{
using GazeTracking<T>::_config;
using GazeTracking<T>::_preprocess;
+ using GazeTracking<T>::_inference;
private:
GazeTrackingResult _result;
{
using GazeTracking<T>::_config;
using GazeTracking<T>::_preprocess;
+ using GazeTracking<T>::_inference;
private:
GazeTrackingResult _result;
{
using GazeTracking<T>::_config;
using GazeTracking<T>::_preprocess;
+ using GazeTracking<T>::_inference;
private:
GazeTrackingResult _result;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = GazeTrackingResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = GazeTrackingResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = GazeTrackingResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
{
using ImageClassification<T>::_config;
using ImageClassification<T>::_labels;
+ using ImageClassification<T>::_inference;
private:
ImageClassificationResult _result;
template<typename T> ImageClassificationResult &ImageClassificationDefault<T>::result()
{
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
ImageClassification<T>::getOutputNames(names);
using ImageSegmentation<T>::_config;
using ImageSegmentation<T>::_preprocess;
using ImageSegmentation<T>::_labels;
+ using ImageSegmentation<T>::_inference;
private:
ImageSegmentationResult _result;
using ImageSegmentation<T>::_config;
using ImageSegmentation<T>::_preprocess;
using ImageSegmentation<T>::_labels;
+ using ImageSegmentation<T>::_inference;
private:
ImageSegmentationResult _result;
return mInputSize.height;
}
+ int convertOutputDataTypeToFloat();
+
private:
bool mCanRun = false; /**< The flag indicating ready to run Inference */
InferenceConfig mConfig;
int convertEngineErrorToVisionError(int error);
int convertTargetTypes(int given_types);
int convertToCv(int given_type);
- int convertOutputDataTypeToFloat();
int preprocess(std::vector<mv_source_h> &mv_sources, std::vector<cv::Mat> &cv_sources);
inference_tensor_data_type_e convertToIE(int given_type);
int prepareTenosrBuffers(void);
if (ret != INFERENCE_ENGINE_ERROR_NONE)
return ret;
- return convertOutputDataTypeToFloat();
+ return INFERENCE_ENGINE_ERROR_NONE;
}
int Inference::run()
{
using LandmarkDetection<T>::_config;
using LandmarkDetection<T>::_preprocess;
+ using LandmarkDetection<T>::_inference;
private:
LandmarkDetectionResult _result;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = LandmarkDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = LandmarkDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = LandmarkDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = LandmarkDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
template<typename T> class MobilenetV1Ssd : public ObjectDetection<T>
{
using ObjectDetection<T>::_config;
+ using ObjectDetection<T>::_inference;
using ObjectDetection<T>::_preprocess;
using ObjectDetection<T>::_labels;
template<typename T> class MobilenetV2Ssd : public ObjectDetection<T>
{
using ObjectDetection<T>::_config;
+ using ObjectDetection<T>::_inference;
using ObjectDetection<T>::_preprocess;
using ObjectDetection<T>::_labels;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = ObjectDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = ObjectDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = ObjectDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
vector<string> names;
// Clear _result object because result() function can be called every time user wants
// so make sure to clear existing result data before getting the data again.
_result = ObjectDetectionResult();
+ _inference->convertOutputDataTypeToFloat();
list<Palm> palm;
DecodeKeypoints(palm);