const ValueToValueMap &StridesMap = ValueToValueMap(),
bool Assume = false, bool ShouldCheckWrap = true);
+/// \brief Attempt to sort the 'loads' in \p VL and return the sorted values in
+/// \p Sorted.
+///
+/// Returns 'false' if sorting is not legal or feasible, otherwise returns
+/// 'true'. If \p Mask is not null, it also returns the \p Mask which is the
+/// shuffle mask for actual memory access order.
+///
+/// For example, for a given VL of memory accesses in program order, a[i+2],
+/// a[i+0], a[i+1] and a[i+3], this function will sort the VL and save the
+/// sorted value in 'Sorted' as a[i+0], a[i+1], a[i+2], a[i+3] and saves the
+/// mask for actual memory accesses in program order in 'Mask' as <2,0,1,3>
+bool sortLoadAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
+ ScalarEvolution &SE, SmallVectorImpl<Value *> &Sorted,
+ SmallVectorImpl<unsigned> *Mask = nullptr);
+
/// \brief Returns true if the memory operations \p A and \p B are consecutive.
/// This is a simple API that does not depend on the analysis pass.
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
return -1;
}
+// TODO:This API can be improved by using the permutation of given width as the
+// accesses are entered into the map.
+bool llvm::sortLoadAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
+ ScalarEvolution &SE,
+ SmallVectorImpl<Value *> &Sorted,
+ SmallVectorImpl<unsigned> *Mask) {
+ SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
+ OffValPairs.reserve(VL.size());
+ Sorted.reserve(VL.size());
+
+ // Walk over the pointers, and map each of them to an offset relative to
+ // first pointer in the array.
+ Value *Ptr0 = getPointerOperand(VL[0]);
+ const SCEV *Scev0 = SE.getSCEV(Ptr0);
+ Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
+ PointerType *PtrTy = dyn_cast<PointerType>(Ptr0->getType());
+ uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
+
+ for (auto *Val : VL) {
+ // The only kind of access we care about here is load.
+ if (!isa<LoadInst>(Val))
+ return false;
+
+ Value *Ptr = getPointerOperand(Val);
+ assert(Ptr && "Expected value to have a pointer operand.");
+ // If a pointer refers to a different underlying object, bail - the
+ // pointers are by definition incomparable.
+ Value *CurrObj = GetUnderlyingObject(Ptr, DL);
+ if (CurrObj != Obj0)
+ return false;
+
+ const SCEVConstant *Diff =
+ dyn_cast<SCEVConstant>(SE.getMinusSCEV(SE.getSCEV(Ptr), Scev0));
+ // The pointers may not have a constant offset from each other, or SCEV
+ // may just not be smart enough to figure out they do. Regardless,
+ // there's nothing we can do.
+ if (!Diff || static_cast<unsigned>(Diff->getAPInt().abs().getSExtValue()) >
+ (VL.size() - 1) * Size)
+ return false;
+
+ OffValPairs.emplace_back(Diff->getAPInt().getSExtValue(), Val);
+ }
+ SmallVector<unsigned, 4> UseOrder(VL.size());
+ for (unsigned i = 0; i < VL.size(); i++) {
+ UseOrder[i] = i;
+ }
+
+ // Sort the memory accesses and keep the order of their uses in UseOrder.
+ std::sort(UseOrder.begin(), UseOrder.end(),
+ [&OffValPairs](unsigned Left, unsigned Right) {
+ return OffValPairs[Left].first < OffValPairs[Right].first;
+ });
+
+ for (unsigned i = 0; i < VL.size(); i++)
+ Sorted.emplace_back(OffValPairs[UseOrder[i]].second);
+
+ // Sort UseOrder to compute the Mask.
+ if (Mask) {
+ Mask->reserve(VL.size());
+ for (unsigned i = 0; i < VL.size(); i++)
+ Mask->emplace_back(i);
+ std::sort(Mask->begin(), Mask->end(),
+ [&UseOrder](unsigned Left, unsigned Right) {
+ return UseOrder[Left] < UseOrder[Right];
+ });
+ }
+
+ return true;
+}
+
+
/// Returns true if the memory operations \p A and \p B are consecutive.
bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
ScalarEvolution &SE, bool CheckType) {
int getEntryCost(TreeEntry *E);
/// This is the recursive part of buildTree.
- void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
+ void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int UserIndx = -1,
+ int OpdNum = 0);
/// \returns True if the ExtractElement/ExtractValue instructions in VL can
/// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const;
- /// Vectorize a single entry in the tree.
- Value *vectorizeTree(TreeEntry *E);
+ /// Vectorize a single entry in the tree.\p OpdNum indicate the ordinality of
+ /// operand corrsponding to this tree entry \p E for the user tree entry
+ /// indicated by \p UserIndx.
+ // In other words, "E == TreeEntry[UserIndx].getOperand(OpdNum)".
+ Value *vectorizeTree(TreeEntry *E, int OpdNum = 0, int UserIndx = -1);
- /// Vectorize a single entry in the tree, starting in \p VL.
- Value *vectorizeTree(ArrayRef<Value *> VL);
+ /// Vectorize a single entry in the tree, starting in \p VL.\p OpdNum indicate
+ /// the ordinality of operand corrsponding to the \p VL of scalar values for the
+ /// user indicated by \p UserIndx this \p VL feeds into.
+ Value *vectorizeTree(ArrayRef<Value *> VL, int OpdNum = 0, int UserIndx = -1);
/// \returns the pointer to the vectorized value if \p VL is already
/// vectorized, or NULL. They may happen in cycles.
return std::equal(VL.begin(), VL.end(), Scalars.begin());
}
+ /// \returns true if the scalars in VL are found in this tree entry.
+ bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL,
+ ScalarEvolution &SE) const {
+ assert(VL.size() == Scalars.size() && "Invalid size");
+ SmallVector<Value *, 8> List;
+ if (!sortLoadAccesses(VL, DL, SE, List))
+ return false;
+ return std::equal(List.begin(), List.end(), Scalars.begin());
+ }
+
/// A vector of scalars.
ValueList Scalars;
/// Do we need to gather this sequence ?
bool NeedToGather = false;
+ /// Records optional shuffle mask for the uses of jumbled memory accesses.
+ /// For example, a non-empty ShuffleMask[1] represents the permutation of
+ /// lanes that operand #1 of this vectorized instruction should undergo
+ /// before feeding this vectorized instruction, whereas an empty
+ /// ShuffleMask[0] indicates that the lanes of operand #0 of this vectorized
+ /// instruction need not be permuted at all.
+ SmallVector<SmallVector<unsigned, 4>, 2> ShuffleMask;
+
/// Points back to the VectorizableTree.
///
/// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
/// Create a new VectorizableTree entry.
TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
- int &UserTreeIdx) {
+ int &UserTreeIdx, const InstructionsState &S,
+ ArrayRef<unsigned> ShuffleMask = None,
+ int OpdNum = 0) {
+ assert((!Vectorized || S.Opcode != 0) &&
+ "Vectorized TreeEntry without opcode");
VectorizableTree.emplace_back(VectorizableTree);
+
int idx = VectorizableTree.size() - 1;
TreeEntry *Last = &VectorizableTree[idx];
Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
Last->NeedToGather = !Vectorized;
+
+ TreeEntry *UserTreeEntry = nullptr;
+ if (UserTreeIdx != -1)
+ UserTreeEntry = &VectorizableTree[UserTreeIdx];
+
+ if (UserTreeEntry && !ShuffleMask.empty()) {
+ if ((unsigned)OpdNum >= UserTreeEntry->ShuffleMask.size())
+ UserTreeEntry->ShuffleMask.resize(OpdNum + 1);
+ assert(UserTreeEntry->ShuffleMask[OpdNum].empty() &&
+ "Mask already present");
+ using mask = SmallVector<unsigned, 4>;
+ mask tempMask(ShuffleMask.begin(), ShuffleMask.end());
+ UserTreeEntry->ShuffleMask[OpdNum] = tempMask;
+ }
if (Vectorized) {
for (int i = 0, e = VL.size(); i != e; ++i) {
assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
}
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
- int UserTreeIdx) {
+ int UserTreeIdx, int OpdNum) {
assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
InstructionsState S = getSameOpcode(VL);
if (Depth == RecursionMaxDepth) {
DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
// Don't handle vectors.
if (S.OpValue->getType()->isVectorTy()) {
DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
if (SI->getValueOperand()->getType()->isVectorTy()) {
DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
// If all of the operands are identical or constant we have a simple solution.
if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) {
DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
if (EphValues.count(VL[i])) {
DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
") is ephemeral.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
if (E->Scalars[i] != VL[i]) {
DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
if (getTreeEntry(I)) {
DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
") is already in tree.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
if (MustGather.count(VL[i])) {
DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
// Don't go into unreachable blocks. They may contain instructions with
// dependency cycles which confuse the final scheduling.
DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
for (unsigned j = i + 1; j < e; ++j)
if (VL[i] == VL[j]) {
DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
assert((!BS.getScheduleData(VL0) ||
!BS.getScheduleData(VL0)->isPartOfBundle()) &&
"tryScheduleBundle should cancelScheduling on failure");
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
if (Term) {
DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
PH->getIncomingBlock(i)));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
+ buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
}
return;
}
} else {
BS.cancelScheduling(VL, VL0);
}
- newTreeEntry(VL, Reuse, UserTreeIdx);
+ newTreeEntry(VL, Reuse, UserTreeIdx, S);
return;
}
case Instruction::Load: {
if (DL->getTypeSizeInBits(ScalarTy) !=
DL->getTypeAllocSizeInBits(ScalarTy)) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
return;
}
LoadInst *L = cast<LoadInst>(VL[i]);
if (!L->isSimple()) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
return;
}
}
// Check if the loads are consecutive, reversed, or neither.
- // TODO: What we really want is to sort the loads, but for now, check
- // the two likely directions.
bool Consecutive = true;
bool ReverseConsecutive = true;
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
if (Consecutive) {
++NumLoadsWantToKeepOrder;
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a vector of loads.\n");
return;
}
break;
}
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
-
if (ReverseConsecutive) {
- ++NumLoadsWantToChangeOrder;
DEBUG(dbgs() << "SLP: Gathering reversed loads.\n");
- } else {
- DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
+ ++NumLoadsWantToChangeOrder;
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, false, UserTreeIdx, S);
+ return;
+ }
+
+ if (VL.size() > 2) {
+ bool ShuffledLoads = true;
+ SmallVector<Value *, 8> Sorted;
+ SmallVector<unsigned, 4> Mask;
+ if (sortLoadAccesses(VL, *DL, *SE, Sorted, &Mask)) {
+ auto NewVL = makeArrayRef(Sorted.begin(), Sorted.end());
+ for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) {
+ if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) {
+ ShuffledLoads = false;
+ break;
+ }
+ }
+ // TODO: Tracking how many load wants to have arbitrary shuffled order
+ // would be usefull.
+ if (ShuffledLoads) {
+ DEBUG(dbgs() << "SLP: added a vector of loads which needs "
+ "permutation of loaded lanes.\n");
+ newTreeEntry(NewVL, true, UserTreeIdx, S,
+ makeArrayRef(Mask.begin(), Mask.end()), OpdNum);
+ return;
+ }
+ }
}
+
+ DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
case Instruction::ZExt:
Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
if (Ty != SrcTy || !isValidElementType(Ty)) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
return;
}
}
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a vector of casts.\n");
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
for (Value *j : VL)
Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
+ buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
}
return;
}
if (Cmp->getPredicate() != P0 ||
Cmp->getOperand(0)->getType() != ComparedTy) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
return;
}
}
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a vector of compares.\n");
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
for (Value *j : VL)
Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
+ buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
}
return;
}
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
// Sort operands of the instructions so that each side is more likely to
ValueList Left, Right;
reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right);
buildTree_rec(Left, Depth + 1, UserTreeIdx);
- buildTree_rec(Right, Depth + 1, UserTreeIdx);
+ buildTree_rec(Right, Depth + 1, UserTreeIdx, 1);
return;
}
for (Value *j : VL)
Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
+ buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
}
return;
if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
if (Ty0 != CurTy) {
DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
DEBUG(
dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
return;
}
}
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
for (unsigned i = 0, e = 2; i < e; ++i) {
ValueList Operands;
for (Value *j : VL)
Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
+ buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
}
return;
}
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
return;
}
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a vector of stores.\n");
ValueList Operands;
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (!isTriviallyVectorizable(ID)) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
return;
}
getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
!CI->hasIdenticalOperandBundleSchema(*CI2)) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
<< "\n");
return;
Value *A1J = CI2->getArgOperand(1);
if (A1I != A1J) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
<< " argument "<< A1I<<"!=" << A1J
<< "\n");
CI->op_begin() + CI->getBundleOperandsEndIndex(),
CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
<< *VL[i] << '\n');
return;
}
}
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
ValueList Operands;
// Prepare the operand vector.
CallInst *CI2 = dyn_cast<CallInst>(j);
Operands.push_back(CI2->getArgOperand(i));
}
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
+ buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
}
return;
}
// then do not vectorize this instruction.
if (!S.IsAltShuffle) {
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
return;
}
- newTreeEntry(VL, true, UserTreeIdx);
+ newTreeEntry(VL, true, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
// Reorder operands if reordering would enable vectorization.
ValueList Left, Right;
reorderAltShuffleOperands(S.Opcode, VL, Left, Right);
buildTree_rec(Left, Depth + 1, UserTreeIdx);
- buildTree_rec(Right, Depth + 1, UserTreeIdx);
+ buildTree_rec(Right, Depth + 1, UserTreeIdx, 1);
return;
}
for (Value *j : VL)
Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
+ buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
}
return;
default:
BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
+ newTreeEntry(VL, false, UserTreeIdx, S);
DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
return;
}
return nullptr;
}
-Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
+Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, int OpdNum, int UserIndx) {
InstructionsState S = getSameOpcode(VL);
if (S.Opcode) {
if (TreeEntry *E = getTreeEntry(S.OpValue)) {
- if (E->isSame(VL))
- return vectorizeTree(E);
+ TreeEntry *UserTreeEntry = nullptr;
+ if (UserIndx != -1)
+ UserTreeEntry = &VectorizableTree[UserIndx];
+
+ if (E->isSame(VL) ||
+ (UserTreeEntry &&
+ (unsigned)OpdNum < UserTreeEntry->ShuffleMask.size() &&
+ !UserTreeEntry->ShuffleMask[OpdNum].empty() &&
+ E->isFoundJumbled(VL, *DL, *SE)))
+ return vectorizeTree(E, OpdNum, UserIndx);
}
}
return Gather(VL, VecTy);
}
-Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
+Value *BoUpSLP::vectorizeTree(TreeEntry *E, int OpdNum, int UserIndx) {
IRBuilder<>::InsertPointGuard Guard(Builder);
+ TreeEntry *UserTreeEntry = nullptr;
if (E->VectorizedValue) {
DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
return E->VectorizedValue;
return V;
}
+ assert(ScalarToTreeEntry.count(E->Scalars[0]) &&
+ "Expected user tree entry, missing!");
+ int CurrIndx = ScalarToTreeEntry[E->Scalars[0]];
+
unsigned ShuffleOrOp = S.IsAltShuffle ?
(unsigned) Instruction::ShuffleVector : S.Opcode;
switch (ShuffleOrOp) {
Builder.SetInsertPoint(IBB->getTerminator());
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- Value *Vec = vectorizeTree(Operands);
+ Value *Vec = vectorizeTree(Operands, i, CurrIndx);
NewPhi->addIncoming(Vec, IBB);
}
setInsertPointAfterBundle(E->Scalars, VL0);
- Value *InVec = vectorizeTree(INVL);
+ Value *InVec = vectorizeTree(INVL, 0, CurrIndx);
if (Value *V = alreadyVectorized(E->Scalars, VL0))
return V;
setInsertPointAfterBundle(E->Scalars, VL0);
- Value *L = vectorizeTree(LHSV);
- Value *R = vectorizeTree(RHSV);
+ Value *L = vectorizeTree(LHSV, 0, CurrIndx);
+ Value *R = vectorizeTree(RHSV, 1, CurrIndx);
if (Value *V = alreadyVectorized(E->Scalars, VL0))
return V;
setInsertPointAfterBundle(E->Scalars, VL0);
- Value *Cond = vectorizeTree(CondVec);
- Value *True = vectorizeTree(TrueVec);
- Value *False = vectorizeTree(FalseVec);
+ Value *Cond = vectorizeTree(CondVec, 0, CurrIndx);
+ Value *True = vectorizeTree(TrueVec, 1, CurrIndx);
+ Value *False = vectorizeTree(FalseVec, 2, CurrIndx);
if (Value *V = alreadyVectorized(E->Scalars, VL0))
return V;
setInsertPointAfterBundle(E->Scalars, VL0);
- Value *LHS = vectorizeTree(LHSVL);
- Value *RHS = vectorizeTree(RHSVL);
+ Value *LHS = vectorizeTree(LHSVL, 0, CurrIndx);
+ Value *RHS = vectorizeTree(RHSVL, 1, CurrIndx);
if (Value *V = alreadyVectorized(E->Scalars, VL0))
return V;
// sink them all the way down past store instructions.
setInsertPointAfterBundle(E->Scalars, VL0);
- LoadInst *LI = cast<LoadInst>(VL0);
+ if (UserIndx != -1)
+ UserTreeEntry = &VectorizableTree[UserIndx];
+
+ bool isJumbled = false;
+ LoadInst *LI = NULL;
+ if (UserTreeEntry &&
+ (unsigned)OpdNum < UserTreeEntry->ShuffleMask.size() &&
+ !UserTreeEntry->ShuffleMask[OpdNum].empty()) {
+ isJumbled = true;
+ LI = cast<LoadInst>(E->Scalars[0]);
+ } else {
+ LI = cast<LoadInst>(VL0);
+ }
+
Type *ScalarLoadTy = LI->getType();
unsigned AS = LI->getPointerAddressSpace();
LI->setAlignment(Alignment);
E->VectorizedValue = LI;
++NumVectorInstructions;
- return propagateMetadata(LI, E->Scalars);
+ propagateMetadata(LI, E->Scalars);
+
+ if (isJumbled) {
+ SmallVector<Constant *, 8> Mask;
+ for (unsigned LaneEntry : UserTreeEntry->ShuffleMask[OpdNum])
+ Mask.push_back(Builder.getInt32(LaneEntry));
+ // Generate shuffle for jumbled memory access
+ Value *Undef = UndefValue::get(VecTy);
+ Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef,
+ ConstantVector::get(Mask));
+ E->VectorizedValue = Shuf;
+ ++NumVectorInstructions;
+ return Shuf;
+ }
+ return LI;
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(VL0);
setInsertPointAfterBundle(E->Scalars, VL0);
- Value *VecValue = vectorizeTree(ScalarStoreValues);
+ Value *VecValue = vectorizeTree(ScalarStoreValues, 0, CurrIndx);
Value *ScalarPtr = SI->getPointerOperand();
Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
for (Value *V : E->Scalars)
Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
- Value *Op0 = vectorizeTree(Op0VL);
+ Value *Op0 = vectorizeTree(Op0VL, 0, CurrIndx);
std::vector<Value *> OpVecs;
for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
for (Value *V : E->Scalars)
OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
- Value *OpVec = vectorizeTree(OpVL);
+ Value *OpVec = vectorizeTree(OpVL, j, CurrIndx);
OpVecs.push_back(OpVec);
}
OpVL.push_back(CEI->getArgOperand(j));
}
- Value *OpVec = vectorizeTree(OpVL);
+ Value *OpVec = vectorizeTree(OpVL, j, CurrIndx);
DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
OpVecs.push_back(OpVec);
}
reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL);
setInsertPointAfterBundle(E->Scalars, VL0);
- Value *LHS = vectorizeTree(LHSVL);
- Value *RHS = vectorizeTree(RHSVL);
+ Value *LHS = vectorizeTree(LHSVL, 0, CurrIndx);
+ Value *RHS = vectorizeTree(RHSVL, 1, CurrIndx);
if (Value *V = alreadyVectorized(E->Scalars, VL0))
return V;
continue;
TreeEntry *E = getTreeEntry(Scalar);
assert(E && "Invalid scalar");
- assert(!E->NeedToGather && "Extracting from a gather list");
+ assert((!E->NeedToGather) && "Extracting from a gather list");
- Value *Vec = E->VectorizedValue;
+ Value *Vec = dyn_cast<ShuffleVectorInst>(E->VectorizedValue);
+ if (Vec && dyn_cast<LoadInst>(cast<Instruction>(Vec)->getOperand(0))) {
+ Vec = cast<Instruction>(E->VectorizedValue)->getOperand(0);
+ } else {
+ Vec = E->VectorizedValue;
+ }
assert(Vec && "Can't find vectorizable value");
Value *Lane = Builder.getInt32(ExternalUse.Lane);
define i32 @fn1() {
; CHECK-LABEL: @fn1(
; CHECK-NEXT: entry:
-; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* getelementptr inbounds ([4 x i32], [4 x i32]* @b, i64 0, i32 0), align 4
-; CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* getelementptr inbounds ([4 x i32], [4 x i32]* @b, i64 0, i32 1), align 4
-; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* getelementptr inbounds ([4 x i32], [4 x i32]* @b, i64 0, i32 2), align 4
-; CHECK-NEXT: [[TMP3:%.*]] = load i32, i32* getelementptr inbounds ([4 x i32], [4 x i32]* @b, i64 0, i32 3), align 4
-; CHECK-NEXT: [[TMP4:%.*]] = insertelement <4 x i32> undef, i32 [[TMP1]], i32 0
-; CHECK-NEXT: [[TMP5:%.*]] = insertelement <4 x i32> [[TMP4]], i32 [[TMP2]], i32 1
-; CHECK-NEXT: [[TMP6:%.*]] = insertelement <4 x i32> [[TMP5]], i32 [[TMP3]], i32 2
-; CHECK-NEXT: [[TMP7:%.*]] = insertelement <4 x i32> [[TMP6]], i32 [[TMP0]], i32 3
-; CHECK-NEXT: [[TMP8:%.*]] = icmp sgt <4 x i32> [[TMP7]], zeroinitializer
-; CHECK-NEXT: [[TMP9:%.*]] = insertelement <4 x i32> [[TMP4]], i32 ptrtoint (i32 ()* @fn1 to i32), i32 1
-; CHECK-NEXT: [[TMP10:%.*]] = insertelement <4 x i32> [[TMP9]], i32 ptrtoint (i32 ()* @fn1 to i32), i32 2
-; CHECK-NEXT: [[TMP11:%.*]] = insertelement <4 x i32> [[TMP10]], i32 8, i32 3
-; CHECK-NEXT: [[TMP12:%.*]] = select <4 x i1> [[TMP8]], <4 x i32> [[TMP11]], <4 x i32> <i32 6, i32 0, i32 0, i32 0>
-; CHECK-NEXT: store <4 x i32> [[TMP12]], <4 x i32>* bitcast ([4 x i32]* @a to <4 x i32>*), align 4
+; CHECK-NEXT: [[TMP0:%.*]] = load <4 x i32>, <4 x i32>* bitcast ([4 x i32]* @b to <4 x i32>*), align 4
+; CHECK-NEXT: [[TMP1:%.*]] = shufflevector <4 x i32> [[TMP0]], <4 x i32> undef, <4 x i32> <i32 1, i32 2, i32 3, i32 0>
+; CHECK-NEXT: [[TMP2:%.*]] = icmp sgt <4 x i32> [[TMP1]], zeroinitializer
+; CHECK-NEXT: [[TMP3:%.*]] = extractelement <4 x i32> [[TMP0]], i32 1
+; CHECK-NEXT: [[TMP4:%.*]] = insertelement <4 x i32> undef, i32 [[TMP3]], i32 0
+; CHECK-NEXT: [[TMP5:%.*]] = insertelement <4 x i32> [[TMP4]], i32 ptrtoint (i32 ()* @fn1 to i32), i32 1
+; CHECK-NEXT: [[TMP6:%.*]] = insertelement <4 x i32> [[TMP5]], i32 ptrtoint (i32 ()* @fn1 to i32), i32 2
+; CHECK-NEXT: [[TMP7:%.*]] = insertelement <4 x i32> [[TMP6]], i32 8, i32 3
+; CHECK-NEXT: [[TMP8:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[TMP7]], <4 x i32> <i32 6, i32 0, i32 0, i32 0>
+; CHECK-NEXT: store <4 x i32> [[TMP8]], <4 x i32>* bitcast ([4 x i32]* @a to <4 x i32>*), align 4
; CHECK-NEXT: ret i32 0
;
entry:
--- /dev/null
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt < %s -S -mtriple=x86_64-unknown -mattr=+avx -slp-vectorizer | FileCheck %s
+
+
+;void jumble (int * restrict A, int * restrict B) {
+ ; int tmp0 = A[10]*A[0];
+ ; int tmp1 = A[11]*A[1];
+ ; int tmp2 = A[12]*A[3];
+ ; int tmp3 = A[13]*A[2];
+ ; B[0] = tmp0;
+ ; B[1] = tmp1;
+ ; B[2] = tmp2;
+ ; B[3] = tmp3;
+ ;}
+
+
+ ; Function Attrs: norecurse nounwind uwtable
+ define void @jumble1(i32* noalias nocapture readonly %A, i32* noalias nocapture %B) {
+; CHECK-LABEL: @jumble1(
+; CHECK-NEXT: entry:
+; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 10
+; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 11
+; CHECK-NEXT: [[ARRAYIDX3:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 1
+; CHECK-NEXT: [[ARRAYIDX5:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 12
+; CHECK-NEXT: [[ARRAYIDX6:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 3
+; CHECK-NEXT: [[ARRAYIDX8:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 13
+; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[ARRAYIDX]] to <4 x i32>*
+; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4
+; CHECK-NEXT: [[ARRAYIDX9:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 2
+; CHECK-NEXT: [[TMP2:%.*]] = bitcast i32* [[A]] to <4 x i32>*
+; CHECK-NEXT: [[TMP3:%.*]] = load <4 x i32>, <4 x i32>* [[TMP2]], align 4
+; CHECK-NEXT: [[TMP4:%.*]] = shufflevector <4 x i32> [[TMP3]], <4 x i32> undef, <4 x i32> <i32 0, i32 1, i32 3, i32 2>
+; CHECK-NEXT: [[TMP5:%.*]] = mul nsw <4 x i32> [[TMP1]], [[TMP4]]
+; CHECK-NEXT: [[ARRAYIDX12:%.*]] = getelementptr inbounds i32, i32* [[B:%.*]], i64 1
+; CHECK-NEXT: [[ARRAYIDX13:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 2
+; CHECK-NEXT: [[ARRAYIDX14:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 3
+; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[B]] to <4 x i32>*
+; CHECK-NEXT: store <4 x i32> [[TMP5]], <4 x i32>* [[TMP6]], align 4
+; CHECK-NEXT: ret void
+;
+entry:
+ %arrayidx = getelementptr inbounds i32, i32* %A, i64 10
+ %0 = load i32, i32* %arrayidx, align 4
+ %1 = load i32, i32* %A, align 4
+ %mul = mul nsw i32 %0, %1
+ %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 11
+ %2 = load i32, i32* %arrayidx2, align 4
+ %arrayidx3 = getelementptr inbounds i32, i32* %A, i64 1
+ %3 = load i32, i32* %arrayidx3, align 4
+ %mul4 = mul nsw i32 %2, %3
+ %arrayidx5 = getelementptr inbounds i32, i32* %A, i64 12
+ %4 = load i32, i32* %arrayidx5, align 4
+ %arrayidx6 = getelementptr inbounds i32, i32* %A, i64 3
+ %5 = load i32, i32* %arrayidx6, align 4
+ %mul7 = mul nsw i32 %4, %5
+ %arrayidx8 = getelementptr inbounds i32, i32* %A, i64 13
+ %6 = load i32, i32* %arrayidx8, align 4
+ %arrayidx9 = getelementptr inbounds i32, i32* %A, i64 2
+ %7 = load i32, i32* %arrayidx9, align 4
+ %mul10 = mul nsw i32 %6, %7
+ store i32 %mul, i32* %B, align 4
+ %arrayidx12 = getelementptr inbounds i32, i32* %B, i64 1
+ store i32 %mul4, i32* %arrayidx12, align 4
+ %arrayidx13 = getelementptr inbounds i32, i32* %B, i64 2
+ store i32 %mul7, i32* %arrayidx13, align 4
+ %arrayidx14 = getelementptr inbounds i32, i32* %B, i64 3
+ store i32 %mul10, i32* %arrayidx14, align 4
+ ret void
+ }
+
+;Reversing the operand of MUL
+ ; Function Attrs: norecurse nounwind uwtable
+ define void @jumble2(i32* noalias nocapture readonly %A, i32* noalias nocapture %B) {
+; CHECK-LABEL: @jumble2(
+; CHECK-NEXT: entry:
+; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 10
+; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 11
+; CHECK-NEXT: [[ARRAYIDX3:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 1
+; CHECK-NEXT: [[ARRAYIDX5:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 12
+; CHECK-NEXT: [[ARRAYIDX6:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 3
+; CHECK-NEXT: [[ARRAYIDX8:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 13
+; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[ARRAYIDX]] to <4 x i32>*
+; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4
+; CHECK-NEXT: [[ARRAYIDX9:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 2
+; CHECK-NEXT: [[TMP2:%.*]] = bitcast i32* [[A]] to <4 x i32>*
+; CHECK-NEXT: [[TMP3:%.*]] = load <4 x i32>, <4 x i32>* [[TMP2]], align 4
+; CHECK-NEXT: [[TMP4:%.*]] = shufflevector <4 x i32> [[TMP3]], <4 x i32> undef, <4 x i32> <i32 0, i32 1, i32 3, i32 2>
+; CHECK-NEXT: [[TMP5:%.*]] = mul nsw <4 x i32> [[TMP4]], [[TMP1]]
+; CHECK-NEXT: [[ARRAYIDX12:%.*]] = getelementptr inbounds i32, i32* [[B:%.*]], i64 1
+; CHECK-NEXT: [[ARRAYIDX13:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 2
+; CHECK-NEXT: [[ARRAYIDX14:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 3
+; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[B]] to <4 x i32>*
+; CHECK-NEXT: store <4 x i32> [[TMP5]], <4 x i32>* [[TMP6]], align 4
+; CHECK-NEXT: ret void
+;
+entry:
+ %arrayidx = getelementptr inbounds i32, i32* %A, i64 10
+ %0 = load i32, i32* %arrayidx, align 4
+ %1 = load i32, i32* %A, align 4
+ %mul = mul nsw i32 %1, %0
+ %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 11
+ %2 = load i32, i32* %arrayidx2, align 4
+ %arrayidx3 = getelementptr inbounds i32, i32* %A, i64 1
+ %3 = load i32, i32* %arrayidx3, align 4
+ %mul4 = mul nsw i32 %3, %2
+ %arrayidx5 = getelementptr inbounds i32, i32* %A, i64 12
+ %4 = load i32, i32* %arrayidx5, align 4
+ %arrayidx6 = getelementptr inbounds i32, i32* %A, i64 3
+ %5 = load i32, i32* %arrayidx6, align 4
+ %mul7 = mul nsw i32 %5, %4
+ %arrayidx8 = getelementptr inbounds i32, i32* %A, i64 13
+ %6 = load i32, i32* %arrayidx8, align 4
+ %arrayidx9 = getelementptr inbounds i32, i32* %A, i64 2
+ %7 = load i32, i32* %arrayidx9, align 4
+ %mul10 = mul nsw i32 %7, %6
+ store i32 %mul, i32* %B, align 4
+ %arrayidx12 = getelementptr inbounds i32, i32* %B, i64 1
+ store i32 %mul4, i32* %arrayidx12, align 4
+ %arrayidx13 = getelementptr inbounds i32, i32* %B, i64 2
+ store i32 %mul7, i32* %arrayidx13, align 4
+ %arrayidx14 = getelementptr inbounds i32, i32* %B, i64 3
+ store i32 %mul10, i32* %arrayidx14, align 4
+ ret void
+ }
+
--- /dev/null
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
+; RUN: opt < %s -S -mtriple=x86_64-unknown -mattr=+avx -slp-vectorizer | FileCheck %s
+
+;void phiUsingLoads(int *restrict A, int *restrict B) {
+; int tmp0, tmp1, tmp2, tmp3;
+; for (int i = 0; i < 100; i++) {
+; if (A[0] == 0) {
+; tmp0 = A[i + 0];
+; tmp1 = A[i + 1];
+; tmp2 = A[i + 2];
+; tmp3 = A[i + 3];
+; } else if (A[25] == 0) {
+; tmp0 = A[i + 0];
+; tmp1 = A[i + 1];
+; tmp2 = A[i + 2];
+; tmp3 = A[i + 3];
+; } else if (A[50] == 0) {
+; tmp0 = A[i + 0];
+; tmp1 = A[i + 1];
+; tmp2 = A[i + 2];
+; tmp3 = A[i + 3];
+; } else if (A[75] == 0) {
+; tmp0 = A[i + 0];
+; tmp1 = A[i + 1];
+; tmp2 = A[i + 3];
+; tmp3 = A[i + 2];
+; }
+; }
+; B[0] = tmp0;
+; B[1] = tmp1;
+; B[2] = tmp2;
+; B[3] = tmp3;
+;}
+
+
+; Function Attrs: norecurse nounwind uwtable
+define void @phiUsingLoads(i32* noalias nocapture readonly %A, i32* noalias nocapture %B) local_unnamed_addr #0 {
+; CHECK-LABEL: @phiUsingLoads(
+; CHECK-NEXT: entry:
+; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[A:%.*]], align 4
+; CHECK-NEXT: [[CMP1:%.*]] = icmp eq i32 [[TMP0]], 0
+; CHECK-NEXT: [[ARRAYIDX12:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 25
+; CHECK-NEXT: [[ARRAYIDX28:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 50
+; CHECK-NEXT: [[ARRAYIDX44:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 75
+; CHECK-NEXT: br label [[FOR_BODY:%.*]]
+; CHECK: for.cond.cleanup:
+; CHECK-NEXT: [[ARRAYIDX64:%.*]] = getelementptr inbounds i32, i32* [[B:%.*]], i64 1
+; CHECK-NEXT: [[ARRAYIDX65:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 2
+; CHECK-NEXT: [[ARRAYIDX66:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 3
+; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32* [[B]] to <4 x i32>*
+; CHECK-NEXT: store <4 x i32> [[TMP27:%.*]], <4 x i32>* [[TMP1]], align 4
+; CHECK-NEXT: ret void
+; CHECK: for.body:
+; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[INDVARS_IV_NEXT:%.*]], [[FOR_INC:%.*]] ]
+; CHECK-NEXT: [[TMP2:%.*]] = phi <4 x i32> [ undef, [[ENTRY]] ], [ [[TMP27]], [[FOR_INC]] ]
+; CHECK-NEXT: br i1 [[CMP1]], label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]]
+; CHECK: if.then:
+; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[INDVARS_IV]]
+; CHECK-NEXT: [[TMP3:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 1
+; CHECK-NEXT: [[ARRAYIDX5:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP3]]
+; CHECK-NEXT: [[TMP4:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 2
+; CHECK-NEXT: [[ARRAYIDX8:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP4]]
+; CHECK-NEXT: [[TMP5:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 3
+; CHECK-NEXT: [[ARRAYIDX11:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP5]]
+; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[ARRAYIDX2]] to <4 x i32>*
+; CHECK-NEXT: [[TMP7:%.*]] = load <4 x i32>, <4 x i32>* [[TMP6]], align 4
+; CHECK-NEXT: br label [[FOR_INC]]
+; CHECK: if.else:
+; CHECK-NEXT: [[TMP8:%.*]] = load i32, i32* [[ARRAYIDX12]], align 4
+; CHECK-NEXT: [[CMP13:%.*]] = icmp eq i32 [[TMP8]], 0
+; CHECK-NEXT: br i1 [[CMP13]], label [[IF_THEN14:%.*]], label [[IF_ELSE27:%.*]]
+; CHECK: if.then14:
+; CHECK-NEXT: [[ARRAYIDX17:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[INDVARS_IV]]
+; CHECK-NEXT: [[TMP9:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 1
+; CHECK-NEXT: [[ARRAYIDX20:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP9]]
+; CHECK-NEXT: [[TMP10:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 2
+; CHECK-NEXT: [[ARRAYIDX23:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP10]]
+; CHECK-NEXT: [[TMP11:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 3
+; CHECK-NEXT: [[ARRAYIDX26:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP11]]
+; CHECK-NEXT: [[TMP12:%.*]] = bitcast i32* [[ARRAYIDX17]] to <4 x i32>*
+; CHECK-NEXT: [[TMP13:%.*]] = load <4 x i32>, <4 x i32>* [[TMP12]], align 4
+; CHECK-NEXT: br label [[FOR_INC]]
+; CHECK: if.else27:
+; CHECK-NEXT: [[TMP14:%.*]] = load i32, i32* [[ARRAYIDX28]], align 4
+; CHECK-NEXT: [[CMP29:%.*]] = icmp eq i32 [[TMP14]], 0
+; CHECK-NEXT: br i1 [[CMP29]], label [[IF_THEN30:%.*]], label [[IF_ELSE43:%.*]]
+; CHECK: if.then30:
+; CHECK-NEXT: [[ARRAYIDX33:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[INDVARS_IV]]
+; CHECK-NEXT: [[TMP15:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 1
+; CHECK-NEXT: [[ARRAYIDX36:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP15]]
+; CHECK-NEXT: [[TMP16:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 2
+; CHECK-NEXT: [[ARRAYIDX39:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP16]]
+; CHECK-NEXT: [[TMP17:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 3
+; CHECK-NEXT: [[ARRAYIDX42:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP17]]
+; CHECK-NEXT: [[TMP18:%.*]] = bitcast i32* [[ARRAYIDX33]] to <4 x i32>*
+; CHECK-NEXT: [[TMP19:%.*]] = load <4 x i32>, <4 x i32>* [[TMP18]], align 4
+; CHECK-NEXT: br label [[FOR_INC]]
+; CHECK: if.else43:
+; CHECK-NEXT: [[TMP20:%.*]] = load i32, i32* [[ARRAYIDX44]], align 4
+; CHECK-NEXT: [[CMP45:%.*]] = icmp eq i32 [[TMP20]], 0
+; CHECK-NEXT: br i1 [[CMP45]], label [[IF_THEN46:%.*]], label [[FOR_INC]]
+; CHECK: if.then46:
+; CHECK-NEXT: [[ARRAYIDX49:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[INDVARS_IV]]
+; CHECK-NEXT: [[TMP21:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 1
+; CHECK-NEXT: [[ARRAYIDX52:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP21]]
+; CHECK-NEXT: [[TMP22:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 3
+; CHECK-NEXT: [[ARRAYIDX55:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP22]]
+; CHECK-NEXT: [[TMP23:%.*]] = add nuw nsw i64 [[INDVARS_IV]], 2
+; CHECK-NEXT: [[ARRAYIDX58:%.*]] = getelementptr inbounds i32, i32* [[A]], i64 [[TMP23]]
+; CHECK-NEXT: [[TMP24:%.*]] = bitcast i32* [[ARRAYIDX49]] to <4 x i32>*
+; CHECK-NEXT: [[TMP25:%.*]] = load <4 x i32>, <4 x i32>* [[TMP24]], align 4
+; CHECK-NEXT: [[TMP26:%.*]] = shufflevector <4 x i32> [[TMP25]], <4 x i32> undef, <4 x i32> <i32 0, i32 1, i32 3, i32 2>
+; CHECK-NEXT: br label [[FOR_INC]]
+; CHECK: for.inc:
+; CHECK-NEXT: [[TMP27]] = phi <4 x i32> [ [[TMP7]], [[IF_THEN]] ], [ [[TMP13]], [[IF_THEN14]] ], [ [[TMP19]], [[IF_THEN30]] ], [ [[TMP26]], [[IF_THEN46]] ], [ [[TMP2]], [[IF_ELSE43]] ]
+; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
+; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], 100
+; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_COND_CLEANUP:%.*]], label [[FOR_BODY]]
+;
+entry:
+ %0 = load i32, i32* %A, align 4
+ %cmp1 = icmp eq i32 %0, 0
+ %arrayidx12 = getelementptr inbounds i32, i32* %A, i64 25
+ %arrayidx28 = getelementptr inbounds i32, i32* %A, i64 50
+ %arrayidx44 = getelementptr inbounds i32, i32* %A, i64 75
+ br label %for.body
+
+for.cond.cleanup: ; preds = %for.inc
+ store i32 %tmp0.1, i32* %B, align 4
+ %arrayidx64 = getelementptr inbounds i32, i32* %B, i64 1
+ store i32 %tmp1.1, i32* %arrayidx64, align 4
+ %arrayidx65 = getelementptr inbounds i32, i32* %B, i64 2
+ store i32 %tmp2.1, i32* %arrayidx65, align 4
+ %arrayidx66 = getelementptr inbounds i32, i32* %B, i64 3
+ store i32 %tmp3.1, i32* %arrayidx66, align 4
+ ret void
+
+for.body: ; preds = %for.inc, %entry
+ %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.inc ]
+ %tmp3.0111 = phi i32 [ undef, %entry ], [ %tmp3.1, %for.inc ]
+ %tmp2.0110 = phi i32 [ undef, %entry ], [ %tmp2.1, %for.inc ]
+ %tmp1.0109 = phi i32 [ undef, %entry ], [ %tmp1.1, %for.inc ]
+ %tmp0.0108 = phi i32 [ undef, %entry ], [ %tmp0.1, %for.inc ]
+ br i1 %cmp1, label %if.then, label %if.else
+
+if.then: ; preds = %for.body
+ %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
+ %1 = load i32, i32* %arrayidx2, align 4
+ %2 = add nuw nsw i64 %indvars.iv, 1
+ %arrayidx5 = getelementptr inbounds i32, i32* %A, i64 %2
+ %3 = load i32, i32* %arrayidx5, align 4
+ %4 = add nuw nsw i64 %indvars.iv, 2
+ %arrayidx8 = getelementptr inbounds i32, i32* %A, i64 %4
+ %5 = load i32, i32* %arrayidx8, align 4
+ %6 = add nuw nsw i64 %indvars.iv, 3
+ %arrayidx11 = getelementptr inbounds i32, i32* %A, i64 %6
+ %7 = load i32, i32* %arrayidx11, align 4
+ br label %for.inc
+
+if.else: ; preds = %for.body
+ %8 = load i32, i32* %arrayidx12, align 4
+ %cmp13 = icmp eq i32 %8, 0
+ br i1 %cmp13, label %if.then14, label %if.else27
+
+if.then14: ; preds = %if.else
+ %arrayidx17 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
+ %9 = load i32, i32* %arrayidx17, align 4
+ %10 = add nuw nsw i64 %indvars.iv, 1
+ %arrayidx20 = getelementptr inbounds i32, i32* %A, i64 %10
+ %11 = load i32, i32* %arrayidx20, align 4
+ %12 = add nuw nsw i64 %indvars.iv, 2
+ %arrayidx23 = getelementptr inbounds i32, i32* %A, i64 %12
+ %13 = load i32, i32* %arrayidx23, align 4
+ %14 = add nuw nsw i64 %indvars.iv, 3
+ %arrayidx26 = getelementptr inbounds i32, i32* %A, i64 %14
+ %15 = load i32, i32* %arrayidx26, align 4
+ br label %for.inc
+
+if.else27: ; preds = %if.else
+ %16 = load i32, i32* %arrayidx28, align 4
+ %cmp29 = icmp eq i32 %16, 0
+ br i1 %cmp29, label %if.then30, label %if.else43
+
+if.then30: ; preds = %if.else27
+ %arrayidx33 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
+ %17 = load i32, i32* %arrayidx33, align 4
+ %18 = add nuw nsw i64 %indvars.iv, 1
+ %arrayidx36 = getelementptr inbounds i32, i32* %A, i64 %18
+ %19 = load i32, i32* %arrayidx36, align 4
+ %20 = add nuw nsw i64 %indvars.iv, 2
+ %arrayidx39 = getelementptr inbounds i32, i32* %A, i64 %20
+ %21 = load i32, i32* %arrayidx39, align 4
+ %22 = add nuw nsw i64 %indvars.iv, 3
+ %arrayidx42 = getelementptr inbounds i32, i32* %A, i64 %22
+ %23 = load i32, i32* %arrayidx42, align 4
+ br label %for.inc
+
+if.else43: ; preds = %if.else27
+ %24 = load i32, i32* %arrayidx44, align 4
+ %cmp45 = icmp eq i32 %24, 0
+ br i1 %cmp45, label %if.then46, label %for.inc
+
+if.then46: ; preds = %if.else43
+ %arrayidx49 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
+ %25 = load i32, i32* %arrayidx49, align 4
+ %26 = add nuw nsw i64 %indvars.iv, 1
+ %arrayidx52 = getelementptr inbounds i32, i32* %A, i64 %26
+ %27 = load i32, i32* %arrayidx52, align 4
+ %28 = add nuw nsw i64 %indvars.iv, 3
+ %arrayidx55 = getelementptr inbounds i32, i32* %A, i64 %28
+ %29 = load i32, i32* %arrayidx55, align 4
+ %30 = add nuw nsw i64 %indvars.iv, 2
+ %arrayidx58 = getelementptr inbounds i32, i32* %A, i64 %30
+ %31 = load i32, i32* %arrayidx58, align 4
+ br label %for.inc
+
+for.inc: ; preds = %if.then, %if.then30, %if.else43, %if.then46, %if.then14
+ %tmp0.1 = phi i32 [ %1, %if.then ], [ %9, %if.then14 ], [ %17, %if.then30 ], [ %25, %if.then46 ], [ %tmp0.0108, %if.else43 ]
+ %tmp1.1 = phi i32 [ %3, %if.then ], [ %11, %if.then14 ], [ %19, %if.then30 ], [ %27, %if.then46 ], [ %tmp1.0109, %if.else43 ]
+ %tmp2.1 = phi i32 [ %5, %if.then ], [ %13, %if.then14 ], [ %21, %if.then30 ], [ %29, %if.then46 ], [ %tmp2.0110, %if.else43 ]
+ %tmp3.1 = phi i32 [ %7, %if.then ], [ %15, %if.then14 ], [ %23, %if.then30 ], [ %31, %if.then46 ], [ %tmp3.0111, %if.else43 ]
+ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
+ %exitcond = icmp eq i64 %indvars.iv.next, 100
+ br i1 %exitcond, label %for.cond.cleanup, label %for.body
+}
define i32 @jumbled-load(i32* noalias nocapture %in, i32* noalias nocapture %inn, i32* noalias nocapture %out) {
; CHECK-LABEL: @jumbled-load(
-; CHECK-NEXT: [[IN_ADDR:%.*]] = getelementptr inbounds i32, i32* %in, i64 0
-; CHECK-NEXT: [[LOAD_1:%.*]] = load i32, i32* [[IN_ADDR]], align 4
+; CHECK-NEXT: [[IN_ADDR:%.*]] = getelementptr inbounds i32, i32* [[IN:%.*]], i64 0
; CHECK-NEXT: [[GEP_1:%.*]] = getelementptr inbounds i32, i32* [[IN_ADDR]], i64 3
-; CHECK-NEXT: [[LOAD_2:%.*]] = load i32, i32* [[GEP_1]], align 4
; CHECK-NEXT: [[GEP_2:%.*]] = getelementptr inbounds i32, i32* [[IN_ADDR]], i64 1
-; CHECK-NEXT: [[LOAD_3:%.*]] = load i32, i32* [[GEP_2]], align 4
; CHECK-NEXT: [[GEP_3:%.*]] = getelementptr inbounds i32, i32* [[IN_ADDR]], i64 2
-; CHECK-NEXT: [[LOAD_4:%.*]] = load i32, i32* [[GEP_3]], align 4
-; CHECK-NEXT: [[INN_ADDR:%.*]] = getelementptr inbounds i32, i32* %inn, i64 0
-; CHECK-NEXT: [[LOAD_5:%.*]] = load i32, i32* [[INN_ADDR]], align 4
+; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32* [[IN_ADDR]] to <4 x i32>*
+; CHECK-NEXT: [[TMP2:%.*]] = load <4 x i32>, <4 x i32>* [[TMP1]], align 4
+; CHECK-NEXT: [[TMP3:%.*]] = shufflevector <4 x i32> [[TMP2]], <4 x i32> undef, <4 x i32> <i32 1, i32 3, i32 2, i32 0>
+; CHECK-NEXT: [[INN_ADDR:%.*]] = getelementptr inbounds i32, i32* [[INN:%.*]], i64 0
; CHECK-NEXT: [[GEP_4:%.*]] = getelementptr inbounds i32, i32* [[INN_ADDR]], i64 2
-; CHECK-NEXT: [[LOAD_6:%.*]] = load i32, i32* [[GEP_4]], align 4
; CHECK-NEXT: [[GEP_5:%.*]] = getelementptr inbounds i32, i32* [[INN_ADDR]], i64 3
-; CHECK-NEXT: [[LOAD_7:%.*]] = load i32, i32* [[GEP_5]], align 4
; CHECK-NEXT: [[GEP_6:%.*]] = getelementptr inbounds i32, i32* [[INN_ADDR]], i64 1
-; CHECK-NEXT: [[LOAD_8:%.*]] = load i32, i32* [[GEP_6]], align 4
-; CHECK-NEXT: [[MUL_1:%.*]] = mul i32 [[LOAD_3]], [[LOAD_5]]
-; CHECK-NEXT: [[MUL_2:%.*]] = mul i32 [[LOAD_2]], [[LOAD_8]]
-; CHECK-NEXT: [[MUL_3:%.*]] = mul i32 [[LOAD_4]], [[LOAD_7]]
-; CHECK-NEXT: [[MUL_4:%.*]] = mul i32 [[LOAD_1]], [[LOAD_6]]
-; CHECK-NEXT: [[GEP_7:%.*]] = getelementptr inbounds i32, i32* %out, i64 0
-; CHECK-NEXT: store i32 [[MUL_1]], i32* [[GEP_7]], align 4
-; CHECK-NEXT: [[GEP_8:%.*]] = getelementptr inbounds i32, i32* %out, i64 1
-; CHECK-NEXT: store i32 [[MUL_2]], i32* [[GEP_8]], align 4
-; CHECK-NEXT: [[GEP_9:%.*]] = getelementptr inbounds i32, i32* %out, i64 2
-; CHECK-NEXT: store i32 [[MUL_3]], i32* [[GEP_9]], align 4
-; CHECK-NEXT: [[GEP_10:%.*]] = getelementptr inbounds i32, i32* %out, i64 3
-; CHECK-NEXT: store i32 [[MUL_4]], i32* [[GEP_10]], align 4
+; CHECK-NEXT: [[TMP4:%.*]] = bitcast i32* [[INN_ADDR]] to <4 x i32>*
+; CHECK-NEXT: [[TMP5:%.*]] = load <4 x i32>, <4 x i32>* [[TMP4]], align 4
+; CHECK-NEXT: [[TMP6:%.*]] = shufflevector <4 x i32> [[TMP5]], <4 x i32> undef, <4 x i32> <i32 0, i32 1, i32 3, i32 2>
+; CHECK-NEXT: [[TMP7:%.*]] = mul <4 x i32> [[TMP3]], [[TMP6]]
+; CHECK-NEXT: [[GEP_7:%.*]] = getelementptr inbounds i32, i32* [[OUT:%.*]], i64 0
+; CHECK-NEXT: [[GEP_8:%.*]] = getelementptr inbounds i32, i32* [[OUT]], i64 1
+; CHECK-NEXT: [[GEP_9:%.*]] = getelementptr inbounds i32, i32* [[OUT]], i64 2
+; CHECK-NEXT: [[GEP_10:%.*]] = getelementptr inbounds i32, i32* [[OUT]], i64 3
+; CHECK-NEXT: [[TMP8:%.*]] = bitcast i32* [[GEP_7]] to <4 x i32>*
+; CHECK-NEXT: store <4 x i32> [[TMP7]], <4 x i32>* [[TMP8]], align 4
; CHECK-NEXT: ret i32 undef
;
%in.addr = getelementptr inbounds i32, i32* %in, i64 0
define i32 @jumbled-load(i32* noalias nocapture %in, i32* noalias nocapture %inn, i32* noalias nocapture %out) {
; CHECK-LABEL: @jumbled-load(
; CHECK-NEXT: [[IN_ADDR:%.*]] = getelementptr inbounds i32, i32* [[IN:%.*]], i64 0
-; CHECK-NEXT: [[LOAD_1:%.*]] = load i32, i32* [[IN_ADDR]], align 4
; CHECK-NEXT: [[GEP_1:%.*]] = getelementptr inbounds i32, i32* [[IN_ADDR]], i64 1
-; CHECK-NEXT: [[LOAD_2:%.*]] = load i32, i32* [[GEP_1]], align 4
; CHECK-NEXT: [[GEP_2:%.*]] = getelementptr inbounds i32, i32* [[IN_ADDR]], i64 2
-; CHECK-NEXT: [[LOAD_3:%.*]] = load i32, i32* [[GEP_2]], align 4
; CHECK-NEXT: [[GEP_3:%.*]] = getelementptr inbounds i32, i32* [[IN_ADDR]], i64 3
-; CHECK-NEXT: [[LOAD_4:%.*]] = load i32, i32* [[GEP_3]], align 4
+; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32* [[IN_ADDR]] to <4 x i32>*
+; CHECK-NEXT: [[TMP2:%.*]] = load <4 x i32>, <4 x i32>* [[TMP1]], align 4
+; CHECK-NEXT: [[TMP3:%.*]] = shufflevector <4 x i32> [[TMP2]], <4 x i32> undef, <4 x i32> <i32 1, i32 3, i32 0, i32 2>
; CHECK-NEXT: [[INN_ADDR:%.*]] = getelementptr inbounds i32, i32* [[INN:%.*]], i64 0
-; CHECK-NEXT: [[LOAD_5:%.*]] = load i32, i32* [[INN_ADDR]], align 4
; CHECK-NEXT: [[GEP_4:%.*]] = getelementptr inbounds i32, i32* [[INN_ADDR]], i64 1
-; CHECK-NEXT: [[LOAD_6:%.*]] = load i32, i32* [[GEP_4]], align 4
; CHECK-NEXT: [[GEP_5:%.*]] = getelementptr inbounds i32, i32* [[INN_ADDR]], i64 2
-; CHECK-NEXT: [[LOAD_7:%.*]] = load i32, i32* [[GEP_5]], align 4
; CHECK-NEXT: [[GEP_6:%.*]] = getelementptr inbounds i32, i32* [[INN_ADDR]], i64 3
-; CHECK-NEXT: [[LOAD_8:%.*]] = load i32, i32* [[GEP_6]], align 4
-; CHECK-NEXT: [[MUL_1:%.*]] = mul i32 [[LOAD_1]], [[LOAD_5]]
-; CHECK-NEXT: [[MUL_2:%.*]] = mul i32 [[LOAD_2]], [[LOAD_6]]
-; CHECK-NEXT: [[MUL_3:%.*]] = mul i32 [[LOAD_3]], [[LOAD_7]]
-; CHECK-NEXT: [[MUL_4:%.*]] = mul i32 [[LOAD_4]], [[LOAD_8]]
+; CHECK-NEXT: [[TMP4:%.*]] = bitcast i32* [[INN_ADDR]] to <4 x i32>*
+; CHECK-NEXT: [[TMP5:%.*]] = load <4 x i32>, <4 x i32>* [[TMP4]], align 4
+; CHECK-NEXT: [[TMP6:%.*]] = shufflevector <4 x i32> [[TMP5]], <4 x i32> undef, <4 x i32> <i32 1, i32 3, i32 0, i32 2>
+; CHECK-NEXT: [[TMP7:%.*]] = mul <4 x i32> [[TMP3]], [[TMP6]]
; CHECK-NEXT: [[GEP_7:%.*]] = getelementptr inbounds i32, i32* [[OUT:%.*]], i64 0
; CHECK-NEXT: [[GEP_8:%.*]] = getelementptr inbounds i32, i32* [[OUT]], i64 1
; CHECK-NEXT: [[GEP_9:%.*]] = getelementptr inbounds i32, i32* [[OUT]], i64 2
; CHECK-NEXT: [[GEP_10:%.*]] = getelementptr inbounds i32, i32* [[OUT]], i64 3
-; CHECK-NEXT: store i32 [[MUL_1]], i32* [[GEP_9]], align 4
-; CHECK-NEXT: store i32 [[MUL_2]], i32* [[GEP_7]], align 4
-; CHECK-NEXT: store i32 [[MUL_3]], i32* [[GEP_10]], align 4
-; CHECK-NEXT: store i32 [[MUL_4]], i32* [[GEP_8]], align 4
+; CHECK-NEXT: [[TMP8:%.*]] = bitcast i32* [[GEP_7]] to <4 x i32>*
+; CHECK-NEXT: store <4 x i32> [[TMP7]], <4 x i32>* [[TMP8]], align 4
; CHECK-NEXT: ret i32 undef
;
%in.addr = getelementptr inbounds i32, i32* %in, i64 0