pages. This can happen for a variety of reasons but a common
reason is that a huge page is old and is being reclaimed.
+thp_zero_page_alloc is incremented every time a huge zero page is
+ successfully allocated. It includes allocations which where
+ dropped due race with other allocation. Note, it doesn't count
+ every map of the huge zero page, only its allocation.
+
+thp_zero_page_alloc_failed is incremented if kernel fails to allocate
+ huge zero page and falls back to using small pages.
+
As the system ages, allocating huge pages may be expensive as the
system uses memory compaction to copy data around memory to free a
huge page for use. There are some counters in /proc/vmstat to help
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
HPAGE_PMD_ORDER);
- if (!zero_page)
+ if (!zero_page) {
+ count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
return 0;
+ }
+ count_vm_event(THP_ZERO_PAGE_ALLOC);
preempt_disable();
if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
preempt_enable();
"thp_collapse_alloc",
"thp_collapse_alloc_failed",
"thp_split",
+ "thp_zero_page_alloc",
+ "thp_zero_page_alloc_failed",
#endif
#endif /* CONFIG_VM_EVENTS_COUNTERS */