Corner-case failure when both input shapes had unit shape on the X axis.
Broadcasting was enabled leading to invalid window execution.
Check is updated to cross-validate the presence of broadcasting by
checking the X dimension in both input shapes.
Signed-off-by: Georgios Pinitas <georgios.pinitas@arm.com>
Change-Id: I0b79542279e8d155d2661fddff9691d94a1f6855
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4391
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
constexpr int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
constexpr int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const int window_step_x = std::min(16 / static_cast<int>(sizeof(OutputScalarType)), 8);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform();
const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
constexpr int window_step_x = 16 / sizeof(float);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
using ExactTagType = typename wrapper::traits::neon_vector<float, window_step_x>::tag_type;
constexpr int window_step_x = 8 / sizeof(float);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;