namespace cv { namespace gpu
{
+
+//////////////////////////////// GpuMat ///////////////////////////////
+
+// Smart pointer for GPU memory with reference counting.
+// Its interface is mostly similar with cv::Mat.
+
+class CV_EXPORTS GpuMat
+{
+public:
+ //! default constructor
+ GpuMat();
+
+ //! constructs GpuMat of the specified size and type
+ GpuMat(int rows, int cols, int type);
+ GpuMat(Size size, int type);
+
+ //! constucts GpuMat and fills it with the specified value _s
+ GpuMat(int rows, int cols, int type, Scalar s);
+ GpuMat(Size size, int type, Scalar s);
+
+ //! copy constructor
+ GpuMat(const GpuMat& m);
+
+ //! constructor for GpuMat headers pointing to user-allocated data
+ GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
+ GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
+
+ //! creates a GpuMat header for a part of the bigger matrix
+ GpuMat(const GpuMat& m, Range rowRange, Range colRange);
+ GpuMat(const GpuMat& m, Rect roi);
+
+ //! builds GpuMat from Mat. Perfom blocking upload to device
+ explicit GpuMat(const Mat& m);
+
+ //! destructor - calls release()
+ ~GpuMat();
+
+ //! assignment operators
+ GpuMat& operator =(const GpuMat& m);
+
+ //! allocates new GpuMat data unless the GpuMat already has specified size and type
+ void create(int rows, int cols, int type);
+ void create(Size size, int type);
+
+ //! decreases reference counter, deallocate the data when reference counter reaches 0
+ void release();
+
+ //! swaps with other smart pointer
+ void swap(GpuMat& mat);
+
+ //! pefroms blocking upload data to GpuMat
+ void upload(const Mat& m);
+
+ //! downloads data from device to host memory (Blocking calls)
+ void download(Mat& m) const;
+
+ //! returns deep copy of the GpuMat, i.e. the data is copied
+ GpuMat clone() const;
+
+ //! copies the GpuMat content to "m"
+ void copyTo(GpuMat& m) const;
+
+ //! copies those GpuMat elements to "m" that are marked with non-zero mask elements
+ void copyTo(GpuMat& m, const GpuMat& mask) const;
+
+ //! sets some of the GpuMat elements to s, according to the mask
+ GpuMat& setTo(Scalar s, const GpuMat& mask = GpuMat());
+
+ //! converts GpuMat to another datatype with optional scaling
+ void convertTo(GpuMat& m, int rtype, double alpha = 1, double beta = 0) const;
+
+ void assignTo(GpuMat& m, int type=-1) const;
+
+ //! returns pointer to y-th row
+ uchar* ptr(int y = 0);
+ const uchar* ptr(int y = 0) const;
+
+ //! template version of the above method
+ template<typename _Tp> _Tp* ptr(int y = 0);
+ template<typename _Tp> const _Tp* ptr(int y = 0) const;
+
+ template <typename _Tp> operator PtrStepSz<_Tp>() const;
+ template <typename _Tp> operator PtrStep<_Tp>() const;
+
+ //! returns a new GpuMat header for the specified row
+ GpuMat row(int y) const;
+
+ //! returns a new GpuMat header for the specified column
+ GpuMat col(int x) const;
+
+ //! ... for the specified row span
+ GpuMat rowRange(int startrow, int endrow) const;
+ GpuMat rowRange(Range r) const;
+
+ //! ... for the specified column span
+ GpuMat colRange(int startcol, int endcol) const;
+ GpuMat colRange(Range r) const;
+
+ //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.)
+ GpuMat operator ()(Range rowRange, Range colRange) const;
+ GpuMat operator ()(Rect roi) const;
+
+ //! creates alternative GpuMat header for the same data, with different
+ //! number of channels and/or different number of rows
+ GpuMat reshape(int cn, int rows = 0) const;
+
+ //! locates GpuMat header within a parent GpuMat
+ void locateROI(Size& wholeSize, Point& ofs) const;
+
+ //! moves/resizes the current GpuMat ROI inside the parent GpuMat
+ GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
+
+ //! returns true iff the GpuMat data is continuous
+ //! (i.e. when there are no gaps between successive rows)
+ bool isContinuous() const;
+
+ //! returns element size in bytes
+ size_t elemSize() const;
+
+ //! returns the size of element channel in bytes
+ size_t elemSize1() const;
+
+ //! returns element type
+ int type() const;
+
+ //! returns element type
+ int depth() const;
+
+ //! returns number of channels
+ int channels() const;
+
+ //! returns step/elemSize1()
+ size_t step1() const;
+
+ //! returns GpuMat size : width == number of columns, height == number of rows
+ Size size() const;
+
+ //! returns true if GpuMat data is NULL
+ bool empty() const;
+
+ /*! includes several bit-fields:
+ - the magic signature
+ - continuity flag
+ - depth
+ - number of channels
+ */
+ int flags;
+
+ //! the number of rows and columns
+ int rows, cols;
+
+ //! a distance between successive rows in bytes; includes the gap if any
+ size_t step;
+
+ //! pointer to the data
+ uchar* data;
+
+ //! pointer to the reference counter;
+ //! when GpuMat points to user-allocated data, the pointer is NULL
+ int* refcount;
+
+ //! helper fields used in locateROI and adjustROI
+ uchar* datastart;
+ uchar* dataend;
+};
+
+//! Creates continuous GPU matrix
+CV_EXPORTS void createContinuous(int rows, int cols, int type, GpuMat& m);
+
+//! Ensures that size of the given matrix is not less than (rows, cols) size
+//! and matrix type is match specified one too
+CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m);
+
+CV_EXPORTS GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat);
+
//////////////////////////////// CudaMem ////////////////////////////////
// CudaMem is limited cv::Mat with page locked memory allocation.
// Page locked memory is only needed for async and faster coping to GPU.
CV_EXPORTS void printShortCudaDeviceInfo(int device);
-//////////////////////////////// GpuMat ///////////////////////////////
-
-//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
-class CV_EXPORTS GpuMat
-{
-public:
- //! default constructor
- GpuMat();
-
- //! constructs GpuMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
- GpuMat(int rows, int cols, int type);
- GpuMat(Size size, int type);
-
- //! constucts GpuMatrix and fills it with the specified value _s.
- GpuMat(int rows, int cols, int type, Scalar s);
- GpuMat(Size size, int type, Scalar s);
-
- //! copy constructor
- GpuMat(const GpuMat& m);
-
- //! constructor for GpuMatrix headers pointing to user-allocated data
- GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
- GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
-
- //! creates a matrix header for a part of the bigger matrix
- GpuMat(const GpuMat& m, Range rowRange, Range colRange);
- GpuMat(const GpuMat& m, Rect roi);
-
- //! builds GpuMat from Mat. Perfom blocking upload to device.
- explicit GpuMat(const Mat& m);
-
- //! destructor - calls release()
- ~GpuMat();
-
- //! assignment operators
- GpuMat& operator = (const GpuMat& m);
-
- //! pefroms blocking upload data to GpuMat.
- void upload(const Mat& m);
-
- //! downloads data from device to host memory. Blocking calls.
- void download(Mat& m) const;
-
- //! returns a new GpuMatrix header for the specified row
- GpuMat row(int y) const;
- //! returns a new GpuMatrix header for the specified column
- GpuMat col(int x) const;
- //! ... for the specified row span
- GpuMat rowRange(int startrow, int endrow) const;
- GpuMat rowRange(Range r) const;
- //! ... for the specified column span
- GpuMat colRange(int startcol, int endcol) const;
- GpuMat colRange(Range r) const;
-
- //! returns deep copy of the GpuMatrix, i.e. the data is copied
- GpuMat clone() const;
- //! copies the GpuMatrix content to "m".
- // It calls m.create(this->size(), this->type()).
- void copyTo(GpuMat& m) const;
- //! copies those GpuMatrix elements to "m" that are marked with non-zero mask elements.
- void copyTo(GpuMat& m, const GpuMat& mask) const;
- //! converts GpuMatrix to another datatype with optional scalng. See cvConvertScale.
- void convertTo(GpuMat& m, int rtype, double alpha = 1, double beta = 0) const;
-
- void assignTo(GpuMat& m, int type=-1) const;
-
- //! sets every GpuMatrix element to s
- GpuMat& operator = (Scalar s);
- //! sets some of the GpuMatrix elements to s, according to the mask
- GpuMat& setTo(Scalar s, const GpuMat& mask = GpuMat());
- //! creates alternative GpuMatrix header for the same data, with different
- // number of channels and/or different number of rows. see cvReshape.
- GpuMat reshape(int cn, int rows = 0) const;
-
- //! allocates new GpuMatrix data unless the GpuMatrix already has specified size and type.
- // previous data is unreferenced if needed.
- void create(int rows, int cols, int type);
- void create(Size size, int type);
- //! decreases reference counter;
- // deallocate the data when reference counter reaches 0.
- void release();
-
- //! swaps with other smart pointer
- void swap(GpuMat& mat);
-
- //! locates GpuMatrix header within a parent GpuMatrix. See below
- void locateROI(Size& wholeSize, Point& ofs) const;
- //! moves/resizes the current GpuMatrix ROI inside the parent GpuMatrix.
- GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
- //! extracts a rectangular sub-GpuMatrix
- // (this is a generalized form of row, rowRange etc.)
- GpuMat operator()(Range rowRange, Range colRange) const;
- GpuMat operator()(Rect roi) const;
-
- //! returns true iff the GpuMatrix data is continuous
- // (i.e. when there are no gaps between successive rows).
- // similar to CV_IS_GpuMat_CONT(cvGpuMat->type)
- bool isContinuous() const;
- //! returns element size in bytes,
- // similar to CV_ELEM_SIZE(cvMat->type)
- size_t elemSize() const;
- //! returns the size of element channel in bytes.
- size_t elemSize1() const;
- //! returns element type, similar to CV_MAT_TYPE(cvMat->type)
- int type() const;
- //! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
- int depth() const;
- //! returns element type, similar to CV_MAT_CN(cvMat->type)
- int channels() const;
- //! returns step/elemSize1()
- size_t step1() const;
- //! returns GpuMatrix size:
- // width == number of columns, height == number of rows
- Size size() const;
- //! returns true if GpuMatrix data is NULL
- bool empty() const;
-
- //! returns pointer to y-th row
- uchar* ptr(int y = 0);
- const uchar* ptr(int y = 0) const;
-
- //! template version of the above method
- template<typename _Tp> _Tp* ptr(int y = 0);
- template<typename _Tp> const _Tp* ptr(int y = 0) const;
-
- template <typename _Tp> operator PtrStepSz<_Tp>() const;
- template <typename _Tp> operator PtrStep<_Tp>() const;
-
- /*! includes several bit-fields:
- - the magic signature
- - continuity flag
- - depth
- - number of channels
- */
- int flags;
-
- //! the number of rows and columns
- int rows, cols;
-
- //! a distance between successive rows in bytes; includes the gap if any
- size_t step;
-
- //! pointer to the data
- uchar* data;
-
- //! pointer to the reference counter;
- // when GpuMatrix points to user-allocated data, the pointer is NULL
- int* refcount;
-
- //! helper fields used in locateROI and adjustROI
- uchar* datastart;
- uchar* dataend;
-};
-
-//! Creates continuous GPU matrix
-CV_EXPORTS void createContinuous(int rows, int cols, int type, GpuMat& m);
-
-//! Ensures that size of the given matrix is not less than (rows, cols) size
-//! and matrix type is match specified one too
-CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m);
-
-CV_EXPORTS GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat &mat);
-
}} // cv::gpu
#include "opencv2/core/gpu.inl.hpp"
}
inline
+GpuMat::GpuMat(const GpuMat& m)
+ : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
+{
+ if (refcount)
+ CV_XADD(refcount, 1);
+}
+
+inline
+GpuMat::GpuMat(const Mat& m) :
+ flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
+{
+ upload(m);
+}
+
+inline
GpuMat::~GpuMat()
{
release();
}
inline
+GpuMat& GpuMat::operator =(const GpuMat& m)
+{
+ if (this != &m)
+ {
+ GpuMat temp(m);
+ swap(temp);
+ }
+
+ return *this;
+}
+
+inline
+void GpuMat::create(Size size_, int type_)
+{
+ create(size_.height, size_.width, type_);
+}
+
+inline
+void GpuMat::swap(GpuMat& b)
+{
+ std::swap(flags, b.flags);
+ std::swap(rows, b.rows);
+ std::swap(cols, b.cols);
+ std::swap(step, b.step);
+ std::swap(data, b.data);
+ std::swap(datastart, b.datastart);
+ std::swap(dataend, b.dataend);
+ std::swap(refcount, b.refcount);
+}
+
+inline
GpuMat GpuMat::clone() const
{
GpuMat m;
}
inline
-size_t GpuMat::step1() const
+uchar* GpuMat::ptr(int y)
{
- return step / elemSize1();
+ CV_DbgAssert( (unsigned)y < (unsigned)rows );
+ return data + step * y;
}
inline
-bool GpuMat::empty() const
+const uchar* GpuMat::ptr(int y) const
{
- return data == 0;
+ CV_DbgAssert( (unsigned)y < (unsigned)rows );
+ return data + step * y;
}
template<typename _Tp> inline
return (const _Tp*)ptr(y);
}
+template <class T> inline
+GpuMat::operator PtrStepSz<T>() const
+{
+ return PtrStepSz<T>(rows, cols, (T*)data, step);
+}
+
+template <class T> inline
+GpuMat::operator PtrStep<T>() const
+{
+ return PtrStep<T>((T*)data, step);
+}
+
inline
GpuMat GpuMat::row(int y) const
{
}
inline
-void GpuMat::create(Size size_, int type_)
-{
- create(size_.height, size_.width, type_);
-}
-
-inline
-GpuMat GpuMat::operator()(Range _rowRange, Range _colRange) const
+GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const
{
- return GpuMat(*this, _rowRange, _colRange);
+ return GpuMat(*this, rowRange_, colRange_);
}
inline
-GpuMat GpuMat::operator()(Rect roi) const
+GpuMat GpuMat::operator ()(Rect roi) const
{
return GpuMat(*this, roi);
}
}
inline
-Size GpuMat::size() const
-{
- return Size(cols, rows);
-}
-
-inline
-uchar* GpuMat::ptr(int y)
+size_t GpuMat::step1() const
{
- CV_DbgAssert((unsigned)y < (unsigned)rows);
- return data + step * y;
+ return step / elemSize1();
}
inline
-const uchar* GpuMat::ptr(int y) const
+Size GpuMat::size() const
{
- CV_DbgAssert((unsigned)y < (unsigned)rows);
- return data + step * y;
+ return Size(cols, rows);
}
inline
-GpuMat& GpuMat::operator = (Scalar s)
-{
- setTo(s);
- return *this;
-}
-
-template <class T> inline
-GpuMat::operator PtrStepSz<T>() const
-{
- return PtrStepSz<T>(rows, cols, (T*)data, step);
-}
-
-template <class T> inline
-GpuMat::operator PtrStep<T>() const
-{
- return PtrStep<T>((T*)data, step);
-}
-
-static inline
-void swap(GpuMat& a, GpuMat& b)
+bool GpuMat::empty() const
{
- a.swap(b);
+ return data == 0;
}
static inline
ensureSizeIsEnough(size.height, size.width, type, m);
}
+static inline
+void swap(GpuMat& a, GpuMat& b)
+{
+ a.swap(b);
+}
+
}} // namespace cv { namespace gpu
+namespace cv {
+
+inline
+Mat::Mat(const gpu::GpuMat& m)
+ : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
+{
+ m.download(*this);
+}
+
+}
+
#endif // __OPENCV_CORE_GPUINL_HPP__
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/type_traits.hpp"
-namespace cv { namespace gpu { namespace cudev
-{
- void writeScalar(const uchar*);
- void writeScalar(const schar*);
- void writeScalar(const ushort*);
- void writeScalar(const short int*);
- void writeScalar(const int*);
- void writeScalar(const float*);
- void writeScalar(const double*);
- void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream);
- void convert_gpu(PtrStepSzb, int, PtrStepSzb, int, double, double, cudaStream_t);
-}}}
+#include "matrix_operations.hpp"
namespace cv { namespace gpu { namespace cudev
{
////////////////////////////////// CopyTo /////////////////////////////////
///////////////////////////////////////////////////////////////////////////
- template <typename T> void copyToWithMask(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream)
+ template <typename T>
+ void copyWithMask(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream)
{
- if (colorMask)
+ if (multiChannelMask)
cv::gpu::cudev::transform((PtrStepSz<T>)src, (PtrStepSz<T>)dst, identity<T>(), SingleMask(mask), stream);
else
cv::gpu::cudev::transform((PtrStepSz<T>)src, (PtrStepSz<T>)dst, identity<T>(), SingleMaskChannels(mask, cn), stream);
}
- void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream)
+ void copyWithMask(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream)
{
- typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream);
+ typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream);
static func_t tab[] =
{
0,
- copyToWithMask<unsigned char>,
- copyToWithMask<unsigned short>,
+ copyWithMask<unsigned char>,
+ copyWithMask<unsigned short>,
0,
- copyToWithMask<int>,
+ copyWithMask<int>,
0,
0,
0,
- copyToWithMask<double>
+ copyWithMask<double>
};
- tab[elemSize1](src, dst, cn, mask, colorMask, stream);
+ tab[elemSize1](src, dst, cn, mask, multiChannelMask, stream);
}
///////////////////////////////////////////////////////////////////////////
template <> __device__ __forceinline__ float readScalar<float>(int i) {return scalar_32f[i];}
template <> __device__ __forceinline__ double readScalar<double>(int i) {return scalar_64f[i];}
- void writeScalar(const uchar* vals)
+ static inline void writeScalar(const uchar* vals)
{
cudaSafeCall( cudaMemcpyToSymbol(scalar_8u, vals, sizeof(uchar) * 4) );
}
- void writeScalar(const schar* vals)
+ static inline void writeScalar(const schar* vals)
{
cudaSafeCall( cudaMemcpyToSymbol(scalar_8s, vals, sizeof(schar) * 4) );
}
- void writeScalar(const ushort* vals)
+ static inline void writeScalar(const ushort* vals)
{
cudaSafeCall( cudaMemcpyToSymbol(scalar_16u, vals, sizeof(ushort) * 4) );
}
- void writeScalar(const short* vals)
+ static inline void writeScalar(const short* vals)
{
cudaSafeCall( cudaMemcpyToSymbol(scalar_16s, vals, sizeof(short) * 4) );
}
- void writeScalar(const int* vals)
+ static inline void writeScalar(const int* vals)
{
cudaSafeCall( cudaMemcpyToSymbol(scalar_32s, vals, sizeof(int) * 4) );
}
- void writeScalar(const float* vals)
+ static inline void writeScalar(const float* vals)
{
cudaSafeCall( cudaMemcpyToSymbol(scalar_32f, vals, sizeof(float) * 4) );
}
- void writeScalar(const double* vals)
+ static inline void writeScalar(const double* vals)
{
cudaSafeCall( cudaMemcpyToSymbol(scalar_64f, vals, sizeof(double) * 4) );
}
template<typename T>
- __global__ void set_to_without_mask(T* mat, int cols, int rows, size_t step, int channels)
+ __global__ void set(T* mat, int cols, int rows, size_t step, int channels)
{
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
}
}
- template<typename T>
- __global__ void set_to_with_mask(T* mat, const uchar* mask, int cols, int rows, size_t step, int channels, size_t step_mask)
- {
- size_t x = blockIdx.x * blockDim.x + threadIdx.x;
- size_t y = blockIdx.y * blockDim.y + threadIdx.y;
-
- if ((x < cols * channels ) && (y < rows))
- if (mask[y * step_mask + x / channels] != 0)
- {
- size_t idx = y * ( step >> shift_and_sizeof<T>::shift ) + x;
- mat[idx] = readScalar<T>(x % channels);
- }
- }
template <typename T>
- void set_to_gpu(PtrStepSzb mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream)
+ void set(PtrStepSz<T> mat, const T* scalar, int channels, cudaStream_t stream)
{
writeScalar(scalar);
dim3 threadsPerBlock(32, 8, 1);
- dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
+ dim3 numBlocks(mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
- set_to_with_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, (uchar*)mask.data, mat.cols, mat.rows, mat.step, channels, mask.step);
+ set<T><<<numBlocks, threadsPerBlock, 0, stream>>>(mat.data, mat.cols, mat.rows, mat.step, channels);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall ( cudaDeviceSynchronize() );
}
- template void set_to_gpu<uchar >(PtrStepSzb mat, const uchar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
- template void set_to_gpu<schar >(PtrStepSzb mat, const schar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
- template void set_to_gpu<ushort>(PtrStepSzb mat, const ushort* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
- template void set_to_gpu<short >(PtrStepSzb mat, const short* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
- template void set_to_gpu<int >(PtrStepSzb mat, const int* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
- template void set_to_gpu<float >(PtrStepSzb mat, const float* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
- template void set_to_gpu<double>(PtrStepSzb mat, const double* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+ template void set<uchar >(PtrStepSz<uchar > mat, const uchar* scalar, int channels, cudaStream_t stream);
+ template void set<schar >(PtrStepSz<schar > mat, const schar* scalar, int channels, cudaStream_t stream);
+ template void set<ushort>(PtrStepSz<ushort> mat, const ushort* scalar, int channels, cudaStream_t stream);
+ template void set<short >(PtrStepSz<short > mat, const short* scalar, int channels, cudaStream_t stream);
+ template void set<int >(PtrStepSz<int > mat, const int* scalar, int channels, cudaStream_t stream);
+ template void set<float >(PtrStepSz<float > mat, const float* scalar, int channels, cudaStream_t stream);
+ template void set<double>(PtrStepSz<double> mat, const double* scalar, int channels, cudaStream_t stream);
+
+ template<typename T>
+ __global__ void set(T* mat, const uchar* mask, int cols, int rows, size_t step, int channels, size_t step_mask)
+ {
+ size_t x = blockIdx.x * blockDim.x + threadIdx.x;
+ size_t y = blockIdx.y * blockDim.y + threadIdx.y;
+
+ if ((x < cols * channels ) && (y < rows))
+ if (mask[y * step_mask + x / channels] != 0)
+ {
+ size_t idx = y * ( step >> shift_and_sizeof<T>::shift ) + x;
+ mat[idx] = readScalar<T>(x % channels);
+ }
+ }
template <typename T>
- void set_to_gpu(PtrStepSzb mat, const T* scalar, int channels, cudaStream_t stream)
+ void set(PtrStepSz<T> mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream)
{
writeScalar(scalar);
dim3 threadsPerBlock(32, 8, 1);
- dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
+ dim3 numBlocks(mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
- set_to_without_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, mat.cols, mat.rows, mat.step, channels);
+ set<T><<<numBlocks, threadsPerBlock, 0, stream>>>(mat.data, mask.data, mat.cols, mat.rows, mat.step, channels, mask.step);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall ( cudaDeviceSynchronize() );
}
- template void set_to_gpu<uchar >(PtrStepSzb mat, const uchar* scalar, int channels, cudaStream_t stream);
- template void set_to_gpu<schar >(PtrStepSzb mat, const schar* scalar, int channels, cudaStream_t stream);
- template void set_to_gpu<ushort>(PtrStepSzb mat, const ushort* scalar, int channels, cudaStream_t stream);
- template void set_to_gpu<short >(PtrStepSzb mat, const short* scalar, int channels, cudaStream_t stream);
- template void set_to_gpu<int >(PtrStepSzb mat, const int* scalar, int channels, cudaStream_t stream);
- template void set_to_gpu<float >(PtrStepSzb mat, const float* scalar, int channels, cudaStream_t stream);
- template void set_to_gpu<double>(PtrStepSzb mat, const double* scalar, int channels, cudaStream_t stream);
+ template void set<uchar >(PtrStepSz<uchar > mat, const uchar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+ template void set<schar >(PtrStepSz<schar > mat, const schar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+ template void set<ushort>(PtrStepSz<ushort> mat, const ushort* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+ template void set<short >(PtrStepSz<short > mat, const short* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+ template void set<int >(PtrStepSz<int > mat, const int* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+ template void set<float >(PtrStepSz<float > mat, const float* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+ template void set<double>(PtrStepSz<double> mat, const double* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
///////////////////////////////////////////////////////////////////////////
//////////////////////////////// ConvertTo ////////////////////////////////
cv::gpu::cudev::transform((PtrStepSz<T>)src, (PtrStepSz<D>)dst, op, WithOutMask(), stream);
}
-#if defined __clang__
-# pragma clang diagnostic push
-# pragma clang diagnostic ignored "-Wmissing-declarations"
-#endif
-
- void convert_gpu(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream)
+ void convert(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream)
{
typedef void (*caller_t)(PtrStepSzb src, PtrStepSzb dst, double alpha, double beta, cudaStream_t stream);
}
};
- caller_t func = tab[sdepth][ddepth];
+ const caller_t func = tab[sdepth][ddepth];
func(src, dst, alpha, beta, stream);
}
-
-#if defined __clang__
-# pragma clang diagnostic pop
-#endif
}}} // namespace cv { namespace gpu { namespace cudev
--- /dev/null
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include "opencv2/core/cuda/common.hpp"
+
+namespace cv { namespace gpu { namespace cudev
+{
+ void copyWithMask(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream);
+
+ template <typename T>
+ void set(PtrStepSz<T> mat, const T* scalar, int channels, cudaStream_t stream);
+
+ template <typename T>
+ void set(PtrStepSz<T> mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
+
+ void convert(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream);
+}}}
#endif // HAVE_CUDA
-//////////////////////////////// GpuMat ///////////////////////////////
-
-cv::gpu::GpuMat::GpuMat(const GpuMat& m)
- : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
-{
- if (refcount)
- CV_XADD(refcount, 1);
-}
-
-cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
- flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
- step(step_), data((uchar*)data_), refcount(0),
- datastart((uchar*)data_), dataend((uchar*)data_)
-{
- size_t minstep = cols * elemSize();
-
- if (step == Mat::AUTO_STEP)
- {
- step = minstep;
- flags |= Mat::CONTINUOUS_FLAG;
- }
- else
- {
- if (rows == 1)
- step = minstep;
-
- CV_DbgAssert(step >= minstep);
-
- flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
- }
- dataend += step * (rows - 1) + minstep;
-}
-
-cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
- flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width),
- step(step_), data((uchar*)data_), refcount(0),
- datastart((uchar*)data_), dataend((uchar*)data_)
-{
- size_t minstep = cols * elemSize();
-
- if (step == Mat::AUTO_STEP)
- {
- step = minstep;
- flags |= Mat::CONTINUOUS_FLAG;
- }
- else
- {
- if (rows == 1)
- step = minstep;
-
- CV_DbgAssert(step >= minstep);
-
- flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
- }
- dataend += step * (rows - 1) + minstep;
-}
-
-cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range _rowRange, Range _colRange)
-{
- flags = m.flags;
- step = m.step; refcount = m.refcount;
- data = m.data; datastart = m.datastart; dataend = m.dataend;
-
- if (_rowRange == Range::all())
- rows = m.rows;
- else
- {
- CV_Assert(0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows);
-
- rows = _rowRange.size();
- data += step*_rowRange.start;
- }
-
- if (_colRange == Range::all())
- cols = m.cols;
- else
- {
- CV_Assert(0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols);
-
- cols = _colRange.size();
- data += _colRange.start*elemSize();
- flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
- }
-
- if (rows == 1)
- flags |= Mat::CONTINUOUS_FLAG;
-
- if (refcount)
- CV_XADD(refcount, 1);
-
- if (rows <= 0 || cols <= 0)
- rows = cols = 0;
-}
-
-cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
- flags(m.flags), rows(roi.height), cols(roi.width),
- step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
- datastart(m.datastart), dataend(m.dataend)
-{
- flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
- data += roi.x * elemSize();
-
- CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows);
-
- if (refcount)
- CV_XADD(refcount, 1);
-
- if (rows <= 0 || cols <= 0)
- rows = cols = 0;
-}
-
-cv::gpu::GpuMat::GpuMat(const Mat& m) :
- flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
-{
- upload(m);
-}
-
-GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m)
-{
- if (this != &m)
- {
- GpuMat temp(m);
- swap(temp);
- }
-
- return *this;
-}
-
-void cv::gpu::GpuMat::swap(GpuMat& b)
-{
- std::swap(flags, b.flags);
- std::swap(rows, b.rows);
- std::swap(cols, b.cols);
- std::swap(step, b.step);
- std::swap(data, b.data);
- std::swap(datastart, b.datastart);
- std::swap(dataend, b.dataend);
- std::swap(refcount, b.refcount);
-}
-
-void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
-{
- size_t esz = elemSize();
- ptrdiff_t delta1 = data - datastart;
- ptrdiff_t delta2 = dataend - datastart;
-
- CV_DbgAssert(step > 0);
-
- if (delta1 == 0)
- ofs.x = ofs.y = 0;
- else
- {
- ofs.y = static_cast<int>(delta1 / step);
- ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
-
- CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz);
- }
-
- size_t minstep = (ofs.x + cols) * esz;
-
- wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
- wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
-}
-
-GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
-{
- Size wholeSize;
- Point ofs;
- locateROI(wholeSize, ofs);
-
- size_t esz = elemSize();
-
- int row1 = std::max(ofs.y - dtop, 0);
- int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
-
- int col1 = std::max(ofs.x - dleft, 0);
- int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
-
- data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
- rows = row2 - row1;
- cols = col2 - col1;
-
- if (esz * cols == step || rows == 1)
- flags |= Mat::CONTINUOUS_FLAG;
- else
- flags &= ~Mat::CONTINUOUS_FLAG;
-
- return *this;
-}
-
-GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
-{
- GpuMat hdr = *this;
-
- int cn = channels();
- if (new_cn == 0)
- new_cn = cn;
-
- int total_width = cols * cn;
-
- if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
- new_rows = rows * total_width / new_cn;
-
- if (new_rows != 0 && new_rows != rows)
- {
- int total_size = total_width * rows;
-
- if (!isContinuous())
- CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
-
- if ((unsigned)new_rows > (unsigned)total_size)
- CV_Error(CV_StsOutOfRange, "Bad new number of rows");
-
- total_width = total_size / new_rows;
-
- if (total_width * new_rows != total_size)
- CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
-
- hdr.rows = new_rows;
- hdr.step = total_width * elemSize1();
- }
-
- int new_width = total_width / new_cn;
-
- if (new_width * new_cn != total_width)
- CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels");
-
- hdr.cols = new_width;
- hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
-
- return hdr;
-}
-
-cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
-{
- m.download(*this);
-}
-
-void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m)
-{
- int area = rows * cols;
- if (m.empty() || m.type() != type || !m.isContinuous() || m.size().area() < area)
- m.create(1, area, type);
-
- m.cols = cols;
- m.rows = rows;
- m.step = m.elemSize() * cols;
- m.flags |= Mat::CONTINUOUS_FLAG;
-}
-
-void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m)
-{
- if (m.empty() || m.type() != type || m.data != m.datastart)
- m.create(rows, cols, type);
- else
- {
- const size_t esz = m.elemSize();
- const ptrdiff_t delta2 = m.dataend - m.datastart;
-
- const size_t minstep = m.cols * esz;
-
- Size wholeSize;
- wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / m.step + 1), m.rows);
- wholeSize.width = std::max(static_cast<int>((delta2 - m.step * (wholeSize.height - 1)) / esz), m.cols);
-
- if (wholeSize.height < rows || wholeSize.width < cols)
- m.create(rows, cols, type);
- else
- {
- m.cols = cols;
- m.rows = rows;
- }
- }
-}
-
-GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat &mat)
-{
- if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
- return mat(Rect(0, 0, cols, rows));
- return mat = GpuMat(rows, cols, type);
-}
-
-namespace
-{
- class GpuFuncTable
- {
- public:
- virtual ~GpuFuncTable() {}
-
- virtual void copy(const Mat& src, GpuMat& dst) const = 0;
- virtual void copy(const GpuMat& src, Mat& dst) const = 0;
- virtual void copy(const GpuMat& src, GpuMat& dst) const = 0;
-
- virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0;
-
- virtual void convert(const GpuMat& src, GpuMat& dst) const = 0;
- virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const = 0;
-
- virtual void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const = 0;
-
- virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0;
- virtual void free(void* devPtr) const = 0;
- };
-}
-
-#ifndef HAVE_CUDA
-
-namespace
-{
- class EmptyFuncTable : public GpuFuncTable
- {
- public:
- void copy(const Mat&, GpuMat&) const { throw_no_cuda(); }
- void copy(const GpuMat&, Mat&) const { throw_no_cuda(); }
- void copy(const GpuMat&, GpuMat&) const { throw_no_cuda(); }
-
- void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { throw_no_cuda(); }
-
- void convert(const GpuMat&, GpuMat&) const { throw_no_cuda(); }
- void convert(const GpuMat&, GpuMat&, double, double) const { throw_no_cuda(); }
-
- void setTo(GpuMat&, Scalar, const GpuMat&) const { throw_no_cuda(); }
-
- void mallocPitch(void**, size_t*, size_t, size_t) const { throw_no_cuda(); }
- void free(void*) const {}
- };
-
- const GpuFuncTable* gpuFuncTable()
- {
- static EmptyFuncTable empty;
- return ∅
- }
-}
-
-#else // HAVE_CUDA
-
-namespace cv { namespace gpu { namespace cudev
-{
- void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream);
-
- template <typename T>
- void set_to_gpu(PtrStepSzb mat, const T* scalar, int channels, cudaStream_t stream);
-
- template <typename T>
- void set_to_gpu(PtrStepSzb mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
-
- void convert_gpu(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream);
-}}}
-
-namespace
-{
- template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream)
- {
- Scalar_<T> sf = s;
- cv::gpu::cudev::set_to_gpu(src, sf.val, src.channels(), stream);
- }
-
- template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
- {
- Scalar_<T> sf = s;
- cv::gpu::cudev::set_to_gpu(src, sf.val, mask, src.channels(), stream);
- }
-}
-
-
-namespace cv { namespace gpu
-{
- CV_EXPORTS void copyWithMask(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, const cv::gpu::GpuMat&, CUstream_st*);
- CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&);
- CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, double, double, CUstream_st*);
- CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, CUstream_st*);
- CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, CUstream_st*);
- CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar);
- CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&);
-}}
-
-
-namespace cv { namespace gpu
-{
- void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0)
- {
- CV_Assert(src.size() == dst.size() && src.type() == dst.type());
- CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));
-
- cv::gpu::cudev::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream);
- }
-
- void convertTo(const GpuMat& src, GpuMat& dst)
- {
- cv::gpu::cudev::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0);
- }
-
- void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0)
- {
- cv::gpu::cudev::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
- }
-
- void setTo(GpuMat& src, Scalar s, cudaStream_t stream)
- {
- typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream);
-
- static const caller_t callers[] =
- {
- kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
- kernelSetCaller<float>, kernelSetCaller<double>
- };
-
- callers[src.depth()](src, s, stream);
- }
-
- void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
- {
- typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
-
- static const caller_t callers[] =
- {
- kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
- kernelSetCaller<float>, kernelSetCaller<double>
- };
-
- callers[src.depth()](src, s, mask, stream);
- }
-
- void setTo(GpuMat& src, Scalar s)
- {
- setTo(src, s, 0);
- }
-
- void setTo(GpuMat& src, Scalar s, const GpuMat& mask)
- {
- setTo(src, s, mask, 0);
- }
-}}
-
-namespace
-{
- template<int n> struct NPPTypeTraits;
- template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; };
- template<> struct NPPTypeTraits<CV_8S> { typedef Npp8s npp_type; };
- template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
- template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
- template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; };
- template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
- template<> struct NPPTypeTraits<CV_64F> { typedef Npp64f npp_type; };
-
- //////////////////////////////////////////////////////////////////////////
- // Convert
-
- template<int SDEPTH, int DDEPTH> struct NppConvertFunc
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
- typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
-
- typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
- };
- template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
- {
- typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
-
- typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
- };
-
- template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
- typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
-
- static void call(const GpuMat& src, GpuMat& dst)
- {
- NppiSize sz;
- sz.width = src.cols;
- sz.height = src.rows;
-
- nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
-
- cudaSafeCall( cudaDeviceSynchronize() );
- }
- };
- template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
- {
- typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
-
- static void call(const GpuMat& src, GpuMat& dst)
- {
- NppiSize sz;
- sz.width = src.cols;
- sz.height = src.rows;
-
- nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
-
- cudaSafeCall( cudaDeviceSynchronize() );
- }
- };
-
- //////////////////////////////////////////////////////////////////////////
- // Set
-
- template<int SDEPTH, int SCN> struct NppSetFunc
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
- };
- template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
- };
- template<int SCN> struct NppSetFunc<CV_8S, SCN>
- {
- typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
- };
- template<> struct NppSetFunc<CV_8S, 1>
- {
- typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
- };
-
- template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- static void call(GpuMat& src, Scalar s)
- {
- NppiSize sz;
- sz.width = src.cols;
- sz.height = src.rows;
-
- Scalar_<src_t> nppS = s;
-
- nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
-
- cudaSafeCall( cudaDeviceSynchronize() );
- }
- };
- template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- static void call(GpuMat& src, Scalar s)
- {
- NppiSize sz;
- sz.width = src.cols;
- sz.height = src.rows;
-
- Scalar_<src_t> nppS = s;
-
- nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
-
- cudaSafeCall( cudaDeviceSynchronize() );
- }
- };
-
- template<int SDEPTH, int SCN> struct NppSetMaskFunc
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
- };
- template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
- };
-
- template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- static void call(GpuMat& src, Scalar s, const GpuMat& mask)
- {
- NppiSize sz;
- sz.width = src.cols;
- sz.height = src.rows;
-
- Scalar_<src_t> nppS = s;
-
- nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
-
- cudaSafeCall( cudaDeviceSynchronize() );
- }
- };
- template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- static void call(GpuMat& src, Scalar s, const GpuMat& mask)
- {
- NppiSize sz;
- sz.width = src.cols;
- sz.height = src.rows;
-
- Scalar_<src_t> nppS = s;
-
- nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
-
- cudaSafeCall( cudaDeviceSynchronize() );
- }
- };
-
- //////////////////////////////////////////////////////////////////////////
- // CopyMasked
-
- template<int SDEPTH> struct NppCopyMaskedFunc
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
- };
-
- template<int SDEPTH, typename NppCopyMaskedFunc<SDEPTH>::func_ptr func> struct NppCopyMasked
- {
- typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
-
- static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
- {
- NppiSize sz;
- sz.width = src.cols;
- sz.height = src.rows;
-
- nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
-
- cudaSafeCall( cudaDeviceSynchronize() );
- }
- };
-
- template <typename T> static inline bool isAligned(const T* ptr, size_t size)
- {
- return reinterpret_cast<size_t>(ptr) % size == 0;
- }
-
- //////////////////////////////////////////////////////////////////////////
- // CudaFuncTable
-
- class CudaFuncTable : public GpuFuncTable
- {
- public:
- void copy(const Mat& src, GpuMat& dst) const
- {
- cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) );
- }
- void copy(const GpuMat& src, Mat& dst) const
- {
- cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) );
- }
- void copy(const GpuMat& src, GpuMat& dst) const
- {
- cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) );
- }
-
- void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const
- {
- CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
- CV_Assert(src.size() == dst.size() && src.type() == dst.type());
- CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));
-
- if (src.depth() == CV_64F)
- {
- if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
- CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
- }
-
- typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
- static const func_t funcs[7][4] =
- {
- /* 8U */ {NppCopyMasked<CV_8U , nppiCopy_8u_C1MR >::call, cv::gpu::copyWithMask, NppCopyMasked<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyMasked<CV_8U , nppiCopy_8u_C4MR >::call},
- /* 8S */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask },
- /* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::call},
- /* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::call},
- /* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::call},
- /* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::call},
- /* 64F */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask }
- };
-
- const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask;
-
- func(src, dst, mask, 0);
- }
-
- void convert(const GpuMat& src, GpuMat& dst) const
- {
- typedef void (*func_t)(const GpuMat& src, GpuMat& dst);
- static const func_t funcs[7][7][4] =
- {
- {
- /* 8U -> 8U */ {0, 0, 0, 0},
- /* 8U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
- /* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
- /* 8U -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 8U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
- },
- {
- /* 8S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 8S -> 8S */ {0,0,0,0},
- /* 8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
- },
- {
- /* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
- /* 16U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16U -> 16U */ {0,0,0,0},
- /* 16U -> 16S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
- },
- {
- /* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
- /* 16S -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16S -> 16U */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16S -> 16S */ {0,0,0,0},
- /* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
- /* 16S -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
- },
- {
- /* 32S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32S -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32S -> 32S */ {0,0,0,0},
- /* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
- },
- {
- /* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32F -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32F -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 32F -> 32F */ {0,0,0,0},
- /* 32F -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
- },
- {
- /* 64F -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 64F -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
- /* 64F -> 64F */ {0,0,0,0}
- }
- };
-
- CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
- CV_Assert(dst.depth() <= CV_64F);
- CV_Assert(src.size() == dst.size() && src.channels() == dst.channels());
-
- if (src.depth() == CV_64F || dst.depth() == CV_64F)
- {
- if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
- CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
- }
-
- bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16);
- if (!aligned)
- {
- cv::gpu::convertTo(src, dst);
- return;
- }
-
- const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
- CV_DbgAssert(func != 0);
-
- func(src, dst);
- }
-
- void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const
- {
- CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
- CV_Assert(dst.depth() <= CV_64F);
-
- if (src.depth() == CV_64F || dst.depth() == CV_64F)
- {
- if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
- CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
- }
-
- cv::gpu::convertTo(src, dst, alpha, beta);
- }
-
- void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const
- {
- if (mask.empty())
- {
- if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
- {
- cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) );
- return;
- }
-
- if (m.depth() == CV_8U)
- {
- int cn = m.channels();
-
- if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
- {
- int val = saturate_cast<uchar>(s[0]);
- cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) );
- return;
- }
- }
-
- typedef void (*func_t)(GpuMat& src, Scalar s);
- static const func_t funcs[7][4] =
- {
- {NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
- {NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
- {NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cv::gpu::setTo , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
- {NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cv::gpu::setTo , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
- {NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
- {NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
- {cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo }
- };
-
- CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
-
- if (m.depth() == CV_64F)
- {
- if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
- CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
- }
-
- funcs[m.depth()][m.channels() - 1](m, s);
- }
- else
- {
- typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask);
- static const func_t funcs[7][4] =
- {
- {NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
- {cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo },
- {NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
- {NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
- {NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
- {NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
- {cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo }
- };
-
- CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
-
- if (m.depth() == CV_64F)
- {
- if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
- CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
- }
-
- funcs[m.depth()][m.channels() - 1](m, s, mask);
- }
- }
-
- void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const
- {
- cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) );
- }
-
- void free(void* devPtr) const
- {
- cudaFree(devPtr);
- }
- };
-
- const GpuFuncTable* gpuFuncTable()
- {
- static CudaFuncTable funcTable;
- return &funcTable;
- }
-}
-
-#endif // HAVE_CUDA
-
-void cv::gpu::GpuMat::upload(const Mat& m)
-{
- CV_DbgAssert(!m.empty());
-
- create(m.size(), m.type());
-
- gpuFuncTable()->copy(m, *this);
-}
-
-void cv::gpu::GpuMat::download(Mat& m) const
-{
- CV_DbgAssert(!empty());
-
- m.create(size(), type());
-
- gpuFuncTable()->copy(*this, m);
-}
-
-void cv::gpu::GpuMat::copyTo(GpuMat& m) const
-{
- CV_DbgAssert(!empty());
-
- m.create(size(), type());
-
- gpuFuncTable()->copy(*this, m);
-}
-
-void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
-{
- if (mask.empty())
- copyTo(mat);
- else
- {
- mat.create(size(), type());
-
- gpuFuncTable()->copyWithMask(*this, mat, mask);
- }
-}
-
-void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const
-{
- bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();
-
- if (rtype < 0)
- rtype = type();
- else
- rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
-
- int sdepth = depth();
- int ddepth = CV_MAT_DEPTH(rtype);
- if (sdepth == ddepth && noScale)
- {
- copyTo(dst);
- return;
- }
-
- GpuMat temp;
- const GpuMat* psrc = this;
- if (sdepth != ddepth && psrc == &dst)
- {
- temp = *this;
- psrc = &temp;
- }
-
- dst.create(size(), rtype);
-
- if (noScale)
- gpuFuncTable()->convert(*psrc, dst);
- else
- gpuFuncTable()->convert(*psrc, dst, alpha, beta);
-}
-
-GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
-{
- CV_Assert(mask.empty() || mask.type() == CV_8UC1);
- CV_DbgAssert(!empty());
-
- gpuFuncTable()->setTo(*this, s, mask);
-
- return *this;
-}
-
-void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
-{
- _type &= Mat::TYPE_MASK;
-
- if (rows == _rows && cols == _cols && type() == _type && data)
- return;
-
- if (data)
- release();
-
- CV_DbgAssert(_rows >= 0 && _cols >= 0);
-
- if (_rows > 0 && _cols > 0)
- {
- flags = Mat::MAGIC_VAL + _type;
- rows = _rows;
- cols = _cols;
-
- size_t esz = elemSize();
-
- void* devPtr;
- gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows);
-
- // Single row must be continuous
- if (rows == 1)
- step = esz * cols;
-
- if (esz * cols == step)
- flags |= Mat::CONTINUOUS_FLAG;
-
- int64 _nettosize = static_cast<int64>(step) * rows;
- size_t nettosize = static_cast<size_t>(_nettosize);
-
- datastart = data = static_cast<uchar*>(devPtr);
- dataend = data + nettosize;
-
- refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
- *refcount = 1;
- }
-}
-
-void cv::gpu::GpuMat::release()
-{
- if (refcount && CV_XADD(refcount, -1) == 1)
- {
- fastFree(refcount);
-
- gpuFuncTable()->free(datastart);
- }
-
- data = datastart = dataend = 0;
- step = rows = cols = 0;
- refcount = 0;
-}
-
////////////////////////////////////////////////////////////////////////
// Error handling
--- /dev/null
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include "precomp.hpp"
+
+using namespace cv;
+using namespace cv::gpu;
+
+/////////////////////////// matrix operations /////////////////////////
+
+#ifdef HAVE_CUDA
+
+// CUDA implementation
+
+#include "cuda/matrix_operations.hpp"
+
+namespace
+{
+ template <typename T> void cudaSet_(GpuMat& src, Scalar s, cudaStream_t stream)
+ {
+ Scalar_<T> sf = s;
+ cudev::set<T>(PtrStepSz<T>(src), sf.val, src.channels(), stream);
+ }
+
+ void cudaSet(GpuMat& src, Scalar s, cudaStream_t stream)
+ {
+ typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream);
+ static const func_t funcs[] =
+ {
+ cudaSet_<uchar>,
+ cudaSet_<schar>,
+ cudaSet_<ushort>,
+ cudaSet_<short>,
+ cudaSet_<int>,
+ cudaSet_<float>,
+ cudaSet_<double>
+ };
+
+ funcs[src.depth()](src, s, stream);
+ }
+
+ template <typename T> void cudaSet_(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream)
+ {
+ Scalar_<T> sf = s;
+ cudev::set<T>(PtrStepSz<T>(src), sf.val, mask, src.channels(), stream);
+ }
+
+ void cudaSet(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
+ {
+ typedef void (*func_t)(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream);
+ static const func_t funcs[] =
+ {
+ cudaSet_<uchar>,
+ cudaSet_<schar>,
+ cudaSet_<ushort>,
+ cudaSet_<short>,
+ cudaSet_<int>,
+ cudaSet_<float>,
+ cudaSet_<double>
+ };
+
+ funcs[src.depth()](src, s, mask, stream);
+ }
+
+ void cudaCopyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
+ {
+ cudev::copyWithMask(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream);
+ }
+
+ void cudaConvert(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
+ {
+ cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, stream);
+ }
+
+ void cudaConvert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream)
+ {
+ cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
+ }
+}
+
+// NPP implementation
+
+namespace
+{
+ //////////////////////////////////////////////////////////////////////////
+ // Convert
+
+ template<int SDEPTH, int DDEPTH> struct NppConvertFunc
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+ typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
+
+ typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
+ };
+ template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
+ {
+ typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
+
+ typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
+ };
+
+ template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+ typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
+
+ static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
+ {
+ NppiSize sz;
+ sz.width = src.cols;
+ sz.height = src.rows;
+
+ NppStreamHandler h(stream);
+
+ nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
+
+ if (stream == 0)
+ cudaSafeCall( cudaDeviceSynchronize() );
+ }
+ };
+ template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
+ {
+ typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
+
+ static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
+ {
+ NppiSize sz;
+ sz.width = src.cols;
+ sz.height = src.rows;
+
+ NppStreamHandler h(stream);
+
+ nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
+
+ if (stream == 0)
+ cudaSafeCall( cudaDeviceSynchronize() );
+ }
+ };
+
+ //////////////////////////////////////////////////////////////////////////
+ // Set
+
+ template<int SDEPTH, int SCN> struct NppSetFunc
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
+ };
+ template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
+ };
+ template<int SCN> struct NppSetFunc<CV_8S, SCN>
+ {
+ typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
+ };
+ template<> struct NppSetFunc<CV_8S, 1>
+ {
+ typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
+ };
+
+ template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ static void call(GpuMat& src, Scalar s, cudaStream_t stream)
+ {
+ NppiSize sz;
+ sz.width = src.cols;
+ sz.height = src.rows;
+
+ Scalar_<src_t> nppS = s;
+
+ NppStreamHandler h(stream);
+
+ nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
+
+ if (stream == 0)
+ cudaSafeCall( cudaDeviceSynchronize() );
+ }
+ };
+ template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ static void call(GpuMat& src, Scalar s, cudaStream_t stream)
+ {
+ NppiSize sz;
+ sz.width = src.cols;
+ sz.height = src.rows;
+
+ Scalar_<src_t> nppS = s;
+
+ NppStreamHandler h(stream);
+
+ nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
+
+ if (stream == 0)
+ cudaSafeCall( cudaDeviceSynchronize() );
+ }
+ };
+
+ template<int SDEPTH, int SCN> struct NppSetMaskFunc
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
+ };
+ template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
+ };
+
+ template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
+ {
+ NppiSize sz;
+ sz.width = src.cols;
+ sz.height = src.rows;
+
+ Scalar_<src_t> nppS = s;
+
+ NppStreamHandler h(stream);
+
+ nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
+
+ if (stream == 0)
+ cudaSafeCall( cudaDeviceSynchronize() );
+ }
+ };
+ template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
+ {
+ NppiSize sz;
+ sz.width = src.cols;
+ sz.height = src.rows;
+
+ Scalar_<src_t> nppS = s;
+
+ NppStreamHandler h(stream);
+
+ nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
+
+ if (stream == 0)
+ cudaSafeCall( cudaDeviceSynchronize() );
+ }
+ };
+
+ //////////////////////////////////////////////////////////////////////////
+ // CopyMasked
+
+ template<int SDEPTH> struct NppCopyWithMaskFunc
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
+ };
+
+ template<int SDEPTH, typename NppCopyWithMaskFunc<SDEPTH>::func_ptr func> struct NppCopyWithMask
+ {
+ typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
+
+ static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
+ {
+ NppiSize sz;
+ sz.width = src.cols;
+ sz.height = src.rows;
+
+ NppStreamHandler h(stream);
+
+ nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
+
+ if (stream == 0)
+ cudaSafeCall( cudaDeviceSynchronize() );
+ }
+ };
+}
+
+// Dispatcher
+
+namespace cv { namespace gpu
+{
+ void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0);
+ void convert(const GpuMat& src, GpuMat& dst, cudaStream_t stream = 0);
+ void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0);
+ void set(GpuMat& m, Scalar s, cudaStream_t stream = 0);
+ void set(GpuMat& m, Scalar s, const GpuMat& mask, cudaStream_t stream = 0);
+}}
+
+namespace cv { namespace gpu
+{
+ void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
+ {
+ CV_DbgAssert( src.size() == dst.size() && src.type() == dst.type() );
+
+ CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
+ CV_Assert( src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()) );
+
+ if (src.depth() == CV_64F)
+ {
+ CV_Assert( deviceSupports(NATIVE_DOUBLE) );
+ }
+
+ typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
+ static const func_t funcs[7][4] =
+ {
+ /* 8U */ {NppCopyWithMask<CV_8U , nppiCopy_8u_C1MR >::call, cudaCopyWithMask, NppCopyWithMask<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyWithMask<CV_8U , nppiCopy_8u_C4MR >::call},
+ /* 8S */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask },
+ /* 16U */ {NppCopyWithMask<CV_16U, nppiCopy_16u_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyWithMask<CV_16U, nppiCopy_16u_C4MR>::call},
+ /* 16S */ {NppCopyWithMask<CV_16S, nppiCopy_16s_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyWithMask<CV_16S, nppiCopy_16s_C4MR>::call},
+ /* 32S */ {NppCopyWithMask<CV_32S, nppiCopy_32s_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyWithMask<CV_32S, nppiCopy_32s_C4MR>::call},
+ /* 32F */ {NppCopyWithMask<CV_32F, nppiCopy_32f_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyWithMask<CV_32F, nppiCopy_32f_C4MR>::call},
+ /* 64F */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask }
+ };
+
+ const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cudaCopyWithMask;
+
+ func(src, dst, mask, stream);
+ }
+
+ void convert(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
+ {
+ CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() );
+
+ CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
+ CV_Assert( dst.depth() <= CV_64F );
+
+ if (src.depth() == CV_64F || dst.depth() == CV_64F)
+ {
+ CV_Assert( deviceSupports(NATIVE_DOUBLE) );
+ }
+
+ typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream);
+ static const func_t funcs[7][7][4] =
+ {
+ {
+ /* 8U -> 8U */ {0, 0, 0, 0},
+ /* 8U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
+ /* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cudaConvert, cudaConvert, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
+ /* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cudaConvert, cudaConvert, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
+ /* 8U -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
+ /* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
+ /* 8U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
+ },
+ {
+ /* 8S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 8S -> 8S */ {0,0,0,0},
+ /* 8S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 8S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 8S -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 8S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 8S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}
+ },
+ {
+ /* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cudaConvert, cudaConvert, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
+ /* 16U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
+ /* 16U -> 16U */ {0,0,0,0},
+ /* 16U -> 16S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
+ /* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
+ /* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
+ /* 16U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
+ },
+ {
+ /* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cudaConvert, cudaConvert, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
+ /* 16S -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
+ /* 16S -> 16U */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
+ /* 16S -> 16S */ {0,0,0,0},
+ /* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
+ /* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
+ /* 16S -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
+ },
+ {
+ /* 32S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 32S -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 32S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 32S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 32S -> 32S */ {0,0,0,0},
+ /* 32S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 32S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}
+ },
+ {
+ /* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cudaConvert, cudaConvert, cudaConvert},
+ /* 32F -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert},
+ /* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cudaConvert, cudaConvert, cudaConvert},
+ /* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cudaConvert, cudaConvert, cudaConvert},
+ /* 32F -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert},
+ /* 32F -> 32F */ {0,0,0,0},
+ /* 32F -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert}
+ },
+ {
+ /* 64F -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 64F -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 64F -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 64F -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 64F -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 64F -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
+ /* 64F -> 64F */ {0,0,0,0}
+ }
+ };
+
+ const bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16);
+ if (!aligned)
+ {
+ cudaConvert(src, dst, stream);
+ return;
+ }
+
+ const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
+ CV_DbgAssert( func != 0 );
+
+ func(src, dst, stream);
+ }
+
+ void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream)
+ {
+ CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() );
+
+ CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
+ CV_Assert( dst.depth() <= CV_64F );
+
+ if (src.depth() == CV_64F || dst.depth() == CV_64F)
+ {
+ CV_Assert( deviceSupports(NATIVE_DOUBLE) );
+ }
+
+ cudaConvert(src, dst, alpha, beta, stream);
+ }
+
+ void set(GpuMat& m, Scalar s, cudaStream_t stream)
+ {
+ if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
+ {
+ if (stream)
+ cudaSafeCall( cudaMemset2DAsync(m.data, m.step, 0, m.cols * m.elemSize(), m.rows, stream) );
+ else
+ cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) );
+ return;
+ }
+
+ if (m.depth() == CV_8U)
+ {
+ int cn = m.channels();
+
+ if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
+ {
+ int val = saturate_cast<uchar>(s[0]);
+ if (stream)
+ cudaSafeCall( cudaMemset2DAsync(m.data, m.step, val, m.cols * m.elemSize(), m.rows, stream) );
+ else
+ cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) );
+ return;
+ }
+ }
+
+ typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream);
+ static const func_t funcs[7][4] =
+ {
+ {NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cudaSet , cudaSet , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
+ {NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
+ {NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cudaSet , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
+ {NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cudaSet , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
+ {NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cudaSet , cudaSet , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
+ {NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cudaSet , cudaSet , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
+ {cudaSet , cudaSet , cudaSet , cudaSet }
+ };
+
+ CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 );
+
+ if (m.depth() == CV_64F)
+ {
+ CV_Assert( deviceSupports(NATIVE_DOUBLE) );
+ }
+
+ funcs[m.depth()][m.channels() - 1](m, s, stream);
+ }
+
+ void set(GpuMat& m, Scalar s, const GpuMat& mask, cudaStream_t stream)
+ {
+ CV_DbgAssert( !mask.empty() );
+
+ CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 );
+
+ if (m.depth() == CV_64F)
+ {
+ CV_Assert( deviceSupports(NATIVE_DOUBLE) );
+ }
+
+ typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
+ static const func_t funcs[7][4] =
+ {
+ {NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cudaSet, cudaSet, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
+ {cudaSet , cudaSet, cudaSet, cudaSet },
+ {NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
+ {NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
+ {NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
+ {NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
+ {cudaSet , cudaSet, cudaSet, cudaSet }
+ };
+
+ funcs[m.depth()][m.channels() - 1](m, s, mask, stream);
+ }
+}}
+
+#endif // HAVE_CUDA
+
+cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
+ flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
+ step(step_), data((uchar*)data_), refcount(0),
+ datastart((uchar*)data_), dataend((uchar*)data_)
+{
+ size_t minstep = cols * elemSize();
+
+ if (step == Mat::AUTO_STEP)
+ {
+ step = minstep;
+ flags |= Mat::CONTINUOUS_FLAG;
+ }
+ else
+ {
+ if (rows == 1)
+ step = minstep;
+
+ CV_DbgAssert( step >= minstep );
+
+ flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
+ }
+
+ dataend += step * (rows - 1) + minstep;
+}
+
+cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
+ flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width),
+ step(step_), data((uchar*)data_), refcount(0),
+ datastart((uchar*)data_), dataend((uchar*)data_)
+{
+ size_t minstep = cols * elemSize();
+
+ if (step == Mat::AUTO_STEP)
+ {
+ step = minstep;
+ flags |= Mat::CONTINUOUS_FLAG;
+ }
+ else
+ {
+ if (rows == 1)
+ step = minstep;
+
+ CV_DbgAssert( step >= minstep );
+
+ flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
+ }
+ dataend += step * (rows - 1) + minstep;
+}
+
+cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range rowRange_, Range colRange_)
+{
+ flags = m.flags;
+ step = m.step; refcount = m.refcount;
+ data = m.data; datastart = m.datastart; dataend = m.dataend;
+
+ if (rowRange_ == Range::all())
+ {
+ rows = m.rows;
+ }
+ else
+ {
+ CV_Assert( 0 <= rowRange_.start && rowRange_.start <= rowRange_.end && rowRange_.end <= m.rows );
+
+ rows = rowRange_.size();
+ data += step*rowRange_.start;
+ }
+
+ if (colRange_ == Range::all())
+ {
+ cols = m.cols;
+ }
+ else
+ {
+ CV_Assert( 0 <= colRange_.start && colRange_.start <= colRange_.end && colRange_.end <= m.cols );
+
+ cols = colRange_.size();
+ data += colRange_.start*elemSize();
+ flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
+ }
+
+ if (rows == 1)
+ flags |= Mat::CONTINUOUS_FLAG;
+
+ if (refcount)
+ CV_XADD(refcount, 1);
+
+ if (rows <= 0 || cols <= 0)
+ rows = cols = 0;
+}
+
+cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
+ flags(m.flags), rows(roi.height), cols(roi.width),
+ step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
+ datastart(m.datastart), dataend(m.dataend)
+{
+ flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
+ data += roi.x * elemSize();
+
+ CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
+
+ if (refcount)
+ CV_XADD(refcount, 1);
+
+ if (rows <= 0 || cols <= 0)
+ rows = cols = 0;
+}
+
+void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
+{
+#ifndef HAVE_CUDA
+ (void) _rows;
+ (void) _cols;
+ (void) _type;
+ throw_no_cuda();
+#else
+ _type &= Mat::TYPE_MASK;
+
+ if (rows == _rows && cols == _cols && type() == _type && data)
+ return;
+
+ if (data)
+ release();
+
+ CV_DbgAssert( _rows >= 0 && _cols >= 0 );
+
+ if (_rows > 0 && _cols > 0)
+ {
+ flags = Mat::MAGIC_VAL + _type;
+ rows = _rows;
+ cols = _cols;
+
+ size_t esz = elemSize();
+
+ void* devPtr;
+ cudaSafeCall( cudaMallocPitch(&devPtr, &step, esz * cols, rows) );
+
+ // Single row must be continuous
+ if (rows == 1)
+ step = esz * cols;
+
+ if (esz * cols == step)
+ flags |= Mat::CONTINUOUS_FLAG;
+
+ int64 _nettosize = static_cast<int64>(step) * rows;
+ size_t nettosize = static_cast<size_t>(_nettosize);
+
+ datastart = data = static_cast<uchar*>(devPtr);
+ dataend = data + nettosize;
+
+ refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
+ *refcount = 1;
+ }
+#endif
+}
+
+void cv::gpu::GpuMat::release()
+{
+#ifdef HAVE_CUDA
+ if (refcount && CV_XADD(refcount, -1) == 1)
+ {
+ cudaFree(datastart);
+ fastFree(refcount);
+ }
+
+ data = datastart = dataend = 0;
+ step = rows = cols = 0;
+ refcount = 0;
+#endif
+}
+
+void cv::gpu::GpuMat::upload(const Mat& m)
+{
+#ifndef HAVE_CUDA
+ (void) m;
+ throw_no_cuda();
+#else
+ CV_DbgAssert( !m.empty() );
+
+ create(m.size(), m.type());
+
+ cudaSafeCall( cudaMemcpy2D(data, step, m.data, m.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
+#endif
+}
+
+void cv::gpu::GpuMat::download(Mat& m) const
+{
+#ifndef HAVE_CUDA
+ (void) m;
+ throw_no_cuda();
+#else
+ CV_DbgAssert( !empty() );
+
+ m.create(size(), type());
+
+ cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
+#endif
+}
+
+void cv::gpu::GpuMat::copyTo(GpuMat& m) const
+{
+#ifndef HAVE_CUDA
+ (void) m;
+ throw_no_cuda();
+#else
+ CV_DbgAssert( !empty() );
+
+ m.create(size(), type());
+
+ cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) );
+#endif
+}
+
+void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
+{
+#ifndef HAVE_CUDA
+ (void) mat;
+ (void) mask;
+ throw_no_cuda();
+#else
+ CV_DbgAssert( !empty() );
+
+ if (mask.empty())
+ {
+ copyTo(mat);
+ }
+ else
+ {
+ mat.create(size(), type());
+
+ copyWithMask(*this, mat, mask);
+ }
+#endif
+}
+
+GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
+{
+#ifndef HAVE_CUDA
+ (void) s;
+ (void) mask;
+ throw_no_cuda();
+ return *this;
+#else
+ CV_DbgAssert( !empty() );
+
+ if (mask.empty())
+ set(*this, s);
+ else
+ set(*this, s, mask);
+
+ return *this;
+#endif
+}
+
+void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const
+{
+#ifndef HAVE_CUDA
+ (void) dst;
+ (void) rtype;
+ (void) alpha;
+ (void) beta;
+ throw_no_cuda();
+#else
+ bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();
+
+ if (rtype < 0)
+ rtype = type();
+ else
+ rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
+
+ int sdepth = depth();
+ int ddepth = CV_MAT_DEPTH(rtype);
+ if (sdepth == ddepth && noScale)
+ {
+ copyTo(dst);
+ return;
+ }
+
+ GpuMat temp;
+ const GpuMat* psrc = this;
+ if (sdepth != ddepth && psrc == &dst)
+ {
+ temp = *this;
+ psrc = &temp;
+ }
+
+ dst.create(size(), rtype);
+
+ if (noScale)
+ convert(*psrc, dst);
+ else
+ convert(*psrc, dst, alpha, beta);
+#endif
+}
+
+GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
+{
+ GpuMat hdr = *this;
+
+ int cn = channels();
+ if (new_cn == 0)
+ new_cn = cn;
+
+ int total_width = cols * cn;
+
+ if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
+ new_rows = rows * total_width / new_cn;
+
+ if (new_rows != 0 && new_rows != rows)
+ {
+ int total_size = total_width * rows;
+
+ if (!isContinuous())
+ CV_Error(cv::Error::BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
+
+ if ((unsigned)new_rows > (unsigned)total_size)
+ CV_Error(cv::Error::StsOutOfRange, "Bad new number of rows");
+
+ total_width = total_size / new_rows;
+
+ if (total_width * new_rows != total_size)
+ CV_Error(cv::Error::StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
+
+ hdr.rows = new_rows;
+ hdr.step = total_width * elemSize1();
+ }
+
+ int new_width = total_width / new_cn;
+
+ if (new_width * new_cn != total_width)
+ CV_Error(cv::Error::BadNumChannels, "The total width is not divisible by the new number of channels");
+
+ hdr.cols = new_width;
+ hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
+
+ return hdr;
+}
+
+void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
+{
+ CV_DbgAssert( step > 0 );
+
+ size_t esz = elemSize();
+ ptrdiff_t delta1 = data - datastart;
+ ptrdiff_t delta2 = dataend - datastart;
+
+ if (delta1 == 0)
+ {
+ ofs.x = ofs.y = 0;
+ }
+ else
+ {
+ ofs.y = static_cast<int>(delta1 / step);
+ ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
+
+ CV_DbgAssert( data == datastart + ofs.y * step + ofs.x * esz );
+ }
+
+ size_t minstep = (ofs.x + cols) * esz;
+
+ wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
+ wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
+}
+
+GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
+{
+ Size wholeSize;
+ Point ofs;
+ locateROI(wholeSize, ofs);
+
+ size_t esz = elemSize();
+
+ int row1 = std::max(ofs.y - dtop, 0);
+ int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
+
+ int col1 = std::max(ofs.x - dleft, 0);
+ int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
+
+ data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
+ rows = row2 - row1;
+ cols = col2 - col1;
+
+ if (esz * cols == step || rows == 1)
+ flags |= Mat::CONTINUOUS_FLAG;
+ else
+ flags &= ~Mat::CONTINUOUS_FLAG;
+
+ return *this;
+}
+
+void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m)
+{
+ const int area = rows * cols;
+
+ if (m.empty() || m.type() != type || !m.isContinuous() || m.size().area() < area)
+ m.create(1, area, type);
+
+ m.cols = cols;
+ m.rows = rows;
+ m.step = m.elemSize() * cols;
+ m.flags |= Mat::CONTINUOUS_FLAG;
+}
+
+void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m)
+{
+ if (m.empty() || m.type() != type || m.data != m.datastart)
+ {
+ m.create(rows, cols, type);
+ }
+ else
+ {
+ const size_t esz = m.elemSize();
+ const ptrdiff_t delta2 = m.dataend - m.datastart;
+
+ const size_t minstep = m.cols * esz;
+
+ Size wholeSize;
+ wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / m.step + 1), m.rows);
+ wholeSize.width = std::max(static_cast<int>((delta2 - m.step * (wholeSize.height - 1)) / esz), m.cols);
+
+ if (wholeSize.height < rows || wholeSize.width < cols)
+ {
+ m.create(rows, cols, type);
+ }
+ else
+ {
+ m.cols = cols;
+ m.rows = rows;
+ }
+ }
+}
+
+GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
+{
+ if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
+ return mat(Rect(0, 0, cols, rows));
+
+ return mat = GpuMat(rows, cols, type);
+}
namespace cv { namespace gpu
{
- void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
- void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream);
- void setTo(GpuMat& src, Scalar s, cudaStream_t stream);
- void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
+ void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0);
+ void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0);
+ void set(GpuMat& m, Scalar s, cudaStream_t stream = 0);
+ void set(GpuMat& m, Scalar s, const GpuMat& mask, cudaStream_t stream = 0);
}}
struct Stream::Impl
}
}
- setTo(src, val, stream);
+ set(src, val, stream);
}
void cv::gpu::Stream::enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask)
cudaStream_t stream = Impl::getStream(impl);
- setTo(src, val, mask, stream);
+ set(src, val, mask, stream);
}
void cv::gpu::Stream::enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double alpha, double beta)
dst.create(src.size(), dtype);
cudaStream_t stream = Impl::getStream(impl);
- convertTo(src, dst, alpha, beta, stream);
+ convert(src, dst, alpha, beta, stream);
}
#if CUDART_VERSION >= 5000