle outer, Region* region) {
+ return ContextType::New(outer, region);
+ }
static TypeHandle Array(TypeHandle element, Region* region) {
return ArrayType::New(element, region);
}
function->InitParameter(1, param1);
return function;
}
+ static TypeHandle Function(
+ TypeHandle result, TypeHandle param0, TypeHandle param1,
+ TypeHandle param2, Region* region) {
+ FunctionHandle function = Function(result, Any(region), 3, region);
+ function->InitParameter(0, param0);
+ function->InitParameter(1, param1);
+ function->InitParameter(2, param2);
+ return function;
+ }
static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
+ static TypeHandle Of(double value, Region* region) {
+ return Config::from_bitset(BitsetType::Lub(value), region);
+ }
static TypeHandle Of(i::Object* value, Region* region) {
return Config::from_bitset(BitsetType::Lub(value), region);
}
bool IsClass() { return Config::is_class(this); }
bool IsConstant() { return Config::is_constant(this); }
+ bool IsContext() {
+ return Config::is_struct(this, StructuralType::kContextTag);
+ }
bool IsArray() { return Config::is_struct(this, StructuralType::kArrayTag); }
bool IsFunction() {
return Config::is_struct(this, StructuralType::kFunctionTag);
ClassType* AsClass() { return ClassType::cast(this); }
ConstantType* AsConstant() { return ConstantType::cast(this); }
+ ContextType* AsContext() { return ContextType::cast(this); }
ArrayType* AsArray() { return ArrayType::cast(this); }
FunctionType* AsFunction() { return FunctionType::cast(this); }
typename OtherTypeImpl::TypeHandle type, Region* region);
enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
+ void PrintTo(StringStream* stream, PrintDimension = BOTH_DIMS);
void TypePrint(PrintDimension = BOTH_DIMS);
void TypePrint(FILE* out, PrintDimension = BOTH_DIMS);
static int Glb(TypeImpl* type); // greatest lower bound that's a bitset
static int Lub(TypeImpl* type); // least upper bound that's a bitset
static int Lub(i::Object* value);
+ static int Lub(double value);
+ static int Lub(int32_t value);
+ static int Lub(uint32_t value);
static int Lub(i::Map* map);
static const char* Name(int bitset);
- static void BitsetTypePrint(FILE* out, int bitset);
+ static void PrintTo(StringStream* stream, int bitset);
+ using TypeImpl::PrintTo;
};
enum Tag {
kClassTag,
kConstantTag,
+ kContextTag,
kArrayTag,
kFunctionTag,
kUnionTag
};
+template<class Config>
+class TypeImpl<Config>::ContextType : public StructuralType {
+ public:
+ TypeHandle Outer() { return this->Get(0); }
+
+ static ContextHandle New(TypeHandle outer, Region* region) {
+ ContextHandle type = Config::template cast<ContextType>(
+ StructuralType::New(StructuralType::kContextTag, 1, region));
+ type->Set(0, outer);
+ return type;
+ }
+
+ static ContextType* cast(TypeImpl* type) {
+ ASSERT(type->IsContext());
+ return static_cast<ContextType*>(type);
+ }
+};
+
+
// Internal
// A union is a structured type with the following invariants:
// - its length is at least 2
static bool IsBitset(Type* t) { return reinterpret_cast<intptr_t>(t) & 1; }
static bool IsClass(Type* t) { return IsStruct(t, 0); }
static bool IsConstant(Type* t) { return IsStruct(t, 1); }
- static bool IsArray(Type* t) { return IsStruct(t, 2); }
- static bool IsFunction(Type* t) { return IsStruct(t, 3); }
- static bool IsUnion(Type* t) { return IsStruct(t, 4); }
+ static bool IsContext(Type* t) { return IsStruct(t, 2); }
+ static bool IsArray(Type* t) { return IsStruct(t, 3); }
+ static bool IsFunction(Type* t) { return IsStruct(t, 4); }
+ static bool IsUnion(Type* t) { return IsStruct(t, 5); }
static Struct* AsStruct(Type* t) {
return reinterpret_cast<Struct*>(t);
static Object* AsConstant(Type* t) {
return *static_cast<Object**>(AsStruct(t)[3]);
}
+ static Type* AsContext(Type* t) {
+ return *static_cast<Type**>(AsStruct(t)[2]);
+ }
static Struct* AsUnion(Type* t) {
return AsStruct(t);
}
static bool IsBitset(Handle<HeapType> t) { return t->IsSmi(); }
static bool IsClass(Handle<HeapType> t) { return t->IsMap(); }
static bool IsConstant(Handle<HeapType> t) { return t->IsBox(); }
- static bool IsArray(Handle<HeapType> t) { return IsStruct(t, 2); }
- static bool IsFunction(Handle<HeapType> t) { return IsStruct(t, 3); }
- static bool IsUnion(Handle<HeapType> t) { return IsStruct(t, 4); }
+ static bool IsContext(Handle<HeapType> t) { return IsStruct(t, 2); }
+ static bool IsArray(Handle<HeapType> t) { return IsStruct(t, 3); }
+ static bool IsFunction(Handle<HeapType> t) { return IsStruct(t, 4); }
+ static bool IsUnion(Handle<HeapType> t) { return IsStruct(t, 5); }
static Struct* AsStruct(Handle<HeapType> t) { return FixedArray::cast(*t); }
static int AsBitset(Handle<HeapType> t) { return Smi::cast(*t)->value(); }
static Object* AsConstant(Handle<HeapType> t) {
return Box::cast(*t)->value();
}
+ static HeapType* AsContext(Handle<HeapType> t) {
+ return HeapType::cast(AsStruct(t)->get(1));
+ }
static Struct* AsUnion(Handle<HeapType> t) { return AsStruct(t); }
static int Length(Struct* structured) { return structured->length() - 1; }
types.push_back(Type::Constant(*it, region));
}
- FloatArray = Type::Array(Float, region);
+ NumberArray = Type::Array(Number, region);
StringArray = Type::Array(String, region);
AnyArray = Type::Array(Any, region);
TypeHandle ArrayConstant;
TypeHandle UninitializedConstant;
- TypeHandle FloatArray;
+ TypeHandle NumberArray;
TypeHandle StringArray;
TypeHandle AnyArray;
int i = rng_.NextInt(static_cast<int>(values.size()));
return Type::Constant(values[i], region_);
}
- case 3: { // array
+ case 3: { // context
+ int depth = rng_.NextInt(3);
+ TypeHandle type = Type::Internal(region_);
+ for (int i = 0; i < depth; ++i) type = Type::Context(type, region_);
+ return type;
+ }
+ case 4: { // array
TypeHandle element = Fuzz(depth / 2);
return Type::Array(element, region_);
}
- case 4:
case 5:
- case 6: { // function
+ case 6:
+ case 7: { // function
TypeHandle result = Fuzz(depth / 2);
TypeHandle receiver = Fuzz(depth / 2);
int arity = rng_.NextInt(3);
Rep::IsBitset(type1) == Rep::IsBitset(type2) &&
Rep::IsClass(type1) == Rep::IsClass(type2) &&
Rep::IsConstant(type1) == Rep::IsConstant(type2) &&
+ Rep::IsContext(type1) == Rep::IsContext(type2) &&
Rep::IsUnion(type1) == Rep::IsUnion(type2) &&
type1->NumClasses() == type2->NumClasses() &&
type1->NumConstants() == type2->NumConstants() &&
CHECK(Equal(type1, type2) == (*value1 == *value2));
}
}
+
+ // Typing of numbers
+ Factory* fac = isolate->factory();
+ CHECK(T.Constant(fac->NewNumber(0))->Is(T.UnsignedSmall));
+ CHECK(T.Constant(fac->NewNumber(1))->Is(T.UnsignedSmall));
+ CHECK(T.Constant(fac->NewNumber(0x3fffffff))->Is(T.UnsignedSmall));
+ CHECK(T.Constant(fac->NewNumber(-1))->Is(T.OtherSignedSmall));
+ CHECK(T.Constant(fac->NewNumber(-0x3fffffff))->Is(T.OtherSignedSmall));
+ CHECK(T.Constant(fac->NewNumber(-0x40000000))->Is(T.OtherSignedSmall));
+ if (SmiValuesAre31Bits()) {
+ CHECK(T.Constant(fac->NewNumber(0x40000000))->Is(T.OtherUnsigned31));
+ CHECK(T.Constant(fac->NewNumber(0x7fffffff))->Is(T.OtherUnsigned31));
+ CHECK(T.Constant(fac->NewNumber(-0x40000001))->Is(T.OtherSigned32));
+ CHECK(T.Constant(fac->NewNumber(-0x7fffffff))->Is(T.OtherSigned32));
+ CHECK(T.Constant(fac->NewNumber(-0x7fffffff-1))->Is(T.OtherSigned32));
+ } else {
+ CHECK(SmiValuesAre32Bits());
+ CHECK(T.Constant(fac->NewNumber(0x40000000))->Is(T.UnsignedSmall));
+ CHECK(T.Constant(fac->NewNumber(0x7fffffff))->Is(T.UnsignedSmall));
+ CHECK(!T.Constant(fac->NewNumber(0x40000000))->Is(T.OtherUnsigned31));
+ CHECK(!T.Constant(fac->NewNumber(0x7fffffff))->Is(T.OtherUnsigned31));
+ CHECK(T.Constant(fac->NewNumber(-0x40000001))->Is(T.OtherSignedSmall));
+ CHECK(T.Constant(fac->NewNumber(-0x7fffffff))->Is(T.OtherSignedSmall));
+ CHECK(T.Constant(fac->NewNumber(-0x7fffffff-1))->Is(T.OtherSignedSmall));
+ CHECK(!T.Constant(fac->NewNumber(-0x40000001))->Is(T.OtherSigned32));
+ CHECK(!T.Constant(fac->NewNumber(-0x7fffffff))->Is(T.OtherSigned32));
+ CHECK(!T.Constant(fac->NewNumber(-0x7fffffff-1))->Is(T.OtherSigned32));
+ }
+ CHECK(T.Constant(fac->NewNumber(0x80000000u))->Is(T.OtherUnsigned32));
+ CHECK(T.Constant(fac->NewNumber(0xffffffffu))->Is(T.OtherUnsigned32));
+ CHECK(T.Constant(fac->NewNumber(0xffffffffu+1.0))->Is(T.OtherNumber));
+ CHECK(T.Constant(fac->NewNumber(-0x7fffffff-2.0))->Is(T.OtherNumber));
+ CHECK(T.Constant(fac->NewNumber(0.1))->Is(T.OtherNumber));
+ CHECK(T.Constant(fac->NewNumber(-10.1))->Is(T.OtherNumber));
+ CHECK(T.Constant(fac->NewNumber(10e60))->Is(T.OtherNumber));
+ CHECK(T.Constant(fac->NewNumber(-1.0*0.0))->Is(T.MinusZero));
+ CHECK(T.Constant(fac->NewNumber(0.0/0.0))->Is(T.NaN));
+ CHECK(T.Constant(fac->NewNumber(1.0/0.0))->Is(T.OtherNumber));
+ CHECK(T.Constant(fac->NewNumber(-1.0/0.0))->Is(T.OtherNumber));
}
void Array() {
CheckSub(T.SignedSmall, T.Number);
CheckSub(T.Signed32, T.Number);
- CheckSub(T.Float, T.Number);
CheckSub(T.SignedSmall, T.Signed32);
- CheckUnordered(T.SignedSmall, T.Float);
- CheckUnordered(T.Signed32, T.Float);
+ CheckUnordered(T.SignedSmall, T.MinusZero);
+ CheckUnordered(T.Signed32, T.Unsigned32);
CheckSub(T.UniqueName, T.Name);
CheckSub(T.String, T.Name);
CheckUnordered(T.ObjectConstant2, T.ArrayClass);
CheckUnordered(T.ArrayConstant, T.ObjectClass);
- CheckSub(T.FloatArray, T.Array);
- CheckSub(T.FloatArray, T.Object);
+ CheckSub(T.NumberArray, T.Array);
+ CheckSub(T.NumberArray, T.Object);
CheckUnordered(T.StringArray, T.AnyArray);
CheckSub(T.MethodFunction, T.Function);
CheckDisjoint(T.Boolean, T.Undefined, T.Semantic);
CheckOverlap(T.SignedSmall, T.Number, T.Semantic);
- CheckOverlap(T.Float, T.Number, T.Semantic);
- CheckDisjoint(T.Signed32, T.Float, T.Semantic);
+ CheckOverlap(T.NaN, T.Number, T.Semantic);
+ CheckDisjoint(T.Signed32, T.NaN, T.Semantic);
CheckOverlap(T.UniqueName, T.Name, T.Semantic);
CheckOverlap(T.String, T.Name, T.Semantic);
CheckOverlap(T.SmiConstant, T.SignedSmall, T.Semantic);
CheckOverlap(T.SmiConstant, T.Signed32, T.Semantic);
CheckOverlap(T.SmiConstant, T.Number, T.Semantic);
- CheckDisjoint(T.SmiConstant, T.Float, T.Semantic);
CheckOverlap(T.ObjectConstant1, T.Object, T.Semantic);
CheckOverlap(T.ObjectConstant2, T.Object, T.Semantic);
CheckOverlap(T.ArrayConstant, T.Object, T.Semantic);
CheckDisjoint(T.ObjectConstant2, T.ArrayClass, T.Semantic);
CheckDisjoint(T.ArrayConstant, T.ObjectClass, T.Semantic);
- CheckOverlap(T.FloatArray, T.Array, T.Semantic);
- CheckDisjoint(T.FloatArray, T.AnyArray, T.Semantic);
- CheckDisjoint(T.FloatArray, T.StringArray, T.Semantic);
+ CheckOverlap(T.NumberArray, T.Array, T.Semantic);
+ CheckDisjoint(T.NumberArray, T.AnyArray, T.Semantic);
+ CheckDisjoint(T.NumberArray, T.StringArray, T.Semantic);
CheckOverlap(T.MethodFunction, T.Function, T.Semantic);
CheckDisjoint(T.SignedFunction1, T.NumberFunction1, T.Semantic);
// Bitset-array
CHECK(this->IsBitset(T.Union(T.AnyArray, T.Array)));
- CHECK(this->IsUnion(T.Union(T.FloatArray, T.Number)));
+ CHECK(this->IsUnion(T.Union(T.NumberArray, T.Number)));
CheckEqual(T.Union(T.AnyArray, T.Array), T.Array);
- CheckSub(T.None, T.Union(T.FloatArray, T.Number));
- CheckSub(T.Union(T.FloatArray, T.Number), T.Any);
CheckUnordered(T.Union(T.AnyArray, T.String), T.Array);
- CheckOverlap(T.Union(T.FloatArray, T.String), T.Object, T.Semantic);
- CheckDisjoint(T.Union(T.FloatArray, T.String), T.Number, T.Semantic);
+ CheckOverlap(T.Union(T.NumberArray, T.String), T.Object, T.Semantic);
+ CheckDisjoint(T.Union(T.NumberArray, T.String), T.Number, T.Semantic);
// Bitset-function
CHECK(this->IsBitset(T.Union(T.MethodFunction, T.Function)));
CHECK(this->IsUnion(T.Union(T.NumberFunction1, T.Number)));
CheckEqual(T.Union(T.MethodFunction, T.Function), T.Function);
- CheckSub(T.None, T.Union(T.MethodFunction, T.Number));
- CheckSub(T.Union(T.MethodFunction, T.Number), T.Any);
CheckUnordered(T.Union(T.NumberFunction1, T.String), T.Function);
CheckOverlap(T.Union(T.NumberFunction2, T.String), T.Object, T.Semantic);
CheckDisjoint(T.Union(T.NumberFunction1, T.String), T.Number, T.Semantic);
// Bitset-union
CheckSub(
- T.Float,
+ T.NaN,
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Number));
CheckSub(
- T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Float),
+ T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Signed32),
T.Union(T.ObjectConstant1, T.Union(T.Number, T.ArrayClass)));
// Class-union
// Array-union
CheckEqual(
- T.Union(T.AnyArray, T.Union(T.FloatArray, T.AnyArray)),
- T.Union(T.AnyArray, T.FloatArray));
- CheckSub(T.Union(T.AnyArray, T.FloatArray), T.Array);
+ T.Union(T.AnyArray, T.Union(T.NumberArray, T.AnyArray)),
+ T.Union(T.AnyArray, T.NumberArray));
+ CheckSub(T.Union(T.AnyArray, T.NumberArray), T.Array);
// Function-union
CheckEqual(
CheckSub(T.Intersect(T.ObjectClass, T.Number), T.Representation);
// Bitset-array
- CheckEqual(T.Intersect(T.FloatArray, T.Object), T.FloatArray);
+ CheckEqual(T.Intersect(T.NumberArray, T.Object), T.NumberArray);
CheckSub(T.Intersect(T.AnyArray, T.Function), T.Representation);
// Bitset-function
// Array-union
CheckEqual(
- T.Intersect(T.FloatArray, T.Union(T.FloatArray, T.ArrayClass)),
- T.FloatArray);
+ T.Intersect(T.NumberArray, T.Union(T.NumberArray, T.ArrayClass)),
+ T.NumberArray);
CheckEqual(
T.Intersect(T.AnyArray, T.Union(T.Object, T.SmiConstant)),
T.AnyArray);
CheckEqual(
- T.Intersect(T.Union(T.AnyArray, T.ArrayConstant), T.FloatArray),
+ T.Intersect(T.Union(T.AnyArray, T.ArrayConstant), T.NumberArray),
T.None);
// Function-union