static const int kAsanStackLeftRedzoneMagic = 0xf1;
static const int kAsanStackMidRedzoneMagic = 0xf2;
static const int kAsanStackRightRedzoneMagic = 0xf3;
+static const int kAsanStackUseAfterScopeMagic = 0xf8;
// Input/output data struct for ComputeASanStackFrameLayout.
struct ASanStackVariableDescription {
- const char *Name; // Name of the variable that will be displayed by asan
- // if a stack-related bug is reported.
- uint64_t Size; // Size of the variable in bytes.
- size_t Alignment; // Alignment of the variable (power of 2).
- AllocaInst *AI; // The actual AllocaInst.
- size_t Offset; // Offset from the beginning of the frame;
- // set by ComputeASanStackFrameLayout.
+ const char *Name; // Name of the variable that will be displayed by asan
+ // if a stack-related bug is reported.
+ uint64_t Size; // Size of the variable in bytes.
+ size_t LifetimeSize; // Size in bytes to use for lifetime analysis check.
+ // Will be rounded up to Granularity.
+ size_t Alignment; // Alignment of the variable (power of 2).
+ AllocaInst *AI; // The actual AllocaInst.
+ size_t Offset; // Offset from the beginning of the frame;
+ // set by ComputeASanStackFrameLayout.
};
// Output data struct for ComputeASanStackFrameLayout.
assert(Layout->FrameAlignment >= Alignment);
assert((Offset % Alignment) == 0);
assert(Size > 0);
+ assert(Vars[i].LifetimeSize <= Size);
StackDescription << " " << Offset << " " << Size << " " << strlen(Name)
<< " " << Name;
size_t NextAlignment = IsLast ? Granularity
: std::max(Granularity, Vars[i + 1].Alignment);
size_t SizeWithRedzone = VarAndRedzoneSize(Vars[i].Size, NextAlignment);
- SB.insert(SB.end(), Size / Granularity, 0);
- if (Size % Granularity)
- SB.insert(SB.end(), Size % Granularity);
+ size_t LifetimeShadowSize =
+ (Vars[i].LifetimeSize + Granularity - 1) / Granularity;
+ SB.insert(SB.end(), LifetimeShadowSize, kAsanStackUseAfterScopeMagic);
+ if (Size / Granularity >= LifetimeShadowSize) {
+ SB.insert(SB.end(), Size / Granularity - LifetimeShadowSize, 0);
+ if (Size % Granularity)
+ SB.insert(SB.end(), Size % Granularity);
+ }
SB.insert(SB.end(), (SizeWithRedzone - Size) / Granularity,
IsLast ? kAsanStackRightRedzoneMagic
: kAsanStackMidRedzoneMagic);
Vars[i].Offset = Offset;
Offset += SizeWithRedzone;
+ assert(Offset == SB.size() * Granularity);
}
if (Offset % MinHeaderSize) {
size_t ExtraRedzone = MinHeaderSize - (Offset % MinHeaderSize);
case kAsanStackLeftRedzoneMagic: os << "L"; break;
case kAsanStackRightRedzoneMagic: os << "R"; break;
case kAsanStackMidRedzoneMagic: os << "M"; break;
+ case kAsanStackUseAfterScopeMagic:
+ os << "S";
+ break;
default: os << (unsigned)ShadowBytes[i];
}
}
#define VEC(a) \
SmallVector<ASanStackVariableDescription, 10>(a, a + sizeof(a) / sizeof(a[0]))
-#define VAR(name, size, alignment) \
+#define VAR(name, size, lifetime, alignment) \
ASanStackVariableDescription name##size##_##alignment = { \
#name #size "_" #alignment, \
size, \
+ lifetime, \
alignment, \
0, \
0 \
}
- VAR(a, 1, 1);
- VAR(p, 1, 32);
- VAR(p, 1, 256);
- VAR(a, 2, 1);
- VAR(a, 3, 1);
- VAR(a, 4, 1);
- VAR(a, 7, 1);
- VAR(a, 8, 1);
- VAR(a, 9, 1);
- VAR(a, 16, 1);
- VAR(a, 41, 1);
- VAR(a, 105, 1);
+ VAR(a, 1, 0, 1);
+ VAR(p, 1, 0, 32);
+ VAR(p, 1, 0, 256);
+ VAR(a, 2, 0, 1);
+ VAR(a, 3, 0, 1);
+ VAR(a, 4, 0, 1);
+ VAR(a, 7, 0, 1);
+ VAR(a, 8, 8, 1);
+ VAR(a, 9, 0, 1);
+ VAR(a, 16, 0, 1);
+ VAR(a, 41, 9, 1);
+ VAR(a, 105, 103, 1);
TestLayout(VEC1(a1_1), 8, 16, "1 16 1 4 a1_1", "LL1R");
TestLayout(VEC1(a1_1), 64, 64, "1 64 1 4 a1_1", "L1");
TestLayout(VEC1(a3_1), 8, 32, "1 32 3 4 a3_1", "LLLL3RRR");
TestLayout(VEC1(a4_1), 8, 32, "1 32 4 4 a4_1", "LLLL4RRR");
TestLayout(VEC1(a7_1), 8, 32, "1 32 7 4 a7_1", "LLLL7RRR");
- TestLayout(VEC1(a8_1), 8, 32, "1 32 8 4 a8_1", "LLLL0RRR");
+ TestLayout(VEC1(a8_1), 8, 32, "1 32 8 4 a8_1", "LLLLSRRR");
TestLayout(VEC1(a9_1), 8, 32, "1 32 9 4 a9_1", "LLLL01RR");
TestLayout(VEC1(a16_1), 8, 32, "1 32 16 5 a16_1", "LLLL00RR");
TestLayout(VEC1(p1_256), 8, 32, "1 256 1 6 p1_256",
"LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL1RRR");
- TestLayout(VEC1(a41_1), 8, 32, "1 32 41 5 a41_1", "LLLL000001RRRRRR");
+ TestLayout(VEC1(a41_1), 8, 32, "1 32 41 5 a41_1", "LLLLSS0001RRRRRR");
TestLayout(VEC1(a105_1), 8, 32, "1 32 105 6 a105_1",
- "LLLL00000000000001RRRRRR");
+ "LLLLSSSSSSSSSSSSS1RRRRRR");
{
ASanStackVariableDescription t[] = {a1_1, p1_256};
- TestLayout(VEC(t), 8, 32,
- "2 256 1 6 p1_256 272 1 4 a1_1",
- "LLLLLLLL" "LLLLLLLL" "LLLLLLLL" "LLLLLLLL" "1M1R");
+ TestLayout(VEC(t), 8, 32, "2 256 1 6 p1_256 272 1 4 a1_1",
+ "LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL1M1R");
}
{
ASanStackVariableDescription t[] = {a1_1, a16_1, a41_1};
- TestLayout(VEC(t), 8, 32,
- "3 32 1 4 a1_1 48 16 5 a16_1 80 41 5 a41_1",
- "LLLL" "1M00" "MM00" "0001" "RRRR");
+ TestLayout(VEC(t), 8, 32, "3 32 1 4 a1_1 48 16 5 a16_1 80 41 5 a41_1",
+ "LLLL1M00MMSS0001RRRR");
}
#undef VEC1
#undef VEC