w = SkScalarSqrt((w1 * w1) / (w0 * w2));
return w;
}
+
+int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
+ const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
+ // rotate by x,y so that uStart is (1.0)
+ SkScalar x = SkPoint::DotProduct(uStart, uStop);
+ SkScalar y = SkPoint::CrossProduct(uStart, uStop);
+
+ SkScalar absY = SkScalarAbs(y);
+
+ // check for (effectively) coincident vectors
+ // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
+ // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
+ if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
+ (y <= 0 && kCCW_SkRotationDirection == dir))) {
+ return 0;
+ }
+
+ if (dir == kCCW_SkRotationDirection) {
+ y = -y;
+ }
+
+ // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
+ // 0 == [0 .. 90)
+ // 1 == [90 ..180)
+ // 2 == [180..270)
+ // 3 == [270..360)
+ //
+ int quadrant = 0;
+ if (0 == y) {
+ quadrant = 2; // 180
+ SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
+ } else if (0 == x) {
+ SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
+ quadrant = y > 0 ? 1 : 3; // 90 : 270
+ } else {
+ if (y < 0) {
+ quadrant += 2;
+ }
+ if ((x < 0) != (y < 0)) {
+ quadrant += 1;
+ }
+ }
+
+ const SkPoint quadrantPts[] = {
+ { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
+ };
+ const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
+
+ int conicCount = quadrant;
+ for (int i = 0; i < conicCount; ++i) {
+ dst[i].set(&quadrantPts[i * 2], quadrantWeight);
+ }
+
+ // Now compute any remaing (sub-90-degree) arc for the last conic
+ const SkPoint finalP = { x, y };
+ const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
+ const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
+ SkASSERT(0 <= dot && dot <= SK_Scalar1);
+
+ if (dot < 1 - SK_ScalarNearlyZero) {
+ SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
+ // compute the bisector vector, and then rescale to be the off-curve point.
+ // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
+ // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
+ // This is nice, since our computed weight is cos(theta/2) as well!
+ //
+ const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
+ offCurve.setLength(SkScalarInvert(cosThetaOver2));
+ dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
+ conicCount += 1;
+ }
+
+ // now handle counter-clockwise and the initial unitStart rotation
+ SkMatrix matrix;
+ matrix.setSinCos(uStart.fY, uStart.fX);
+ if (dir == kCCW_SkRotationDirection) {
+ matrix.preScale(SK_Scalar1, -SK_Scalar1);
+ }
+ if (userMatrix) {
+ matrix.postConcat(*userMatrix);
+ }
+ for (int i = 0; i < conicCount; ++i) {
+ matrix.mapPoints(dst[i].fPts, 3);
+ }
+ return conicCount;
+}
int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
-// experimental
struct SkConic {
SkConic() {}
SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
fW = w;
}
+ void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
+ fPts[0] = p0;
+ fPts[1] = p1;
+ fPts[2] = p2;
+ fW = w;
+ }
+
/**
* Given a t-value [0...1] return its position and/or tangent.
* If pos is not null, return its position at the t-value.
bool findMaxCurvature(SkScalar* t) const;
static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
+
+ enum {
+ kMaxConicsForArc = 5
+ };
+ static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
+ const SkMatrix*, SkConic conics[kMaxConicsForArc]);
};
#include "SkTemplates.h"
return false;
}
-static int build_arc_points(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
- SkPoint pts[kSkBuildQuadArcStorage]) {
- SkVector start, stop;
-
- start.fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &start.fX);
- stop.fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle),
- &stop.fX);
+// Return the unit vectors pointing at the start/stop points for the given start/sweep angles
+//
+static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle,
+ SkVector* startV, SkVector* stopV, SkRotationDirection* dir) {
+ startV->fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &startV->fX);
+ stopV->fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle), &stopV->fX);
/* If the sweep angle is nearly (but less than) 360, then due to precision
- loss in radians-conversion and/or sin/cos, we may end up with coincident
- vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
- of drawing a nearly complete circle (good).
- e.g. canvas.drawArc(0, 359.99, ...)
- -vs- canvas.drawArc(0, 359.9, ...)
- We try to detect this edge case, and tweak the stop vector
+ loss in radians-conversion and/or sin/cos, we may end up with coincident
+ vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
+ of drawing a nearly complete circle (good).
+ e.g. canvas.drawArc(0, 359.99, ...)
+ -vs- canvas.drawArc(0, 359.9, ...)
+ We try to detect this edge case, and tweak the stop vector
*/
- if (start == stop) {
+ if (*startV == *stopV) {
SkScalar sw = SkScalarAbs(sweepAngle);
if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) {
SkScalar stopRad = SkDegreesToRadians(startAngle + sweepAngle);
// not sure how much will be enough, so we use a loop
do {
stopRad -= deltaRad;
- stop.fY = SkScalarSinCos(stopRad, &stop.fX);
- } while (start == stop);
+ stopV->fY = SkScalarSinCos(stopRad, &stopV->fX);
+ } while (*startV == *stopV);
}
}
+ *dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection;
+}
+
+#ifdef SK_SUPPORT_LEGACY_ARCTO_QUADS
+static int build_arc_points(const SkRect& oval, const SkVector& start, const SkVector& stop,
+ SkRotationDirection dir, SkPoint pts[kSkBuildQuadArcStorage]) {
+ SkMatrix matrix;
+ matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
+ matrix.postTranslate(oval.centerX(), oval.centerY());
+
+ return SkBuildQuadArc(start, stop, dir, &matrix, pts);
+}
+#else
+static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop,
+ SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc]) {
SkMatrix matrix;
matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
matrix.postTranslate(oval.centerX(), oval.centerY());
- return SkBuildQuadArc(start, stop,
- sweepAngle > 0 ? kCW_SkRotationDirection :
- kCCW_SkRotationDirection,
- &matrix, pts);
+ return SkConic::BuildUnitArc(start, stop, dir, &matrix, conics);
}
+#endif
void SkPath::addRoundRect(const SkRect& rect, const SkScalar radii[],
Direction dir) {
return;
}
+ SkVector startV, stopV;
+ SkRotationDirection dir;
+ angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir);
+
+#ifdef SK_SUPPORT_LEGACY_ARCTO_QUADS
SkPoint pts[kSkBuildQuadArcStorage];
- int count = build_arc_points(oval, startAngle, sweepAngle, pts);
+ int count = build_arc_points(oval, startV, stopV, dir, pts);
SkASSERT((count & 1) == 1);
this->incReserve(count);
for (int i = 1; i < count; i += 2) {
this->quadTo(pts[i], pts[i+1]);
}
+#else
+ SkConic conics[SkConic::kMaxConicsForArc];
+ int count = build_arc_conics(oval, startV, stopV, dir, conics);
+ if (count) {
+ this->incReserve(count * 2 + 1);
+ const SkPoint& pt = conics[0].fPts[0];
+ forceMoveTo ? this->moveTo(pt) : this->lineTo(pt);
+ for (int i = 0; i < count; ++i) {
+ this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW);
+ }
+ }
+#endif
}
void SkPath::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) {
check_done_and_reset(reporter, p, &iter);
}
+static bool nearly_equal(const SkRect& a, const SkRect& b) {
+ return SkScalarNearlyEqual(a.fLeft, b.fLeft) &&
+ SkScalarNearlyEqual(a.fTop, b.fTop) &&
+ SkScalarNearlyEqual(a.fRight, b.fRight) &&
+ SkScalarNearlyEqual(a.fBottom, b.fBottom);
+}
+
static void test_arcTo(skiatest::Reporter* reporter) {
SkPath p;
p.arcTo(0, 0, 1, 2, 1);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 360, 0, false);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
+
for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) {
p.arcTo(oval, 0, sweep, false);
- REPORTER_ASSERT(reporter, p.getBounds() == oval);
+ REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
sweep += delta;
delta /= 2;
}
for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) {
p.arcTo(oval, 0, sweep, false);
- REPORTER_ASSERT(reporter, p.getBounds() == oval);
+ REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
sweep -= delta;
delta /= 2;
}