--- /dev/null
+import argparse
+import time
+import numpy as np
+import cv2 as cv
+
+# ------------------------Service operations------------------------
+def weight_path(model_path):
+ """ Get path of weights based on path to IR
+
+ Params:
+ model_path: the string contains path to IR file
+
+ Return:
+ Path to weights file
+ """
+ assert model_path.endswith('.xml'), "Wrong topology path was provided"
+ return model_path[:-3] + 'bin'
+
+
+def build_argparser():
+ """ Parse arguments from command line
+
+ Return:
+ Pack of arguments from command line
+ """
+ parser = argparse.ArgumentParser(description='This is an OpenCV-based version of Gaze Estimation example')
+
+ parser.add_argument('--input',
+ help='Path to the input video file')
+ parser.add_argument('--out',
+ help='Path to the output video file')
+ parser.add_argument('--facem',
+ default='face-detection-retail-0005.xml',
+ help='Path to OpenVINO face detection model (.xml)')
+ parser.add_argument('--faced',
+ default='CPU',
+ help='Target device for the face detection' +
+ '(e.g. CPU, GPU, VPU, ...)')
+ parser.add_argument('--headm',
+ default='head-pose-estimation-adas-0001.xml',
+ help='Path to OpenVINO head pose estimation model (.xml)')
+ parser.add_argument('--headd',
+ default='CPU',
+ help='Target device for the head pose estimation inference ' +
+ '(e.g. CPU, GPU, VPU, ...)')
+ parser.add_argument('--landm',
+ default='facial-landmarks-35-adas-0002.xml',
+ help='Path to OpenVINO landmarks detector model (.xml)')
+ parser.add_argument('--landd',
+ default='CPU',
+ help='Target device for the landmarks detector (e.g. CPU, GPU, VPU, ...)')
+ parser.add_argument('--gazem',
+ default='gaze-estimation-adas-0002.xml',
+ help='Path to OpenVINO gaze vector estimaiton model (.xml)')
+ parser.add_argument('--gazed',
+ default='CPU',
+ help='Target device for the gaze vector estimation inference ' +
+ '(e.g. CPU, GPU, VPU, ...)')
+ parser.add_argument('--eyem',
+ default='open-closed-eye-0001.xml',
+ help='Path to OpenVINO open closed eye model (.xml)')
+ parser.add_argument('--eyed',
+ default='CPU',
+ help='Target device for the eyes state inference (e.g. CPU, GPU, VPU, ...)')
+ return parser
+
+
+# ------------------------Support functions for custom kernels------------------------
+def intersection(surface, rect):
+ """ Remove zone of out of bound from ROI
+
+ Params:
+ surface: image bounds is rect representation (top left coordinates and width and height)
+ rect: region of interest is also has rect representation
+
+ Return:
+ Modified ROI with correct bounds
+ """
+ l_x = max(surface[0], rect[0])
+ l_y = max(surface[1], rect[1])
+ width = min(surface[0] + surface[2], rect[0] + rect[2]) - l_x
+ height = min(surface[1] + surface[3], rect[1] + rect[3]) - l_y
+ if width < 0 or height < 0:
+ return (0, 0, 0, 0)
+ return (l_x, l_y, width, height)
+
+
+def process_landmarks(r_x, r_y, r_w, r_h, landmarks):
+ """ Create points from result of inference of facial-landmarks network and size of input image
+
+ Params:
+ r_x: x coordinate of top left corner of input image
+ r_y: y coordinate of top left corner of input image
+ r_w: width of input image
+ r_h: height of input image
+ landmarks: result of inference of facial-landmarks network
+
+ Return:
+ Array of landmarks points for one face
+ """
+ lmrks = landmarks[0]
+ raw_x = lmrks[::2] * r_w + r_x
+ raw_y = lmrks[1::2] * r_h + r_y
+ return np.array([[int(x), int(y)] for x, y in zip(raw_x, raw_y)])
+
+
+def eye_box(p_1, p_2, scale=1.8):
+ """ Get bounding box of eye
+
+ Params:
+ p_1: point of left edge of eye
+ p_2: point of right edge of eye
+ scale: change size of box with this value
+
+ Return:
+ Bounding box of eye and its midpoint
+ """
+
+ size = np.linalg.norm(p_1 - p_2)
+ midpoint = (p_1 + p_2) / 2
+ width = scale * size
+ height = width
+ p_x = midpoint[0] - (width / 2)
+ p_y = midpoint[1] - (height / 2)
+ return (int(p_x), int(p_y), int(width), int(height)), list(map(int, midpoint))
+
+
+# ------------------------Custom graph operations------------------------
+@cv.gapi.op('custom.GProcessPoses',
+ in_types=[cv.GArray.GMat, cv.GArray.GMat, cv.GArray.GMat],
+ out_types=[cv.GArray.GMat])
+class GProcessPoses:
+ @staticmethod
+ def outMeta(arr_desc0, arr_desc1, arr_desc2):
+ return cv.empty_array_desc()
+
+
+@cv.gapi.op('custom.GParseEyes',
+ in_types=[cv.GArray.GMat, cv.GArray.Rect, cv.GOpaque.Size],
+ out_types=[cv.GArray.Rect, cv.GArray.Rect, cv.GArray.Point, cv.GArray.Point])
+class GParseEyes:
+ @staticmethod
+ def outMeta(arr_desc0, arr_desc1, arr_desc2):
+ return cv.empty_array_desc(), cv.empty_array_desc(), \
+ cv.empty_array_desc(), cv.empty_array_desc()
+
+
+@cv.gapi.op('custom.GGetStates',
+ in_types=[cv.GArray.GMat, cv.GArray.GMat],
+ out_types=[cv.GArray.Int, cv.GArray.Int])
+class GGetStates:
+ @staticmethod
+ def outMeta(arr_desc0, arr_desc1):
+ return cv.empty_array_desc(), cv.empty_array_desc()
+
+
+# ------------------------Custom kernels------------------------
+@cv.gapi.kernel(GProcessPoses)
+class GProcessPosesImpl:
+ """ Custom kernel. Processed poses of heads
+ """
+ @staticmethod
+ def run(in_ys, in_ps, in_rs):
+ """ Сustom kernel executable code
+
+ Params:
+ in_ys: yaw angle of head
+ in_ps: pitch angle of head
+ in_rs: roll angle of head
+
+ Return:
+ Arrays with heads poses
+ """
+ out_poses = []
+ size = len(in_ys)
+ for i in range(size):
+ out_poses.append(np.array([in_ys[i][0], in_ps[i][0], in_rs[i][0]]).T)
+ return out_poses
+
+
+@cv.gapi.kernel(GParseEyes)
+class GParseEyesImpl:
+ """ Custom kernel. Get information about eyes
+ """
+ @staticmethod
+ def run(in_landm_per_face, in_face_rcs, frame_size):
+ """ Сustom kernel executable code
+
+ Params:
+ in_landm_per_face: landmarks from inference of facial-landmarks network for each face
+ in_face_rcs: bounding boxes for each face
+ frame_size: size of input image
+
+ Return:
+ Arrays of ROI for left and right eyes, array of midpoints and
+ array of landmarks points
+ """
+ left_eyes = []
+ right_eyes = []
+ midpoints = []
+ lmarks = []
+ num_faces = len(in_landm_per_face)
+ surface = (0, 0, *frame_size)
+ for i in range(num_faces):
+ rect = in_face_rcs[i]
+ points = process_landmarks(*rect, in_landm_per_face[i])
+ for p in points:
+ lmarks.append(p)
+ size = int(len(in_landm_per_face[i][0]) / 2)
+
+ rect, midpoint_l = eye_box(lmarks[0 + i * size], lmarks[1 + i * size])
+ left_eyes.append(intersection(surface, rect))
+ rect, midpoint_r = eye_box(lmarks[2 + i * size], lmarks[3 + i * size])
+ right_eyes.append(intersection(surface, rect))
+ midpoints += [midpoint_l, midpoint_r]
+ return left_eyes, right_eyes, midpoints, lmarks
+
+
+@cv.gapi.kernel(GGetStates)
+class GGetStatesImpl:
+ """ Custom kernel. Get state of eye - open or closed
+ """
+ @staticmethod
+ def run(eyesl, eyesr):
+ """ Сustom kernel executable code
+
+ Params:
+ eyesl: result of inference of open-closed-eye network for left eye
+ eyesr: result of inference of open-closed-eye network for right eye
+
+ Return:
+ States of left eyes and states of right eyes
+ """
+ size = len(eyesl)
+ out_l_st = []
+ out_r_st = []
+ for i in range(size):
+ for st in eyesl[i]:
+ out_l_st += [1 if st[0] < st[1] else 0]
+ for st in eyesr[i]:
+ out_r_st += [1 if st[0] < st[1] else 0]
+ return out_l_st, out_r_st
+
+
+if __name__ == '__main__':
+ ARGUMENTS = build_argparser().parse_args()
+
+ # ------------------------Demo's graph------------------------
+ g_in = cv.GMat()
+
+ # Detect faces
+ face_inputs = cv.GInferInputs()
+ face_inputs.setInput('data', g_in)
+ face_outputs = cv.gapi.infer('face-detection', face_inputs)
+ faces = face_outputs.at('detection_out')
+
+ # Parse faces
+ sz = cv.gapi.streaming.size(g_in)
+ faces_rc = cv.gapi.parseSSD(faces, sz, 0.5, False, False)
+
+ # Detect poses
+ head_inputs = cv.GInferInputs()
+ head_inputs.setInput('data', g_in)
+ face_outputs = cv.gapi.infer('head-pose', faces_rc, head_inputs)
+ angles_y = face_outputs.at('angle_y_fc')
+ angles_p = face_outputs.at('angle_p_fc')
+ angles_r = face_outputs.at('angle_r_fc')
+
+ # Parse poses
+ heads_pos = GProcessPoses.on(angles_y, angles_p, angles_r)
+
+ # Detect landmarks
+ landmark_inputs = cv.GInferInputs()
+ landmark_inputs.setInput('data', g_in)
+ landmark_outputs = cv.gapi.infer('facial-landmarks', faces_rc,
+ landmark_inputs)
+ landmark = landmark_outputs.at('align_fc3')
+
+ # Parse landmarks
+ left_eyes, right_eyes, mids, lmarks = GParseEyes.on(landmark, faces_rc, sz)
+
+ # Detect eyes
+ eyes_inputs = cv.GInferInputs()
+ eyes_inputs.setInput('input.1', g_in)
+ eyesl_outputs = cv.gapi.infer('open-closed-eye', left_eyes, eyes_inputs)
+ eyesr_outputs = cv.gapi.infer('open-closed-eye', right_eyes, eyes_inputs)
+ eyesl = eyesl_outputs.at('19')
+ eyesr = eyesr_outputs.at('19')
+
+ # Process eyes states
+ l_eye_st, r_eye_st = GGetStates.on(eyesl, eyesr)
+
+ # Gaze estimation
+ gaze_inputs = cv.GInferListInputs()
+ gaze_inputs.setInput('left_eye_image', left_eyes)
+ gaze_inputs.setInput('right_eye_image', right_eyes)
+ gaze_inputs.setInput('head_pose_angles', heads_pos)
+ gaze_outputs = cv.gapi.infer2('gaze-estimation', g_in, gaze_inputs)
+ gaze_vectors = gaze_outputs.at('gaze_vector')
+
+ out = cv.gapi.copy(g_in)
+ # ------------------------End of graph------------------------
+
+ comp = cv.GComputation(cv.GIn(g_in), cv.GOut(out,
+ faces_rc,
+ left_eyes,
+ right_eyes,
+ gaze_vectors,
+ angles_y,
+ angles_p,
+ angles_r,
+ l_eye_st,
+ r_eye_st,
+ mids,
+ lmarks))
+
+ # Networks
+ face_net = cv.gapi.ie.params('face-detection', ARGUMENTS.facem,
+ weight_path(ARGUMENTS.facem), ARGUMENTS.faced)
+ head_pose_net = cv.gapi.ie.params('head-pose', ARGUMENTS.headm,
+ weight_path(ARGUMENTS.headm), ARGUMENTS.headd)
+ landmarks_net = cv.gapi.ie.params('facial-landmarks', ARGUMENTS.landm,
+ weight_path(ARGUMENTS.landm), ARGUMENTS.landd)
+ gaze_net = cv.gapi.ie.params('gaze-estimation', ARGUMENTS.gazem,
+ weight_path(ARGUMENTS.gazem), ARGUMENTS.gazed)
+ eye_net = cv.gapi.ie.params('open-closed-eye', ARGUMENTS.eyem,
+ weight_path(ARGUMENTS.eyem), ARGUMENTS.eyed)
+
+ nets = cv.gapi.networks(face_net, head_pose_net, landmarks_net, gaze_net, eye_net)
+
+ # Kernels pack
+ kernels = cv.gapi.kernels(GParseEyesImpl, GProcessPosesImpl, GGetStatesImpl)
+
+ # ------------------------Execution part------------------------
+ ccomp = comp.compileStreaming(args=cv.gapi.compile_args(kernels, nets))
+ source = cv.gapi.wip.make_capture_src(ARGUMENTS.input)
+ ccomp.setSource(cv.gin(source))
+ ccomp.start()
+
+ frames = 0
+ fps = 0
+ print('Processing')
+ START_TIME = time.time()
+
+ while True:
+ start_time_cycle = time.time()
+ has_frame, (oimg,
+ outr,
+ l_eyes,
+ r_eyes,
+ outg,
+ out_y,
+ out_p,
+ out_r,
+ out_st_l,
+ out_st_r,
+ out_mids,
+ outl) = ccomp.pull()
+
+ if not has_frame:
+ break
+
+ # Draw
+ GREEN = (0, 255, 0)
+ RED = (0, 0, 255)
+ WHITE = (255, 255, 255)
+ BLUE = (255, 0, 0)
+ PINK = (255, 0, 255)
+ YELLOW = (0, 255, 255)
+
+ M_PI_180 = np.pi / 180
+ M_PI_2 = np.pi / 2
+ M_PI = np.pi
+
+ FACES_SIZE = len(outr)
+
+ for i, out_rect in enumerate(outr):
+ # Face box
+ cv.rectangle(oimg, out_rect, WHITE, 1)
+ rx, ry, rwidth, rheight = out_rect
+
+ # Landmarks
+ lm_radius = int(0.01 * rwidth + 1)
+ lmsize = int(len(outl) / FACES_SIZE)
+ for j in range(lmsize):
+ cv.circle(oimg, outl[j + i * lmsize], lm_radius, YELLOW, -1)
+
+ # Headposes
+ yaw = out_y[i]
+ pitch = out_p[i]
+ roll = out_r[i]
+ sin_y = np.sin(yaw[:] * M_PI_180)
+ sin_p = np.sin(pitch[:] * M_PI_180)
+ sin_r = np.sin(roll[:] * M_PI_180)
+
+ cos_y = np.cos(yaw[:] * M_PI_180)
+ cos_p = np.cos(pitch[:] * M_PI_180)
+ cos_r = np.cos(roll[:] * M_PI_180)
+
+ axis_length = 0.4 * rwidth
+ x_center = int(rx + rwidth / 2)
+ y_center = int(ry + rheight / 2)
+
+ # center to right
+ cv.line(oimg, [x_center, y_center],
+ [int(x_center + axis_length * (cos_r * cos_y + sin_y * sin_p * sin_r)),
+ int(y_center + axis_length * cos_p * sin_r)],
+ RED, 2)
+
+ # center to top
+ cv.line(oimg, [x_center, y_center],
+ [int(x_center + axis_length * (cos_r * sin_y * sin_p + cos_y * sin_r)),
+ int(y_center - axis_length * cos_p * cos_r)],
+ GREEN, 2)
+
+ # center to forward
+ cv.line(oimg, [x_center, y_center],
+ [int(x_center + axis_length * sin_y * cos_p),
+ int(y_center + axis_length * sin_p)],
+ PINK, 2)
+
+ scale_box = 0.002 * rwidth
+ cv.putText(oimg, "head pose: (y=%0.0f, p=%0.0f, r=%0.0f)" %
+ (np.round(yaw), np.round(pitch), np.round(roll)),
+ [int(rx), int(ry + rheight + 5 * rwidth / 100)],
+ cv.FONT_HERSHEY_PLAIN, scale_box * 2, WHITE, 1)
+
+ # Eyes boxes
+ color_l = GREEN if out_st_l[i] else RED
+ cv.rectangle(oimg, l_eyes[i], color_l, 1)
+ color_r = GREEN if out_st_r[i] else RED
+ cv.rectangle(oimg, r_eyes[i], color_r, 1)
+
+ # Gaze vectors
+ norm_gazes = np.linalg.norm(outg[i][0])
+ gaze_vector = outg[i][0] / norm_gazes
+
+ arrow_length = 0.4 * rwidth
+ gaze_arrow = [arrow_length * gaze_vector[0], -arrow_length * gaze_vector[1]]
+ left_arrow = [int(a+b) for a, b in zip(out_mids[0 + i * 2], gaze_arrow)]
+ right_arrow = [int(a+b) for a, b in zip(out_mids[1 + i * 2], gaze_arrow)]
+ if out_st_l[i]:
+ cv.arrowedLine(oimg, out_mids[0 + i * 2], left_arrow, BLUE, 2)
+ if out_st_r[i]:
+ cv.arrowedLine(oimg, out_mids[1 + i * 2], right_arrow, BLUE, 2)
+
+ v0, v1, v2 = outg[i][0]
+
+ gaze_angles = [180 / M_PI * (M_PI_2 + np.arctan2(v2, v0)),
+ 180 / M_PI * (M_PI_2 - np.arccos(v1 / norm_gazes))]
+ cv.putText(oimg, "gaze angles: (h=%0.0f, v=%0.0f)" %
+ (np.round(gaze_angles[0]), np.round(gaze_angles[1])),
+ [int(rx), int(ry + rheight + 12 * rwidth / 100)],
+ cv.FONT_HERSHEY_PLAIN, scale_box * 2, WHITE, 1)
+
+ # Add FPS value to frame
+ cv.putText(oimg, "FPS: %0i" % (fps), [int(20), int(40)],
+ cv.FONT_HERSHEY_PLAIN, 2, RED, 2)
+
+ # Show result
+ cv.imshow('Gaze Estimation', oimg)
+
+ fps = int(1. / (time.time() - start_time_cycle))
+ frames += 1
+ EXECUTION_TIME = time.time() - START_TIME
+ print('Execution successful')
+ print('Mean FPS is ', int(frames / EXECUTION_TIME))