}
+void InstructionSelector::VisitConvertUint32ToFloat64(Node* node) {
+ ArmOperandGenerator g(this);
+ Emit(kArmVcvtF64U32, g.DefineAsDoubleRegister(node),
+ g.UseRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitConvertFloat64ToInt32(Node* node) {
ArmOperandGenerator g(this);
Emit(kArmVcvtS32F64, g.DefineAsRegister(node),
}
+void InstructionSelector::VisitConvertFloat64ToUint32(Node* node) {
+ ArmOperandGenerator g(this);
+ Emit(kArmVcvtU32F64, g.DefineAsRegister(node),
+ g.UseDoubleRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitFloat64Add(Node* node) {
ArmOperandGenerator g(this);
Int32BinopMatcher m(node);
case kArm64Float64ToInt32:
__ Fcvtzs(i.OutputRegister32(), i.InputDoubleRegister(0));
break;
+ case kArm64Float64ToUint32:
+ __ Fcvtzu(i.OutputRegister32(), i.InputDoubleRegister(0));
+ break;
case kArm64Int32ToFloat64:
__ Scvtf(i.OutputDoubleRegister(), i.InputRegister32(0));
break;
+ case kArm64Uint32ToFloat64:
+ __ Ucvtf(i.OutputDoubleRegister(), i.InputRegister32(0));
+ break;
case kArm64LoadWord8:
__ Ldrb(i.OutputRegister(), i.MemoryOperand());
break;
V(Arm64Int32ToInt64) \
V(Arm64Int64ToInt32) \
V(Arm64Float64ToInt32) \
+ V(Arm64Float64ToUint32) \
V(Arm64Int32ToFloat64) \
+ V(Arm64Uint32ToFloat64) \
V(Arm64Float64Load) \
V(Arm64Float64Store) \
V(Arm64LoadWord8) \
}
+void InstructionSelector::VisitConvertUint32ToFloat64(Node* node) {
+ Arm64OperandGenerator g(this);
+ Emit(kArm64Uint32ToFloat64, g.DefineAsDoubleRegister(node),
+ g.UseRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitConvertFloat64ToInt32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64ToInt32, g.DefineAsRegister(node),
}
+void InstructionSelector::VisitConvertFloat64ToUint32(Node* node) {
+ Arm64OperandGenerator g(this);
+ Emit(kArm64Float64ToUint32, g.DefineAsRegister(node),
+ g.UseDoubleRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitRRRFloat64(this, kArm64Float64Add, node);
}
case kSSEFloat64ToInt32:
__ cvttsd2si(i.OutputRegister(), i.InputOperand(0));
break;
+ case kSSEFloat64ToUint32: {
+ XMMRegister scratch = xmm0;
+ __ Move(scratch, -2147483648.0);
+ // TODO(turbofan): IA32 SSE subsd() should take an operand.
+ __ addsd(scratch, i.InputDoubleRegister(0));
+ __ cvttsd2si(i.OutputRegister(), scratch);
+ __ add(i.OutputRegister(), Immediate(0x80000000));
+ break;
+ }
case kSSEInt32ToFloat64:
__ cvtsi2sd(i.OutputDoubleRegister(), i.InputOperand(0));
break;
+ case kSSEUint32ToFloat64:
+ // TODO(turbofan): IA32 SSE LoadUint32() should take an operand.
+ __ LoadUint32(i.OutputDoubleRegister(), i.InputRegister(0));
+ break;
case kSSELoad:
__ movsd(i.OutputDoubleRegister(), i.MemoryOperand());
break;
V(SSEFloat64Div) \
V(SSEFloat64Mod) \
V(SSEFloat64ToInt32) \
+ V(SSEFloat64ToUint32) \
V(SSEInt32ToFloat64) \
+ V(SSEUint32ToFloat64) \
V(SSELoad) \
V(SSEStore) \
V(IA32LoadWord8) \
}
+void InstructionSelector::VisitConvertUint32ToFloat64(Node* node) {
+ IA32OperandGenerator g(this);
+ // TODO(turbofan): IA32 SSE LoadUint32() should take an operand.
+ Emit(kSSEUint32ToFloat64, g.DefineAsDoubleRegister(node),
+ g.UseRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitConvertFloat64ToInt32(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
+void InstructionSelector::VisitConvertFloat64ToUint32(Node* node) {
+ IA32OperandGenerator g(this);
+ // TODO(turbofan): IA32 SSE subsd() should take an operand.
+ Emit(kSSEFloat64ToUint32, g.DefineAsRegister(node),
+ g.UseDoubleRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitFloat64Add(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64Add, g.DefineSameAsFirst(node),
return VisitConvertInt64ToInt32(node);
case IrOpcode::kConvertInt32ToFloat64:
return MarkAsDouble(node), VisitConvertInt32ToFloat64(node);
+ case IrOpcode::kConvertUint32ToFloat64:
+ return MarkAsDouble(node), VisitConvertUint32ToFloat64(node);
case IrOpcode::kConvertFloat64ToInt32:
return VisitConvertFloat64ToInt32(node);
+ case IrOpcode::kConvertFloat64ToUint32:
+ return VisitConvertFloat64ToUint32(node);
case IrOpcode::kFloat64Add:
return MarkAsDouble(node), VisitFloat64Add(node);
case IrOpcode::kFloat64Sub:
Node* ConvertInt32ToFloat64(Node* a) {
return NEW_NODE_1(MACHINE()->ConvertInt32ToFloat64(), a);
}
+ Node* ConvertUint32ToFloat64(Node* a) {
+ return NEW_NODE_1(MACHINE()->ConvertUint32ToFloat64(), a);
+ }
Node* ConvertFloat64ToInt32(Node* a) {
return NEW_NODE_1(MACHINE()->ConvertFloat64ToInt32(), a);
}
+ Node* ConvertFloat64ToUint32(Node* a) {
+ return NEW_NODE_1(MACHINE()->ConvertFloat64ToUint32(), a);
+ }
#ifdef MACHINE_ASSEMBLER_SUPPORTS_CALL_C
// Call to C.
Operator* ConvertInt32ToInt64() { UNOP(ConvertInt32ToInt64); }
Operator* ConvertInt64ToInt32() { UNOP(ConvertInt64ToInt32); }
+
+ // Convert representation of integers between float64 and int32/uint32.
+ // The precise rounding mode and handling of out of range inputs are *not*
+ // defined for these operators, since they are intended only for use with
+ // integers.
+ // TODO(titzer): rename ConvertXXX to ChangeXXX in machine operators.
Operator* ConvertInt32ToFloat64() { UNOP(ConvertInt32ToFloat64); }
Operator* ConvertUint32ToFloat64() { UNOP(ConvertUint32ToFloat64); }
- // TODO(titzer): add rounding mode to floating point conversion.
Operator* ConvertFloat64ToInt32() { UNOP(ConvertFloat64ToInt32); }
Operator* ConvertFloat64ToUint32() { UNOP(ConvertFloat64ToUint32); }
- // TODO(titzer): do we need different rounding modes for float arithmetic?
+ // Floating point operators always operate with IEEE 754 round-to-nearest.
Operator* Float64Add() { BINOP_C(Float64Add); }
Operator* Float64Sub() { BINOP(Float64Sub); }
Operator* Float64Mul() { BINOP_C(Float64Mul); }
Operator* Float64Div() { BINOP(Float64Div); }
Operator* Float64Mod() { BINOP(Float64Mod); }
+
+ // Floating point comparisons complying to IEEE 754.
Operator* Float64Equal() { BINOP_C(Float64Equal); }
Operator* Float64LessThan() { BINOP(Float64LessThan); }
Operator* Float64LessThanOrEqual() { BINOP(Float64LessThanOrEqual); }
}
break;
}
+ case kSSEFloat64ToUint32: {
+ // TODO(turbofan): X64 SSE cvttsd2siq should support operands.
+ __ cvttsd2siq(i.OutputRegister(), i.InputDoubleRegister(0));
+ break;
+ }
case kSSEInt32ToFloat64: {
RegisterOrOperand input = i.InputRegisterOrOperand(0);
if (input.type == kRegister) {
}
break;
}
+ case kSSEUint32ToFloat64: {
+ // TODO(turbofan): X64 SSE cvtqsi2sd should support operands.
+ __ cvtqsi2sd(i.OutputDoubleRegister(), i.InputRegister(0));
+ break;
+ }
+
case kSSELoad:
__ movsd(i.OutputDoubleRegister(), i.MemoryOperand());
break;
V(X64Int32ToInt64) \
V(X64Int64ToInt32) \
V(SSEFloat64ToInt32) \
+ V(SSEFloat64ToUint32) \
V(SSEInt32ToFloat64) \
+ V(SSEUint32ToFloat64) \
V(SSELoad) \
V(SSEStore) \
V(X64LoadWord8) \
}
+void InstructionSelector::VisitConvertUint32ToFloat64(Node* node) {
+ X64OperandGenerator g(this);
+ // TODO(turbofan): X64 SSE cvtqsi2sd should support operands.
+ Emit(kSSEUint32ToFloat64, g.DefineAsDoubleRegister(node),
+ g.UseRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitConvertFloat64ToInt32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
+void InstructionSelector::VisitConvertFloat64ToUint32(Node* node) {
+ X64OperandGenerator g(this);
+ // TODO(turbofan): X64 SSE cvttsd2siq should support operands.
+ Emit(kSSEFloat64ToUint32, g.DefineAsRegister(node),
+ g.UseDoubleRegister(node->InputAt(0)));
+}
+
+
void InstructionSelector::VisitFloat64Add(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64Add, g.DefineSameAsFirst(node),
}
-// TODO(titzer): Test ConvertUint32ToFloat64
+TEST(RunConvertUint32ToFloat64_B) {
+ RawMachineAssemblerTester<int32_t> m(kMachineWord32);
+ double output = 0;
+
+ Node* convert = m.ConvertUint32ToFloat64(m.Parameter(0));
+ m.Store(kMachineFloat64, m.PointerConstant(&output), m.Int32Constant(0),
+ convert);
+ m.Return(m.Parameter(0));
+
+ FOR_UINT32_INPUTS(i) {
+ uint32_t expect = *i;
+ CHECK_EQ(expect, m.Call(expect));
+ CHECK_EQ(static_cast<double>(expect), output);
+ }
+}
TEST(RunConvertFloat64ToInt32_A) {
{
FOR_INT32_INPUTS(i) {
input = *i;
- int expect = *i;
+ int32_t expect = *i;
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
}
- {
- FOR_FLOAT64_INPUTS(i) {
- input = *i;
- // TODO(titzer): float64 -> int32 outside of the int32 range; the machine
- // backends are all wrong in different ways, and they certainly don't
- // implement the JavaScript conversions correctly.
- if (std::isnan(input) || input > INT_MAX || input < INT_MIN) {
- continue;
- }
- int32_t expect = static_cast<int32_t>(input);
+ // Check various powers of 2.
+ for (int32_t n = 1; n < 31; ++n) {
+ {
+ input = 1 << n;
+ int32_t expect = input;
+ CHECK_EQ(expect, m.Call());
+ CHECK_EQ(expect, output);
+ }
+
+ {
+ input = 3 << n;
+ int32_t expect = input;
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
}
+ // Note we don't check fractional inputs, because these Convert operators
+ // really should be Change operators.
}
-// TODO(titzer): test ConvertFloat64ToUint32
-
-
-TEST(RunConvertFloat64ToInt32_truncation) {
+TEST(RunConvertFloat64ToUint32_B) {
RawMachineAssemblerTester<int32_t> m;
- int32_t magic = 0x786234;
- double input = 3.9;
- int32_t result = 0;
+ double input = 0;
+ int32_t output = 0;
- Node* input_node =
+ Node* load =
m.Load(kMachineFloat64, m.PointerConstant(&input), m.Int32Constant(0));
- m.Store(kMachineWord32, m.PointerConstant(&result), m.Int32Constant(0),
- m.ConvertFloat64ToInt32(input_node));
- m.Return(m.Int32Constant(magic));
+ Node* convert = m.ConvertFloat64ToUint32(load);
+ m.Store(kMachineWord32, m.PointerConstant(&output), m.Int32Constant(0),
+ convert);
+ m.Return(convert);
- for (int i = -200; i < 200; i++) {
- input = i + (i < 0 ? -0.9 : 0.9);
- CHECK_EQ(magic, m.Call());
- CHECK_EQ(i, result);
+ {
+ FOR_UINT32_INPUTS(i) {
+ input = *i;
+ // TODO(titzer): add a CheckEqualsHelper overload for uint32_t.
+ int32_t expect = static_cast<int32_t>(*i);
+ CHECK_EQ(expect, m.Call());
+ CHECK_EQ(expect, output);
+ }
+ }
+
+ // Check various powers of 2.
+ for (int32_t n = 1; n < 31; ++n) {
+ {
+ input = 1u << n;
+ int32_t expect = static_cast<int32_t>(static_cast<uint32_t>(input));
+ CHECK_EQ(expect, m.Call());
+ CHECK_EQ(expect, output);
+ }
+
+ {
+ input = 3u << n;
+ int32_t expect = static_cast<int32_t>(static_cast<uint32_t>(input));
+ CHECK_EQ(expect, m.Call());
+ CHECK_EQ(expect, output);
+ }
}
+ // Note we don't check fractional inputs, because these Convert operators
+ // really should be Change operators.
}